1
|
Xie Y, Tan Y, Wen X, Deng W, Yu J, Li M, Meng F, Wang X, Zhu D. The Expression and Function of Notch Involved in Ovarian Development and Fecundity in Basilepta melanopus. INSECTS 2024; 15:292. [PMID: 38667422 PMCID: PMC11050577 DOI: 10.3390/insects15040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Basilepta melanopus is a pest that severely affects oil tea plants, and the Notch signaling pathway plays a significant role in the early development of insect ovaries. In this study, we explored the function of the notch gene within the Notch signaling pathway in the reproductive system of B. melanopus. The functional domains and expression patterns of Bmnotch were analyzed. Bmnotch contains 45 epidermal growth factor-like (EGF-like) domains, one negative regulatory region, one NODP domain and one repeat-containing domain superfamily. The qPCR reveals heightened expression in early developmental stages and specific tissues like the head and ovaries. The RNA interference (RNAi)-based suppression of notch decreased its expression by 52.1%, exhibiting heightened sensitivity to dsNotch at lower concentrations. Phenotypic and mating experiments have demonstrated that dsNotch significantly impairs ovarian development, leading to reduced mating frequencies and egg production. This decline underscores the Notch pathway's crucial role in fecundity. The findings advocate for RNAi-based, Notch-targeted pest control as an effective and sustainable strategy for managing B. melanopus populations, signifying a significant advancement in forest pest control endeavors.
Collapse
Affiliation(s)
- Yifei Xie
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
- Institute of Forestry and Grassland Protection, Hunan Academy of Forestry, Changsha 410018, China; (W.D.); (J.Y.); (M.L.)
| | - Yifan Tan
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
| | - Xuanye Wen
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang 110031, China;
| | - Wan Deng
- Institute of Forestry and Grassland Protection, Hunan Academy of Forestry, Changsha 410018, China; (W.D.); (J.Y.); (M.L.)
| | - Jinxiu Yu
- Institute of Forestry and Grassland Protection, Hunan Academy of Forestry, Changsha 410018, China; (W.D.); (J.Y.); (M.L.)
| | - Mi Li
- Institute of Forestry and Grassland Protection, Hunan Academy of Forestry, Changsha 410018, China; (W.D.); (J.Y.); (M.L.)
| | - Fanhui Meng
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
| | - Xiudan Wang
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
| | - Daohong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (Y.X.); (Y.T.); (F.M.)
| |
Collapse
|
2
|
Liao Y, Fang Y, Chen W, Wang J. Complete mitochondrial genome of Basilepta melanopus Lefèvre, 1893 (coleoptera: chrysomelidae: eumolpinae), a tea pest from Southern China. Mitochondrial DNA B Resour 2024; 9:394-397. [PMID: 38529112 PMCID: PMC10962304 DOI: 10.1080/23802359.2024.2333573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
The tea pest, Basilepta melanopus Lefèvre 1893 (Chrysomelidae), belongs to the subfamily Eumolpinae. In this study, the complete mitochondrial genome sequence of B. melanopus from southern China was sequenced using the next-generation sequencing technique, assembled, and annotated using bioinformatics tools. The complete mitochondrial genome was 15,905 bp in length. The overall GC content was 22.51%, in which the percentages for the bases A, T, C, and G were 41.23%, 36.26%, 8.92%, and 13.59%, respectively. Thirty-seven genes were predicted, including 13 protein-coding, 22 transfer RNA, and two ribosomal RNA genes. Phylogenetic analysis based on the complete mitochondrial genome sequences of 18 Chrysomelidae taxa revealed that B. melanopus was closely related to Basilepta fulvipes.
Collapse
Affiliation(s)
- Yonglin Liao
- Institute of Plant Protection, Guangdong Academy of Agricultural Science, Guangdong Provincial Key Laboratory High Technology for Plant Protection, Guangzhou, China
| | - Yurong Fang
- Tianyang Plant Protection Station, Baise, China
| | - Weiping Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Science, Guangdong Provincial Key Laboratory High Technology for Plant Protection, Guangzhou, China
| | - Jihua Wang
- Guangdong Key Laboratory for Crops Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
3
|
Identification and Expression Profile of Chemosensory Receptor Genes in Aromia bungii (Faldermann) Antennal Transcriptome. INSECTS 2022; 13:insects13010096. [PMID: 35055940 PMCID: PMC8781584 DOI: 10.3390/insects13010096] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/05/2023]
Abstract
The red-necked longicorn beetle, Aromia bungii (Faldermann) (Coleoptera: Cerambycidae), is a major destructive, wood-boring pest, which is widespread throughout the world. The sex pheromone of A. bungii was reported earlier; however, the chemosensory mechanism of the beetle remains almost unknown. In this study, 45 AbunORs, 6 AbunGRs and 2 AbunIRs were identified among 42,197 unigenes derived from the antennal transcriptome bioinformatic analysis of A. bungii adults. The sequence of putative Orco (AbunOR25) found in this study is highly conserved with the known Orcos from other Coleoptera species, and these Orco genes might be potentially used as target genes for the future development of novel and effective control strategies. Tissue expression analysis showed that 29 AbunOR genes were highly expressed in antennae, especially in the antennae of females, which was consistent with the idea that females might express more pheromone receptors for sensing pheromones, especially the sex pheromones produced by males. AbunOR5, 29, 31 and 37 were clustered with the pheromone receptors of the cerambycid Megacyllene caryae, suggesting that they might be putative pheromone receptors of A. bungii. All six AbunGRs were highly expressed in the mouthparts, indicating that these GRs may be involved in the taste perception process. Both AbunIRs were shown to be female-mouthparts-biased, suggesting that they might also be related to the tasting processes. Our study provides some basic information towards a deeper understanding of the chemosensing mechanism of A. bungii at a molecular level.
