1
|
Krishnan S, Karpe SD, Kumar H, Nongbri LB, Venkateswaran V, Sowdhamini R, Grosse-Wilde E, Hansson BS, Borges RM. Sensing volatiles throughout the body: geographic- and tissue-specific olfactory receptor expression in the fig wasp. INSECT SCIENCE 2024. [PMID: 39183553 DOI: 10.1111/1744-7917.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/02/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024]
Abstract
An essential adaptive strategy in insects is the evolution of olfactory receptors (ORs) to recognize important volatile environmental chemical cues. Our model species, Ceratosolen fusciceps, a specialist wasp pollinator of Ficus racemosa, likely possesses an OR repertoire that allows it to distinguish fig-specific volatiles in highly variable environments. Using a newly assembled genome-guided transcriptome, we annotated 63 ORs in the species and reconstructed the phylogeny of Ceratosolen ORs in conjunction with other hymenopteran species. Expression analysis showed that though ORs were mainly expressed in the female antennae, 20% were also expressed in nonantennal tissues such as the head, thorax, abdomen, legs, wings, and ovipositor. Specific upregulated expression was observed in OR30C in the head and OR60C in the wings. We identified OR expression from all major body parts of female C. fusciceps, suggesting novel roles of ORs throughout the body. Further examination of the OR expression of C. fusciceps in widely separated geographical locations, that is, South (urban) and Northeast (rural) India, revealed distinct OR expression levels in different locations. This discrepancy likely parallels the observed variation in fig volatiles between these regions and provides new insights into the evolution of insect ORs and their expression across geographical locations and tissues.
Collapse
Affiliation(s)
- Sushma Krishnan
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Snehal Dilip Karpe
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK Campus, Bangalore, Karnataka, India
| | - Hithesh Kumar
- Genotypic Technology Pvt. Ltd., Bangalore, Karnataka, India
| | - Lucy B Nongbri
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - Vignesh Venkateswaran
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, GKVK Campus, Bangalore, Karnataka, India
| | - Ewald Grosse-Wilde
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Praha, Suchdol, Czech Republic
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Renee M Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
2
|
Identification and Expression Profile of Chemosensory Receptor Genes in Aromia bungii (Faldermann) Antennal Transcriptome. INSECTS 2022; 13:insects13010096. [PMID: 35055940 PMCID: PMC8781584 DOI: 10.3390/insects13010096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023]
Abstract
The red-necked longicorn beetle, Aromia bungii (Faldermann) (Coleoptera: Cerambycidae), is a major destructive, wood-boring pest, which is widespread throughout the world. The sex pheromone of A. bungii was reported earlier; however, the chemosensory mechanism of the beetle remains almost unknown. In this study, 45 AbunORs, 6 AbunGRs and 2 AbunIRs were identified among 42,197 unigenes derived from the antennal transcriptome bioinformatic analysis of A. bungii adults. The sequence of putative Orco (AbunOR25) found in this study is highly conserved with the known Orcos from other Coleoptera species, and these Orco genes might be potentially used as target genes for the future development of novel and effective control strategies. Tissue expression analysis showed that 29 AbunOR genes were highly expressed in antennae, especially in the antennae of females, which was consistent with the idea that females might express more pheromone receptors for sensing pheromones, especially the sex pheromones produced by males. AbunOR5, 29, 31 and 37 were clustered with the pheromone receptors of the cerambycid Megacyllene caryae, suggesting that they might be putative pheromone receptors of A. bungii. All six AbunGRs were highly expressed in the mouthparts, indicating that these GRs may be involved in the taste perception process. Both AbunIRs were shown to be female-mouthparts-biased, suggesting that they might also be related to the tasting processes. Our study provides some basic information towards a deeper understanding of the chemosensing mechanism of A. bungii at a molecular level.
