1
|
Ren Y, Zhou X, Dong Y, Zhang J, Wang J, Yang M. Exogenous Gene Expression and Insect Resistance in Dual Bt Toxin Populus × euramericana 'Neva' Transgenic Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:660226. [PMID: 34122482 PMCID: PMC8193859 DOI: 10.3389/fpls.2021.660226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/03/2021] [Indexed: 05/07/2023]
Abstract
Bacillus thuringiensis (Bt) insecticidal protein genes are important tools in efforts to develop insect resistance in poplar. In this study, the Cry1Ac and Cry3A Bt toxin genes were simultaneously transformed into the poplar variety Populus × euramericana 'Neva' by Agrobacterium-mediated transformation to explore the exogenous gene expression and insect resistance, and to examine the effects of Bt toxin on the growth and development of Anoplophora glabripennis larvae after feeding on the transgenic plant. Integration and expression of the transgenes were determined by molecular analyses and the insect resistance of transgenic lines was evaluated in feeding experiments. Sixteen transgenic dual Bt toxin genes Populus × euramericana 'Neva' lines were obtained. The dual Bt toxin genes were expressed at both the transcriptional and translational levels; however, Cry3A protein levels were much higher than those of Cry1Ac. Some of the transgenic lines exhibited high resistance to the first instar larvae of Hyphantria cunea and Micromelalopha troglodyta, and the first and second instar larvae and adults of Plagiodera versicolora. Six transgenic lines inhibited the growth and development of A. glabripennis larvae. The differences in the transcriptomes of A. glabripennis larvae fed transgenic lines or non-transgenic control by RNA-seq analyses were determined to reveal the mechanism by which Bt toxin regulates the growth and development of longicorn beetle larvae. The expression of genes related to Bt prototoxin activation, digestive enzymes, binding receptors, and detoxification and protective enzymes showed significant changes in A. glabripennis larvae fed Bt toxin, indicating that the larvae responded by regulating the expression of genes related to their growth and development. This study lay a theoretical foundation for developing resistance to A. glabripennis in poplar, and provide a foundation for exploring the mechanism of Bt toxin action on Cerambycidae insects.
Collapse
Affiliation(s)
- Yachao Ren
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Xinglu Zhou
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Yan Dong
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Jun Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Jinmao Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, China
- *Correspondence: Minsheng Yang,
| |
Collapse
|
2
|
Li XD, Wang XY, Xu ME, Jiang Y, Yan T, Wang XC. Progress on the usage of the rotifer Brachionus plicatilis in marine ecotoxicology: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105678. [PMID: 33197688 DOI: 10.1016/j.aquatox.2020.105678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/29/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
The rotifer, Brachionus plicatilis, is a widely used model species in marine ecotoxicology for evaluating pollutions, toxins, and harmful algae. In this paper, the marine ecotoxicology of Brachionus plicatilis was reviewed, including toxicity measurements of harmful algae species and environmental stresses. In addition, marine pollution involving pesticides, heavy metals, drugs, petroleum, and petrochemicals were addressed. Methods for measuring toxicity were also discussed. The standard acute lethal assay and the chronic population dynamics test were indicated as common methods of toxicity evaluating using B. plicatilis. Research on other biomarkers, such as behaviour, enzyme activity, or gene expression, are also reported here, with potential applications for fast detection or the scientific exploration of underlying molecular mechanisms. It is suggested that the methods selected should reflect the experimental purpose. Additionally, series assays should be conducted for comprehensive evaluation of ecotoxicity as well as to elucidate the correct mechanisms. Genetic methods, such as transcriptomics, were suggested as useful tools for exploring the toxicity mechanism using the rotifer B. plicatilis.
Collapse
Affiliation(s)
- Xiao-Dong Li
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China.
| | - Xin-Yi Wang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Meng-En Xu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Tian Yan
- Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China; Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266071, China; Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, China.
| | - Xiao-Cheng Wang
- National Marine Environmental Monitoring Centre, Dalian, Liaoning Province, 116023, China
| |
Collapse
|
3
|
Effect of Polycyclic Aromatic Hydrocarbons on Development of the Ascidian Ciona intestinalis Type A. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041340. [PMID: 32093017 PMCID: PMC7068557 DOI: 10.3390/ijerph17041340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 11/16/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pollutants that exert harmful effects on marine invertebrates; however, the molecular mechanism underlying PAH action remains unclear. We investigated the effect of PAHs on the ascidian Ciona intestinalis type A (Ciona robusta). First, the influence of PAHs on early Ciona development was evaluated. PAHs such as dibenzothiophene, fluorene, and phenanthrene resulted in formation of abnormal larvae. PAH treatment of swimming larva induced malformation in the form of tail regression. Additionally, we observed the Cionaaryl hydrocarbon receptor (Ci-AhR) mRNA expression in swimming larva, mid body axis rotation, and early juvenile stages. The time correlation between PAH action and AhR mRNA expression suggested that Ci-AhR could be associated with PAH metabolism. Lastly, we analyzed Ci-AhR mRNA localization in Ciona juveniles. Ci-AhR mRNA was localized in the digestive tract, dorsal tubercle, ganglion, and papillae of the branchial sac, suggesting that Ci-AhR is a candidate for an environmental pollutant sensor and performs a neural function. Our results provide basic knowledge on the biological function of Ci-AhR and PAH activity in marine invertebrates.
Collapse
|