1
|
Liu Q, Naganuma T. Metabolomics in sturgeon research: a mini-review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1895-1910. [PMID: 38980504 PMCID: PMC11286732 DOI: 10.1007/s10695-024-01377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Sturgeons are ancient fish, with 27 species distributed in the Northern Hemisphere. This review first touches upon the significance of sturgeons in the context of their biological, ecological, and economic importance, highlighting their status as "living fossils" and the challenges they face in genomic research due to their diverse chromosome numbers. This review then discusses how omics technologies (genomics, transcriptomics, proteomics, and metabolomics) have been used in sturgeon research, which so far has only been done on Acipenser species. It focuses on metabolomics as a way to better understand how sturgeons work and how they react to their environment. Specific studies in sturgeon metabolomics are cited, showing how metabolomics has been used to investigate various aspects of sturgeon biology, such as growth, reproduction, stress responses, and nutrition. These studies demonstrate the potential of metabolomics in improving sturgeon aquaculture practices and conservation efforts. Overall, the review suggests that metabolomics, as a relatively new scientific tool, has the potential to enhance our understanding of sturgeon biology and aid in their conservation and sustainable aquaculture, contributing to global food security efforts.
Collapse
Affiliation(s)
- Qi Liu
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Takeshi Naganuma
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
2
|
Yang L, Lin X, Tang H, Fan Y, Zeng S, Jia L, Li Y, Shi Y, He S, Wang H, Hu Z, Gong X, Liang X, Yang Y, Liu X. Mitochondrial DNA mutation exacerbates female reproductive aging via impairment of the NADH/NAD + redox. Aging Cell 2020; 19:e13206. [PMID: 32744417 PMCID: PMC7511885 DOI: 10.1111/acel.13206] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/17/2020] [Accepted: 06/28/2020] [Indexed: 12/24/2022] Open
Abstract
Mammals' aging is correlated with the accumulation of somatic heteroplasmic mitochondrial DNA (mtDNA) mutations. Whether and how aging accumulated mtDNA mutations modulate fertility remains unknown. Here, we analyzed oocyte quality of young (≤30 years old) and elder (≥38 years old) female patients and show the elder group had lower blastocyst formation rate and more mtDNA point mutations in oocytes. To test the causal role of mtDNA point mutations on infertility, we used polymerase gamma (POLG) mutator mice. We show that mtDNA mutation levels inversely correlate with fertility, interestingly mainly affecting not male but female fertility. mtDNA mutations decrease female mice's fertility by reducing ovarian primordial and mature follicles. Mechanistically, accumulation of mtDNA mutations decreases fertility by impairing oocyte's NADH/NAD+ redox state, which could be rescued by nicotinamide mononucleotide treatment. For the first time, we answer the fundamental question of the causal effect of age-accumulated mtDNA mutations on fertility and its sex dependence, and show its distinct metabolic controlling mechanism.
Collapse
Affiliation(s)
- Liang Yang
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| | - Xiaobing Lin
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| | - Haite Tang
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| | - Yuting Fan
- The Sixth Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Sheng Zeng
- State Key Laboratory of Respiratory Disease Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Guangzhou China
| | - Lei Jia
- The Sixth Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Yukun Li
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| | - Yanan Shi
- The Sixth Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Shujing He
- The Sixth Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Hao Wang
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| | - Zhijuan Hu
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| | - Xiao Gong
- Department of Epidemiology and Biostatistics School of Public Health Guangdong Pharmaceutical University Guangzhou China
| | - Xiaoyan Liang
- The Sixth Affiliated Hospital of Sun Yat‐sen University Guangzhou China
| | - Yi Yang
- Synthetic Biology and Biotechnology Laboratory State Key Laboratory of Bioreactor Engineering Shanghai Collaborative Innovation Center for Biomanufacturing Technology East China University of Science and Technology Shanghai China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology Joint School of Life Sciences Hefei Institute of Stem Cell and Regenerative Medicine Guangzhou Institutes of Biomedicine and Health Chinese Academy of SciencesGuangzhou Medical University Guangzhou China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine South China Institute for Stem Cell Biology and Regenerative Medicine Institute for Stem Cell and Regeneration Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
3
|
Moreira RF, Matos MNC, Alves JG, do Valle RV, Eloy AMX, Pinto TMF, Machado SP, Costa CRR, de Lima JL, Lima JPMS, da Cunha RMS. Diversity of ejaculated sperm proteins in Moxotó bucks ( Capra hircus ) evaluated by multiple extraction methods. Anim Reprod 2018; 15:84-92. [PMID: 33365100 PMCID: PMC7746222 DOI: 10.21451/1984-3143-2017-ar966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
This study aimed to develop protocols for the extraction of sperm proteins from Moxotó
goats (Capra hircus) and to compare the resulting proteomic maps. The
sperm proteins were isolated using an extraction buffer containing 7 M urea and 2 M thiourea,
20 mM DTT, and one of the following detergents: 1% or 4% CHAPS; 1% or 4% SDS; 1% or 4% Triton X-100;
or a combination of CHAPS and SDS. The 1-DE and 2-DE profiles of the isolated proteins revealed
that the various isolation methods were efficient. Qualitative and quantitative differences
in the 1-DE and 2-DE profiles were observed. 2-DE maps indicated that the amount and diversity
of proteins visualized depended on the detergent that was used. Furthermore, this work revealed
that the combination of detergents increased the resolution of some spots and retained the
characteristics of the individual detergents, depending on their concentrations.