Collapse
|
3
|
Li H, Li W, Miao C, Wang G, Zhao M, Yuan G, Guo X. Identification of the differences in olfactory system between male and female oriental tobacco budworm Helicoverpa assulta. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 107:e21829. [PMID: 34191347 DOI: 10.1002/arch.21829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
The olfactory system of insects facilitates their search for host and mates, hence it plays an essential role for insect survival and reproduction. Insects recognize odor substances through olfactory neurons and olfactory genes. Previous studies showed that there are significant sex-specific differences in how insects identify odorant substances, especially sex pheromones. However, whether the sex-specific recognition of odorant substances is caused by differences in the expression of olfaction-related genes between males and females remains unclear. To clarify this problem, the whole transcriptome sequence of the adult Helicoverpa assulta, an important agricultural pest of tobacco and other Solanaceae plants, was obtained using Pacbio sequencing. RNA-seq analysis showed that there were 27 odorant binding proteins (OBPs), 24 chemosensory proteins, 4 pheromone-binding proteins (PBPs), 68 odorant receptors and 2 sensory neuron membrane proteins (SNMPs) genes, that were expressed in the antennae of male and female H. assulta. Females had significantly higher expression of General odorant-binding protein 1-like, OBP, OBP3, PBP3 and SNMP1 than males, while males had significantly higher expression of GOBP1, OBP7, OBP13, PBP2 and SNMP2. These results improve our understanding of mate search and host differentiation in H. assulta.
Collapse
Affiliation(s)
- Haichao Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences/Institute of Palnt Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Weizheng Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Changjian Miao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Gaoping Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Man Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guohui Yuan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xianru Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Navarro-Escalante L, Hernandez-Hernandez EM, Nuñez J, Acevedo FE, Berrio A, Constantino LM, Padilla-Hurtado BE, Molina D, Gongora C, Acuña R, Stuart J, Benavides P. A coffee berry borer (Hypothenemus hampei) genome assembly reveals a reduced chemosensory receptor gene repertoire and male-specific genome sequences. Sci Rep 2021; 11:4900. [PMID: 33649370 PMCID: PMC7921381 DOI: 10.1038/s41598-021-84068-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/12/2021] [Indexed: 01/31/2023] Open
Abstract
Coffee berry borer-CBB (Hypothenemus hampei) is a globally important economic pest of coffee (Coffea spp.). Despite current insect control methods for managing CBB, development of future control strategies requires a better understanding of its biology and interaction with its host plant. Towards this objective, we performed de novo CBB genome and transcriptome sequencing, improved CBB genome assembly and predicted 18,765 protein-encoding genes. Using genome and transcriptome data, we annotated the genes associated with chemosensation and found a reduced gene repertoire composed by 67 odorant receptors (ORs), 62 gustatory receptors (GRs), 33 ionotropic receptors (IRs) and 29 odorant-binding proteins (OBPs). In silico transcript abundance analysis of these chemosensory genes revealed expression enrichment in CBB adults compared with larva. Detection of differentially expressed chemosensory genes between males and females is likely associated with differences in host-finding behavior between sexes. Additionally, we discovered male-specific genome content and identified candidate male-specific expressed genes on these scaffolds, suggesting that a Y-like chromosome may be involved in the CBB's functional haplodiploid mechanism of sex determination.
