1
|
Conlon JM, Mechkarska M, Leprince J. Peptidomic analysis in the discovery of therapeutically valuable peptides in amphibian skin secretions. Expert Rev Proteomics 2019; 16:897-908. [DOI: 10.1080/14789450.2019.1693894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J. Michael Conlon
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom of Great Britain and Northern Ireland
| | - Milena Mechkarska
- Department of Life Sciences, University of the West Indies at Saint Augustine, Saint Augustine, Trinidad and Tobago
| | - Jérôme Leprince
- Equipe Facteurs Neurotrophiques et Différenciation Neuronale, Universite de Rouen, Mont-Saint-Aignan, France
| |
Collapse
|
2
|
Conlon JM, Mechkarska M, Kolodziejek J, Nowotny N, Coquet L, Leprince J, Jouenne T, Vaudry H. Host-defense peptides from skin secretions of Fraser's clawed frog Xenopus fraseri (Pipidae): Further insight into the evolutionary history of the Xenopodinae. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 12:45-52. [PMID: 25463057 DOI: 10.1016/j.cbd.2014.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/01/2014] [Accepted: 10/01/2014] [Indexed: 11/27/2022]
Abstract
Peptidomic analysis of norepinephrine-stimulated skin secretions of the tetraploid frog Xenopus fraseri Boulenger, 1905 (Pipidae) led to identification of 13 host-defense peptides. The primary structures of the peptides demonstrate that they belong to the magainin (3 peptides), peptide glycine-leucine-amide, PGLa (4 peptides), and xenopsin-precursor fragment, XPF (2 peptides) families, first identified in Xenopus laevis, together with caerulein precursor fragment-related peptides, CPF-RP (4 peptides), first identified in Silurana tropicalis. In addition, the secretions contain a molecular variant of xenopsin displaying the substitution Arg(4)→Lys compared with X. laevis xenopsin and peptide glycine-tyrosine-amide (PGYa) (GRIIPIYPEFERVFA KKVYPLY.NH2) whose function is unknown. The most potent antimicrobial peptide identified is CPF-RP-F1 (GFGSVLGKALKFGANLL.NH2) with MIC=12.5μM against Staphylococcus aureus and 50μM against Escherichia coli. On the basis of similarities in morphology and advertisement calls, X. fraseri has been placed in a species group that includes the octoploids Xenopus amieti and Xenopus andrei, and the tetraploid Xenopus pygmaeus. Cladistic analyses based upon the primary structures of magainin, PGLa, and CPF-RP peptides support a close evolutionary relationship between X. fraseri, X. amieti and X. andrei but suggest a more distant relationship with X. pygmaeus.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| | - Milena Mechkarska
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria; Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Laurent Coquet
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France; CNRS UMR 6270, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Jérôme Leprince
- INSERM U-982, PRIMACEN, CNRS, IRIB, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France; CNRS UMR 6270, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- INSERM U-982, PRIMACEN, CNRS, IRIB, University of Rouen, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
3
|
Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Michalak K, Michalak P, Conlon JM. Host-defense peptides from skin secretions of the octoploid frogs Xenopus vestitus and Xenopus wittei (Pipidae): insights into evolutionary relationships. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 11:20-8. [PMID: 25086320 DOI: 10.1016/j.cbd.2014.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
The primary structures of host-defense peptides have proved useful in elucidating the evolution history of frogs. Peptidomic analysis was used to compare the diversity of host-defense peptides in norepinephrine-stimulated skin secretions from the octoploid frogs, Xenopus vestitus (Kivu clawed frog) and Xenopus wittei (De Witte's clawed frog) in the family Pipidae. Structural characterization demonstrated that the X. vestitus peptides belong to the magainin (3 peptides), peptide glycine-leucine-amide (PGLa; 4 peptides), xenopsin-precursor fragment (XPF; 1 peptide), and caerulein-precursor fragment (CPF; 5 peptides) families. The X. wittei peptides comprise magainin (4 peptides), PGLa (1 peptide), XPF (2 peptides), and CPF (7 peptides). In addition, secretions from both species contain caerulein, identical to the peptide from Xenopus laevis, but X. wittei secretions contains the novel peptide [R4K]xenopsin. The variability in the numbers of paralogs in each peptide family indicates a selective silencing of the host-defense peptide genes following the polyploidization events. The primary structures of the peptides provide insight into phylogenetic relationships among the octoploid Xenopus frogs. The data support a sister-group relationship between X. vestitus and Xenopus lenduensis, suggestive of bifurcating speciation after allopolyploidization, whereas X. wittei is more closely related to the Xenopus amieti-Xenopus andrei group suggesting a common tetraploid ancestor. Consistent with previous data, the CPF peptides showed the highest growth inhibitory activity against bacteria with CPF-W6 (GIGSLLAKAAKLAAGLV.NH2) combining high antimicrobial potency against Staphylococcus aureus (MIC=4 μM) with relatively low hemolytic activity (LC50=190 μM).
Collapse
Affiliation(s)
- Milena Mechkarska
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates
| | - Laurent Coquet
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France; CNRS UMR 6270, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Jérôme Leprince
- INSERM U-982, PRIMACEN, CNRS, IRIB, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France; CNRS UMR 6270, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- INSERM U-982, PRIMACEN, CNRS, IRIB, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Katarzyna Michalak
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington Street, MC 0477 Blacksburg, VA 24061-0477, USA; Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0477, USA
| | - Pawel Michalak
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington Street, MC 0477 Blacksburg, VA 24061-0477, USA; Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0477, USA
| | - J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| |
Collapse
|
4
|
Conlon JM, Mechkarska M. Host-defense peptides with therapeutic potential from skin secretions of frogs from the family pipidae. Pharmaceuticals (Basel) 2014; 7:58-77. [PMID: 24434793 PMCID: PMC3915195 DOI: 10.3390/ph7010058] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 12/24/2022] Open
Abstract
Skin secretions from frogs belonging to the genera Xenopus, Silurana, Hymenochirus, and Pseudhymenochirus in the family Pipidae are a rich source of host-defense peptides with varying degrees of antimicrobial activities and cytotoxicities to mammalian cells. Magainin, peptide glycine-leucine-amide (PGLa), caerulein-precursor fragment (CPF), and xenopsin-precursor fragment (XPF) peptides have been isolated from norepinephrine-stimulated skin secretions from several species of Xenopus and Silurana. Hymenochirins and pseudhymenochirins have been isolated from Hymenochirus boettgeri and Pseudhymenochirus merlini. A major obstacle to the development of these peptides as anti-infective agents is their hemolytic activities against human erythrocytes. Analogs of the magainins, CPF peptides and hymenochirin-1B with increased antimicrobial potencies and low cytotoxicities have been developed that are active (MIC < 5 μM) against multidrug-resistant clinical isolates of Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, Stenotrophomonas maltophilia and Klebsiella pneumoniae. Despite this, the therapeutic potential of frog skin peptides as anti-infective agents has not been realized so that alternative clinical applications as anti-cancer, anti-viral, anti-diabetic, or immunomodulatory drugs are being explored.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE.
| | - Milena Mechkarska
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, UAE.
| |
Collapse
|