Collapse
Affiliation(s)
- Raulzito Fernandes Moreira
- Departamento de Biotecnologia, Universidade Federal do Ceará (UFC), programa de pós-graduação em biotecnologia (PPGB), Sobral, CE, .,Núcleo de Biotecnologia de Sobral (NUBIS), Universidade Estadual Vale do Acaraú (UVA), Sobral, Ceará,
| | - Maria Nágila Carneiro Matos
- Departamento de Biotecnologia, Universidade Federal do Ceará (UFC), programa de pós-graduação em biotecnologia (PPGB), Sobral, CE, .,Núcleo de Biotecnologia de Sobral (NUBIS), Universidade Estadual Vale do Acaraú (UVA), Sobral, Ceará,
| | - João Garcia Alves
- Núcleo de Biotecnologia de Sobral (NUBIS), Universidade Estadual Vale do Acaraú (UVA), Sobral, Ceará,
| | - Roberta Vianna do Valle
- Departamento de Zootecnia, Universidade Estadual Vale do Acaraú (UVA), Programa de Pós-Graduação em Zootecnia (PPGZ), Sobral, CE
| | - Angela Maria Xavier Eloy
- Departamento de Zootecnia, Universidade Estadual Vale do Acaraú (UVA), Programa de Pós-Graduação em Zootecnia (PPGZ), Sobral, CE.,Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA Caprinos e Ovinos), Sobral, CE,
| | - Tatiana Maria Farias Pinto
- Departamento de Zootecnia, Universidade Estadual Vale do Acaraú (UVA), Programa de Pós-Graduação em Zootecnia (PPGZ), Sobral, CE.,Núcleo de Biotecnologia de Sobral (NUBIS), Universidade Estadual Vale do Acaraú (UVA), Sobral, Ceará,
| | | | | | - José Luiz de Lima
- Laboratório de imunopatologia keizo Asami (LIKA), Departamento de Bioquímica, , ,
| | - João Paulo Matos Santos Lima
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brasil. Endereço: Campus Universitário Lagoa Nova, ,
| | - Rodrigo Maranguape Silva da Cunha
- Departamento de Biotecnologia, Universidade Federal do Ceará (UFC), programa de pós-graduação em biotecnologia (PPGB), Sobral, CE, .,Núcleo de Biotecnologia de Sobral (NUBIS), Universidade Estadual Vale do Acaraú (UVA), Sobral, Ceará,
| |
Collapse
|
5
|
Rodrigues PM, Silva TS, Dias J, Jessen F. PROTEOMICS in aquaculture: applications and trends. J Proteomics 2012; 75:4325-45. [PMID: 22498885 DOI: 10.1016/j.jprot.2012.03.042] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 03/18/2012] [Accepted: 03/24/2012] [Indexed: 01/15/2023]
Abstract
Over the last forty years global aquaculture presented a growth rate of 6.9% per annum with an amazing production of 52.5 million tonnes in 2008, and a contribution of 43% of aquatic animal food for human consumption. In order to meet the world's health requirements of fish protein, a continuous growth in production is still expected for decades to come. Aquaculture is, though, a very competitive market, and a global awareness regarding the use of scientific knowledge and emerging technologies to obtain a better farmed organism through a sustainable production has enhanced the importance of proteomics in seafood biology research. Proteomics, as a powerful comparative tool, has therefore been increasingly used over the last decade to address different questions in aquaculture, regarding welfare, nutrition, health, quality, and safety. In this paper we will give an overview of these biological questions and the role of proteomics in their investigation, outlining the advantages, disadvantages and future challenges. A brief description of the proteomics technical approaches will be presented. Special focus will be on the latest trends related to the aquaculture production of fish with defined nutritional, health or quality properties for functional foods and the integration of proteomics techniques in addressing this challenging issue.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- Centro de Ciências do Mar do Algarve (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
6
|
Martyniuk CJ, Alvarez S, Denslow ND. DIGE and iTRAQ as biomarker discovery tools in aquatic toxicology. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 76:3-10. [PMID: 22056798 PMCID: PMC4238381 DOI: 10.1016/j.ecoenv.2011.09.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/27/2011] [Accepted: 09/28/2011] [Indexed: 05/31/2023]
Abstract
Molecular approaches in ecotoxicology have greatly enhanced mechanistic understanding of the impact of aquatic pollutants in organisms. These methods have included high throughput Omics technologies, including quantitative proteomics methods such as 2D differential in-gel electrophoresis (DIGE) and isobaric tagging for relative and absolute quantitation (iTRAQ). These methods are becoming more widely used in ecotoxicology studies to identify and characterize protein bioindicators of adverse effect. In teleost fish, iTRAQ has been used successfully in different fish species (e.g. fathead minnow, goldfish, largemouth bass) and tissues (e.g. hypothalamus and liver) to quantify relative protein abundance. Of interest for ecotoxicology is that many proteins commonly utilized as bioindicators of toxicity or stress are quantifiable using iTRAQ on a larger scale, providing a global baseline of biological effect from which to assess changes in the proteome. This review highlights the successes to date for high throughput quantitative proteomics using DIGE and iTRAQ in aquatic toxicology. Current challenges for the iTRAQ method for biomarker discovery in fish are the high cost and the lack of complete annotated genomes for teleosts. However, the use of protein homology from teleost fishes in protein databases and the introduction of hybrid LTQ-FT (Linear ion trap-Fourier transform) mass spectrometers with high resolution, increased sensitivity, and high mass accuracy are able to improve significantly the protein identification rates. Despite these challenges, initial studies utilizing iTRAQ for ecotoxicoproteomics have exceeded expectations and it is anticipated that the use of non-gel based quantitative proteomics will increase for protein biomarker discovery and for characterization of chemical mode of action.
Collapse
Affiliation(s)
- Christopher J Martyniuk
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Saint John, New Brunswick, Canada E2L 4L5.
| | | | | |
Collapse
|