Collapse
Affiliation(s)
| | | | - Jonathan Nuñez
- Manaaki Whenua-Landcare Research, PO Box 69040, Lincoln, 7640, New Zealand
| | - Flor E Acevedo
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | | | | | - Beatriz E Padilla-Hurtado
- Instituto de Investigación en Microbiología Y Biotecnología Agroindustrial, Universidad Católica de Manizales, Manizales, Colombia
| | - Diana Molina
- National Coffee Research Center-CENICAFE, Manizales, Colombia
| | | | - Ricardo Acuña
- National Coffee Research Center-CENICAFE, Manizales, Colombia
| | - Jeff Stuart
- Department of Entomology, Purdue University, West Lafayette, USA
| | - Pablo Benavides
- National Coffee Research Center-CENICAFE, Manizales, Colombia
| |
Collapse
|
5
|
Musundi SD, Ochieng PJ, Wamunyokoli F, Nyanjom SG. Expression profile of odorant receptors in brain, gut and reproductive tissues in male and female Glossina morsitans morsitans. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
6
|
Xie M, Zhong Y, Lin L, Zhang G, Su W, Ni W, Qu M, Chen H. Evaluation of reference genes for quantitative real-time PCR normalization in the scarab beetle Holotrichia oblita. PLoS One 2020; 15:e0240972. [PMID: 33085726 PMCID: PMC7577503 DOI: 10.1371/journal.pone.0240972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Quantitative real-time polymerase chain reaction (qPT-PCR) is commonly used to analyze gene expression, however, the accuracy of the normalized results is affected by the expression stability of reference genes. Holotrichia oblita (Coleoptera: Scarabaeidae) causes serious damage to crops. Reliable reference genes in H. oblita are needed for qRT-PCR analysis. Therefore, we evaluated 13 reference genes under biotic and abiotic conditions. RefFinder provided a comprehensive stability ranking, and geNorm suggested the optimal number of reference genes for normalization. RPL13a and RPL18 were the most suitable reference genes for developmental stages, tissues, and temperature treatments; RPL13a and RPS3 were the most suitable for pesticide and photoperiod treatments; RPS18 and RPL18 were the most suitable for the two sexes. We validated the normalized results using odorant-binding protein genes as target genes in different tissues. Compared with the selected suitable reference genes, the expression of OBP1 in antennae, abdomen, and wings, and OBP2 in antennae and wings were overestimated due to the instability of ACTb. These results identified several reliable reference genes in H. oblita for normalization, and are valuable for future molecular studies.
Collapse
Affiliation(s)
- Minghui Xie
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yongzhi Zhong
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Lulu Lin
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Guangling Zhang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Weihua Su
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Wanli Ni
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Mingjing Qu
- Shandong Peanut Research Institute, Qingdao, Shandong, China
| | - Haoliang Chen
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| |
Collapse
|
7
|
Han H, Liu Z, Meng F, Jiang Y, Cai J. Identification of olfactory genes of a forensically important blow fly, Aldrichina grahami (Diptera: Calliphoridae). PeerJ 2020; 8:e9581. [PMID: 32844056 PMCID: PMC7414772 DOI: 10.7717/peerj.9581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/30/2020] [Indexed: 11/20/2022] Open
Abstract
Background The time-length between the first colonization of necrophagous insect on the corpse and the beginning of investigation represents the most important forensic concept of minimum post-mortem inference (PMImin). Before colonization, the time spent by an insect to detect and locate a corpse could significantly influence the PMImin estimation. The olfactory system plays an important role in insect food foraging behavior. Proteins like odorant binding proteins (OBPs), chemosensory proteins (CSPs), odorant receptors (ORs), ionotropic receptors (IRs) and sensory neuron membrane proteins (SNMPs) represent the most important parts of this system. Exploration of the above genes and their necrophagous products should facilitate not only the understanding of their roles in forging but also their influence on the period before PMImin. Transcriptome sequencing has been wildly utilized to reveal the expression of particular genes under different temporal and spatial condition in a high throughput way. In this study, transcriptomic study was implemented on antennae of adult Aldrichina grahami (Aldrich) (Diptera: Calliphoridae), a necrophagous insect with forensic significance, to reveal the composition and expression feature of OBPs, CSPs, ORs, IRs and SNMPs genes at transcriptome level. Method Antennae transcriptome sequencing of A. grahami was performed using next-generation deep sequencing on the platform of BGISEQ-500. The raw data were deposited into NCBI (PRJNA513084). All the transcripts were functionally annotated using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Differentially expressed genes (DEGs) were analyzed between female and male antennae. The transcripts of OBPs, CSPs, ORs, IRs and SNMPs were identified based on sequence feature. Phylogenetic development of olfactory genes of A. grahami with other species was analyzed using MEGA 5.0. RT-qPCR was utilized to verify gene expression generated from the transcriptome sequencing. Results In total, 14,193 genes were annotated in the antennae transcriptome based on the GO and the KEGG databases. We found that 740 DEGs were differently expressed between female and male antennae. Among those, 195 transcripts were annotated as candidate olfactory genes then checked by sequence feature. Of these, 27 OBPs, one CSPs, 49 ORs, six IRs and two SNMPs were finally identified in antennae of A. grahami. Phylogenetic development suggested that some olfactory genes may play a role in food forging, perception of pheromone and decomposing odors. Conclusion Overall, our results suggest the existence of gender and spatial expression differences in olfactory genes from antennae of A. grahami. Such differences are likely to greatly influence insect behavior around a corpse. In addition, candidate olfactory genes with predicted function provide valuable information for further studies of the molecular mechanisms of olfactory detection of forensically important fly species and thus deepen our understanding of the period before PMImin.