Collapse
|
4
|
Liu X, Tong N, Wu Z, Li Y, Ma M, Liu P, Lu M. Identification of Chemosensory Genes Based on the Antennal Transcriptomic Analysis of Plagiodera versicolora. INSECTS 2021; 13:insects13010036. [PMID: 35055879 PMCID: PMC8781154 DOI: 10.3390/insects13010036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
Insects can sense surrounding chemical signals by their accurate chemosensory systems. This system plays a vital role in the life history of insects. Several gene families participate in chemosensory processes, including odorant receptors (ORs), ionotropic receptors (IRs), gustatory receptors (GRs), chemosensory proteins (CSPs), odorant binding proteins (OBPs), and sensory neuron membrane proteins (SNMPs). Plagiodera versicolora (Coleoptera: Chrysomelidae), is a leaf-eating forest pest found in salicaceous trees worldwide. In this study, a transcriptome analysis of male and female adult antennae in P. versicolora individuals was conducted, which identified a total of 98 candidate chemosensory genes including 40 ORs, 7 IRs, 13 GRs, 10 CSPs, 24 OBPs, and 4 SNMPs. Subsequently, the tissue expression profiles of 15 P. versicolora OBPs (PverOBPs) and 39 ORs (PverORs) were conducted by quantitative real-time PCR. The data showed that almost all PverOBPs and PverORs were highly expressed in the male and female antennae. In addition, several OBPs and ORs (PverOBP10, PverOBP12, PverOBP18, PverOR24, and PverOR35) had higher expression levels in female antennae than those in the male antennae, indicating that these genes may be taking part in some female-specific behaviors, such as find mates, oviposition site, etc. This study deeply promotes further understanding of the chemosensory system and functional studies of the chemoreception genes in P. versicolora.
Collapse
|
5
|
Chen XL, Li BL, Chen YX, Li GW, Wu JX. Functional analysis of the odorant receptor coreceptor in odor detection in Grapholita molesta (lepidoptera: Tortricidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21837. [PMID: 34293199 DOI: 10.1002/arch.21837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
The olfactory system must detect and discriminate various semiochemicals in the environment. In response to such diversity, insects have evolved a family of odorant-gated ion channels composed of a common receptor (coreceptor, Orco) and a ligand-binding tuning odorant receptor (OR) that confers odour specificity. This study aims to examine the expression pattern of Orco gene of Grapholita molesta (GmolOrco) and to elucidate the role of GmolOrco in detecting G. molesta sex pheromone and green leaf volatiles by using gene silencing via RNA interference (RNAi) coupled antennal electrophysiological (EAG). Multiple sequence alignment showed that GmolOrco shared high sequence similarities with the Orco ortholog of lepidopterans. The results of real-time quantitative PCR detection demonstrated that GmolOrco was predominantly expressed in adult antennae and had the highest expression quantity in adult period among the different developmental stages. Compared with the noninjected controls, GmolOrco expression in GmolOrcodouble-stranded RNA (dsRNA)-injected males was reduced to 39.92% and that in females was reduced to 40.43%. EAG assays showed that the responses of GmolOrco-dsRNA injected males to sex pheromones (Z)-8-dodecenyl acetate (Z8-12:OAc) and (Z)-8-dodecenyl alcohol (Z8-12:OH) were significantly reduced, and the GmolOrco-dsRNA-injected female to green leaf volatile (Z)-3-hexenyl acetate also significantly declined. We inferred that Orco-mediated olfaction was different in male and female G. molesta adults and was mainly involved in recognizing the sex pheromones released by female moths.
Collapse
Affiliation(s)
- Xiu-Lin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Bo-Liao Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Yu-Xin Chen
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Guang-Wei Li
- Shaanxi Province Key Laboratory of Jujube, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | - Jun-Xiang Wu
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|