Collapse
Affiliation(s)
- Han Han
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Zhuoying Liu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,Departments of Anesthesiology and Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Fanming Meng
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yangshuai Jiang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Wang X, Wang S, Yi J, Li Y, Liu J, Wang J, Xi J. Three Host Plant Volatiles, Hexanal, Lauric Acid, and Tetradecane, are Detected by an Antenna-Biased Expressed Odorant Receptor 27 in the Dark Black Chafer Holotrichia parallela. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7316-7323. [PMID: 32551589 DOI: 10.1021/acs.jafc.0c00333] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Insects rely on olfaction to locate their host plants by antennae in complex chemical environments. Odorant receptor (OR) genes are thought to play a crucial role in the process. ORs function together with odorant coreceptors to determine the specificity and sensitivity of olfactory reception. The dark black chafer, Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae), is a destructive underground pest. To understand the molecular basis of H. parallela olfactory reception, an olfactory-biased expressed odorant receptor HparOR27 and HparOrco (HparOR40) were identified from antennal transcriptome analysis and prediction of the sequence structure. Tissue expression analysis showed that HparOR27 was mainly expressed in adult antennae throughout developmental stages. The functions of HparOR27 were analyzed using the Xenopus laevis oocyte expression system. HparOR27 was broadly responsive to three host plant volatiles, including hexanal, lauric acid, and tetradecane. Electroantennogram tests confirmed that three ligands were electrophysiologically active in antennae of female adults. A Y-tube olfactometer test indicated that hexanal was a repellent for adults of both sexes. Taken together, our data support the identification of odorant receptors and provide a molecular basis for eco-friendly pest control.
Collapse
Affiliation(s)
- Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jiankun Yi
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Yunshuo Li
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jianan Liu
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jun Wang
- College of Plant Science, Jilin University, Changchun 130062, PR China
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, PR China
| |
Collapse
|
9
|
Gene Expression and Functional Analyses of Odorant Receptors in Small Hive Beetles ( Aethina tumida). Int J Mol Sci 2020; 21:ijms21134582. [PMID: 32605135 PMCID: PMC7370172 DOI: 10.3390/ijms21134582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 11/16/2022] Open
Abstract
Olfaction is key to many insects. Odorant receptors (ORs) stand among the key chemosensory receptors mediating the detection of pheromones and kairomones. Small hive beetles (SHBs), Aethina tumida, are parasites of social bee colonies and olfactory cues are especially important for host finding. However, how interactions with their hosts may have shaped the evolution of ORs in the SHB remains poorly understood. Here, for the first time, we analyzed the evolution of SHB ORs through phylogenetic and positive selection analyses. We then tested the expression of selected OR genes in antennae, heads, and abdomens in four groups of adult SHBs: colony odor-experienced/-naive males and females. The results show that SHBs experienced both OR gene losses and duplications, thereby providing a first understanding of the evolution of SHB ORs. Additionally, three candidate ORs potentially involved in host finding and/or chemical communication were identified. Significantly different downregulations of ORs between the abdomens of male and female SHBs exposed to colony odors may reflect that these expression patterns might also reflect other internal events, e.g., oviposition. Altogether, these results provide novel insights into the evolution of SHB ORs and provide a valuable resource for analyzing the function of key genes, e.g., for developing biological control. These results will also help in understanding the chemosensory system in SHBs and other beetles.
Collapse
|
10
|
Li Z, Zhang Y, An X, Wang Q, Khashaveh A, Gu S, Liu S, Zhang Y. Identification of Leg Chemosensory Genes and Sensilla in the Apolygus lucorum. Front Physiol 2020; 11:276. [PMID: 32351398 PMCID: PMC7174674 DOI: 10.3389/fphys.2020.00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
Apolygus lucorum (Hemiptera: Miridae), one of the main insect pests, causes severe damage in cotton and many other economic crops. As is well-known, legs play important roles in the chemoreception of insects. In this study, the putative chemosensory proteins in legs of A. lucorum involved in close or contact chemical communication of adult bugs were investigated using RNA transcriptome sequencing and qPCR methods. Transcriptome data of forelegs, middle legs and hind legs of adult bugs demonstrated that 20 odorant binding protein (OBP) genes, eight chemosensory protein (CSP) genes, one odorant receptor (OR) gene, one ionotropic receptor (IR) gene and one sensory neuron membrane protein (SNMP) gene were identified in legs of A. lucorum. Compared to the previous antennae transcriptome data, five CSPs, IR21a and SNMP2a were newly identified in legs. Results of qPCR analysis indicated that all these putative chemosensory genes were ubiquitously expressed in forelegs, middle legs and hind legs of bugs. Furthermore, four types of sensilla on legs of A. lucorum including sensilla trichodea (subtypes: long straight sensilla trichodea, Str1; long curved sensilla trichodea, Str2), sensilla chaetica (subtypes: sensilla chaetica 1, Sch1; sensilla chaetica 2, Sch2; and sensilla chaetica 3, Sch3), sensilla basiconca (subtypes: medium-long sensilla basiconca, Sba1; short sensilla basiconca, Sba2) and Böhm bristles (BB) were found using scanning electron microscopy. Additionally, the largest number of sensilla was observed on hind legs, while the forelegs had the smallest number of sensilla. Our data provide valuable insights into understanding the chemoreception of legs in A. lucorum.
Collapse
Affiliation(s)
- Zibo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaoyao Zhang
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Xingkui An
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaohua Gu
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Shun Liu
- College of Plant Protection, Agricultural University of Hebei, Baoding, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Yuan H, Chang H, Zhao L, Yang C, Huang Y. Sex- and tissue-specific transcriptome analyses and expression profiling of olfactory-related genes in Ceracris nigricornis Walker (Orthoptera: Acrididae). BMC Genomics 2019; 20:808. [PMID: 31694535 PMCID: PMC6836668 DOI: 10.1186/s12864-019-6208-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The sophisticated insect olfactory system plays an important role in recognizing external odors and enabling insects to adapt to environment. Foraging, host seeking, mating, ovipositing and other forms of chemical communication are based on olfaction, which requires the participation of multiple olfactory genes. The exclusive evolutionary trend of the olfactory system in Orthoptera insects is an excellent model for studying olfactory evolution, but limited olfaction research is available for these species. The olfactory-related genes of Ceracris nigricornis Walker (Orthoptera: Acrididae), a severe pest of bamboos, have not yet been reported. RESULTS We sequenced and analyzed the transcriptomes from different tissues of C. nigricornis and obtained 223.76 Gb clean data that were assembled into 43,603 unigenes with an N50 length of 2235 bp. Among the transcripts, 66.79% of unigenes were annotated. Based on annotation and tBLASTn results, 112 candidate olfactory-related genes were identified for the first time, including 20 odorant-binding proteins (OBPs), 10 chemosensory-binding proteins (CSPs), 71 odorant receptors (ORs), eight ionotropic receptors (IRs) and three sensory neuron membrane proteins (SNMPs). The fragments per kilobase per million mapped fragments (FPKM) values showed that most olfactory-related differentially expressed genes (DEGs) were enriched in the antennae, and these results were confirmed by detecting the expression of olfactory-related genes with quantitative real-time PCR (qRT-PCR). Among these antennae-enriched genes, some were sex-biased, indicating their different roles in the olfactory system of C. nigricornis. CONCLUSIONS This study provides the first comprehensive list and expression profiles of olfactory-related genes in C. nigricornis and a foundation for functional studies of these olfactory-related genes at the molecular level.
Collapse
Affiliation(s)
- Hao Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Huihui Chang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Lina Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Chao Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.,Shaanxi Institute of Zoology, Xi'an, China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
12
|
Du Y, Xu K, Ma W, Su W, Tai M, Zhao H, Jiang Y, Li X. Contact Chemosensory Genes Identified in Leg Transcriptome of Apis cerana cerana (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2015-2029. [PMID: 31188452 DOI: 10.1093/jee/toz130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Indexed: 06/09/2023]
Abstract
Correct gustatory recognition and selection of foods both within and outside the hive by honey bee workers are fundamental to the maintenance of colonies. The tarsal chemosensilla located on the legs of workers are sensitive to nonvolatile compounds and proposed to be involved in gustatory detection. However, little is known about the molecular mechanisms underlying the gustatory recognition of foods in honey bees. In the present study, RNA-seq was performed with RNA samples extracted from the legs of 1-, 10-, and 20-d-old workers of Apis cerana cerana Fabricius, a dominant indigenous crop pollinator with a keen perception ability for phytochemicals. A total of 124 candidate chemosensory proteins (CSPs), including 15 odorant-binding proteins (OBPs), 5 CSPs, 7 gustatory receptors (GRs), 2 sensory neuron membrane proteins (SNMPs), and 95 odorant receptors (ORs), were identified from the assembled leg transcriptome. In silico analysis of expression showed that 36 of them were differentially expressed among the three different ages of A. c. cerana workers. Overall, the genes encoding OBPs and CSPs had great but extremely variable FPKM values and thus were highly expressed in the legs of workers, whereas the genes encoding ORs, GRs, and SNMPs (except SNMP2) were expressed at low levels. Tissue-specific expression patterns indicated that two upregulated genes, AcerOBP15 and AcerCSP3, were predominately expressed in the legs of 20-d-old foragers, suggesting they may play an essential role in gustatory recognition and selection of plant nectars and pollens. This study lays a foundation for further research on the feeding preferences of honey bees.
Collapse
Affiliation(s)
- Yali Du
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Kai Xu
- Department of Honey Bee Genetics and Breeding, Apiculture Science Institute of Jilin Province, Jilin, China
| | - Weihua Ma
- Institute of Horticulture, Shanxi Academy of Agricultural Sciences, Taiyuan, China
| | - Wenting Su
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Miaomiao Tai
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Huiting Zhao
- College of Life Science, Shanxi Agricultural University, Taigu, China
| | - Yusuo Jiang
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ
| |
Collapse
|
13
|
Tang Q, Zhang Y, Shen C, Xia D. Identification and Expression Profiling of Odorant Receptor Protein Genes in Sitophilus zeamais (Coleoptera: Curculionoidea) Using RT-qPCR. NEOTROPICAL ENTOMOLOGY 2019; 48:538-551. [PMID: 30783993 DOI: 10.1007/s13744-019-00671-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to identify ORs (odorant receptors) and Orco (odorant receptor coreceptor) genes in Sitophilus zeamais Motschulsky (Coleoptera: Curculionoidea), to explore the relative expression levels of these genes in different adult tissues and obtain information on highly expressed receptor proteins. Putative OR and Orco genes were identified from transcriptomic data previously obtained for S. zeamais using bioinformatics methods. Quantitative real-time PCR was used to compare the differences in expression in seven adult tissues (male antennae, female antennae, heads, thoraxes, abdomens, wings, and legs). The candidate OR and Orco gene sequences were analyzed, and the protein physicochemical properties were predicted. We identified 64 OR genes including the Orco gene. Forty-seven OR genes, including Orco, were over expressed in male or female antennae. Seventeen OR genes appeared to be expressed at elevated levels in male antennae. Twenty-nine genes were expressed at significantly elevated levels in female antennae. In total, 11 OR genes were selected for further sequence analysis. The selected proteins were structurally characterized, and bioinformatics analysis was performed. Overall, in this study, candidate ORs of S. zeamais have been identified for the first time, and these ORs could be molecular targets for interference in the insect olfactory system.
Collapse
Affiliation(s)
- Q Tang
- Dept of Entomology, Anhui Agricultural Univ, No. 130 Changjiang West Road, Hefei, 230036, Anhui, People's Republic of China.
| | - Y Zhang
- Dept of Entomology, Anhui Agricultural Univ, No. 130 Changjiang West Road, Hefei, 230036, Anhui, People's Republic of China
| | - C Shen
- Dept of Entomology, Anhui Agricultural Univ, No. 130 Changjiang West Road, Hefei, 230036, Anhui, People's Republic of China
| | - D Xia
- Dept of Entomology, Anhui Agricultural Univ, No. 130 Changjiang West Road, Hefei, 230036, Anhui, People's Republic of China
| |
Collapse
|
14
|
Liu H, Zhang X, Liu C, Liu Y, Mei X, Zhang T. Identification and expression of candidate chemosensory receptors in the white-spotted flower chafer, Protaetia brevitarsis. Sci Rep 2019; 9:3339. [PMID: 30833589 PMCID: PMC6399352 DOI: 10.1038/s41598-019-38896-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 01/11/2019] [Indexed: 11/29/2022] Open
Abstract
Accurate detection and recognition of chemical signals play extremely important roles for insects in their survival and reproduction. Chemosensory receptors, including odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs), are involved in detection of volatile signals. In the present study, we aimed to identify candidate chemosensory receptors, and RNA-seq technology was employed to sequence the antennal transcriptome of Protaetia brevitarsis (Coleoptera: Scarabaeidae: Cetoniinae), a native agricultural and horticultural pest in East-Asia. According to the sequence similarity analysis, we identified 72 PbreORs, 11 PbreGRs and eight PbreIRs. Among PbreORs, PbreOR2, PbreOR33 and PbreOR53 were preliminarily classified into pheromone receptors. Further qRT-PCR analysis indicated that 11 PbreORs were specifically expressed in the antennae of male P. brevitarsis, whereas 23 PbreORs were specifically expressed in the female antennae. Our results laid a solid foundation for further functional elucidations of insect chemoreceptors, which could be used as the potential targets of pest management.
Collapse
Affiliation(s)
- Hongmin Liu
- Agriculture College, Xinyang Agriculture and Forestry University, Xinyang, 464000, P. R. China
| | - Xiaofang Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, 071000, P. R. China
| | - Chunqin Liu
- Cangzhou Technical College, Cangzhou, 061001, P. R. China
| | - Yongqiang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Xiangdong Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
| | - Tao Zhang
- Institute of Plant Protection, Hebei Academy of Agriculture and Forestry Sciences/Integrated Pest Management Center of Hebei Province/Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Baoding, 071000, P. R. China.
| |
Collapse
|
15
|
Yin J, Wang C, Fang C, Zhang S, Cao Y, Li K, Leal WS. Functional characterization of odorant-binding proteins from the scarab beetle Holotrichia oblita based on semiochemical-induced expression alteration and gene silencing. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 104:11-19. [PMID: 30423422 DOI: 10.1016/j.ibmb.2018.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/22/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
With the advent of next-generation sequencing, it is now possible to rapidly identify the entire repertoire of olfactory genes likely to be involved in chemical communication of an insect species. It remains, however, a challenge to identify olfactory proteins, such as odorant receptors and odorant-binding proteins (OBPs), vis-à-vis the odorants they detect. It has been reported that exposing the olfactory system to a physiologically relevant odorant alters the transcript levels of odorant receptor(s) involved in the detection of the tested odorant. We applied this paradigm in an attempt to identify putative OBPs from the scarab beetle Holotrichia oblita involved in the reception of plant-derived kairomones. Twenty-nine OBP genes were identified in the H. oblita transcriptome, 20 of which were enriched in antennae compared with nonolfactory tissues. Of these, 2 OBP genes, HoblOBP13 and HoblOBP9, were upregulated upon exposure to one of the female attractants (E)-2-hexenol and phenethyl alcohol; none of the OBP transcripts changed upon exposure to methyl anthranilate, which does not attract H. oblita females. Binding assays showed that HoblOBP13 and HoblOBP9 have high affinity for (E)-2-hexenol and phenethyl alcohol, respectively. RNAi treatment showed that transcripts of both HoblOBP13 and HoblOBP9 declined in a time-course manner 24-72 h postinjection. OBP-dsRNA-treated female beetles showed significantly lower attraction to (E)-2-hexenol and phenethyl alcohol than did water-injected beetles and those treated with GFP-dsRNA. We, therefore, concluded that HoblOBP13 and HoblOBP9 are essential for H. oblita reception of the plant-derived kairomones (E)-2-hexenol and phenethyl alcohol.
Collapse
Affiliation(s)
- Jiao Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chaoqun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chiqin Fang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuai Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yazhong Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kebin Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Water S Leal
- Department of Molecular and Cellular Biology, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
16
|
Antony B, Johny J, Aldosari SA. Silencing the Odorant Binding Protein RferOBP1768 Reduces the Strong Preference of Palm Weevil for the Major Aggregation Pheromone Compound Ferrugineol. Front Physiol 2018; 9:252. [PMID: 29618982 PMCID: PMC5871713 DOI: 10.3389/fphys.2018.00252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
In insects, perception of the environment-food, mates, and prey-is mainly guided by chemical signals. The dynamic process of signal perception involves transport to odorant receptors (ORs) by soluble secretory proteins, odorant binding proteins (OBPs), which form the first stage in the process of olfactory recognition and are analogous to lipocalin family proteins in vertebrates. Although OBPs involved in the transport of pheromones to ORs have been functionally identified in insects, there is to date no report for Coleoptera. Furthermore, there is a lack of information on olfactory perception and the molecular mechanism by which OBPs participate in the transport of aggregation pheromones. We focus on the red palm weevil (RPW) Rhynchophorus ferrugineus, the most devastating quarantine pest of palm trees worldwide. In this work, we constructed libraries of all OBPs and selected antenna-specific and highly expressed OBPs for silencing through RNA interference. Aggregation pheromone compounds, 4-methyl-5-nonanol (ferrugineol) and 4-methyl-5-nonanone (ferruginone), and a kairomone, ethyl acetate, were then sequentially presented to individual RPWs. The results showed that antenna-specific RferOBP1768 aids in the capture and transport of ferrugineol to ORs. Silencing of RferOBP1768, which is responsible for pheromone binding, significantly disrupted pheromone communication. Study of odorant perception in palm weevil is important because the availability of literature regarding the nature and role of olfactory signaling in this insect may reveal likely candidates representative of animal olfaction and, more generally, of molecular recognition. Knowledge of OBPs recognizing the specific pheromone ferrugineol will allow for designing biosensors for the detection of this key compound in weevil monitoring in date palm fields.
Collapse
Affiliation(s)
- Binu Antony
- Chair of Date Palm Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jibin Johny
- Chair of Date Palm Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saleh A Aldosari
- Chair of Date Palm Research, Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|