1
|
Johansen M, Saenko S, Schilthuizen M, Blaxter M, Davison A. Fine mapping of the Cepaea nemoralis shell colour and mid-banded loci using a high-density linkage map. Heredity (Edinb) 2023; 131:327-337. [PMID: 37758900 PMCID: PMC10673960 DOI: 10.1038/s41437-023-00648-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Molluscs are a highly speciose phylum that exhibits an astonishing array of colours and patterns, yet relatively little progress has been made in identifying the underlying genes that determine phenotypic variation. One prominent example is the land snail Cepaea nemoralis for which classical genetic studies have shown that around nine loci, several physically linked and inherited together as a 'supergene', control the shell colour and banding polymorphism. As a first step towards identifying the genes involved, we used whole-genome resequencing of individuals from a laboratory cross to construct a high-density linkage map, and then trait mapping to identify 95% confidence intervals for the chromosomal region that contains the supergene, specifically the colour locus (C), and the unlinked mid-banded locus (U). The linkage map is made up of 215,593 markers, ordered into 22 linkage groups, with one large group making up ~27% of the genome. The C locus was mapped to a ~1.3 cM region on linkage group 11, and the U locus was mapped to a ~0.7 cM region on linkage group 15. The linkage map will serve as an important resource for further evolutionary and population genomic studies of C. nemoralis and related species, as well as the identification of candidate genes within the supergene and for the mid-banding phenotype.
Collapse
Affiliation(s)
- Margrethe Johansen
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Suzanne Saenko
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, 2333CR, The Netherlands
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden, 2333BE, The Netherlands
| | - Menno Schilthuizen
- Evolutionary Ecology, Naturalis Biodiversity Center, Leiden, 2333CR, The Netherlands
- Animal Sciences, Institute of Biology Leiden, Leiden University, Leiden, 2333BE, The Netherlands
| | - Mark Blaxter
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Angus Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
2
|
Hermida M, Robledo D, Díaz S, Costas D, Bruzos AL, Blanco A, Pardo BG, Martínez P. The first high-density genetic map of common cockle (Cerastoderma edule) reveals a major QTL controlling shell color variation. Sci Rep 2022; 12:16971. [PMID: 36216849 PMCID: PMC9551087 DOI: 10.1038/s41598-022-21214-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/23/2022] [Indexed: 12/29/2022] Open
Abstract
Shell color shows broad variation within mollusc species and despite information on the genetic pathways involved in shell construction and color has recently increased, more studies are needed to understand its genetic architecture. The common cockle (Cerastoderma edule) is a valuable species from ecological and commercial perspectives which shows important variation in shell color across Northeast Atlantic. In this study, we constructed a high-density genetic map, as a tool for screening common cockle genome, which was applied to ascertain the genetic basis of color variation in the species. The consensus genetic map comprised 19 linkage groups (LGs) in accordance with the cockle karyotype (2n = 38) and spanned 1073 cM, including 730 markers per LG and an inter-marker distance of 0.13 cM. Five full-sib families showing segregation for several color-associated traits were used for a genome-wide association study and a major QTL on chromosome 13 associated to different color-traits was detected. Mining on this genomic region revealed several candidate genes related to shell construction and color. A genomic region previously reported associated with divergent selection in cockle distribution overlapped with this QTL suggesting its putative role on adaptation.
Collapse
Affiliation(s)
- Miguel Hermida
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Seila Díaz
- Genomes and Disease Group, Department of Zoology, Genetics and Physical Anthropology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- ECOMARE, CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Santiago University Campus, 3810-193, Aveiro, Portugal
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, ECIMAT, 36331, Vigo, Spain
| | - Alicia L Bruzos
- Genomes and Disease Group, Department of Zoology, Genetics and Physical Anthropology, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Mosaicism and Precision Medicine Group, Department of Genetics and Genomic Medicine, The Francis Crick Institute, University College of London, London, UK
| | - Andrés Blanco
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain
| | - Belén G Pardo
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain
| | - Paulino Martínez
- Department of Zoology, Genetics and Physical Anthropology, Acuigen Group, Faculty of Veterinary, Universidade de Santiago de Compostela, Campus of Lugo, 27002, Lugo, Spain.
| |
Collapse
|
3
|
Song J, Austin JD, Yang H. Comparative Transcriptomics of the Northern Quahog Mercenaria mercenaria and Southern Quahog Mercenaria campechiensis in Response to Chronic Heat Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:276-292. [PMID: 35357634 DOI: 10.1007/s10126-022-10101-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/05/2022] [Indexed: 06/14/2023]
Abstract
The northern quahog (Mercenaria mercenaria) supports lucrative aquaculture industries in the USA. In the southeastern USA, aquacultured M. mercenaria faces increasing risks of summer die-offs from prolonged heat waves. We used a comparative transcriptomic approach to investigate the molecular responses of M. mercenaria and its southern congener, Mercenaria campechiensis, to controlled incremental heat stress over a 4-week period. Mercenaria were exposed to temperatures from 24 to 34 °C with 2.5 °C/week, after which, gill transcriptomes were de novo assembled and annotated. During the 4 weeks of chronic heat exposure, both species had the same survival rate (96%); M. mercenaria experienced body weight gain/loss depending on the originated hatcheries while M. campechiensis experienced an average net weight loss. The upregulated genes in both species included those in chaperone-mediated protein folding and regulation of cell death pathways, while the downregulated genes in both species involved in mRNA processing and splicing pathways. Compared to M. mercenaria, M. campechiensis appears to be more sensitive to prolonged heat stress as indicated by upregulating significantly more genes in coping with oxidative stress and in the protein degradation pathways, while downregulating some inhibitors of apoptosis. We discussed this finding within their ecological and evolutionary context. Our findings highlighted the potential vulnerability of the two quahogs, especially the southern quahog, to continued ocean warming.
Collapse
Affiliation(s)
- Jingwei Song
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32653, USA
| | - James D Austin
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32653, USA
- Department of Wildlife Ecology and Conservation, Institute of Food and Agricultural Sciences, University of Florida, 110 Newins Ziegler Hall, Gainesville, FL, 32611, USA
| | - Huiping Yang
- School of Forest, Fisheries, and Geomatics Sciences, Institute of Food and Agricultural Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL, 32653, USA.
| |
Collapse
|
4
|
Farhat S, Bonnivard E, Pales Espinosa E, Tanguy A, Boutet I, Guiglielmoni N, Flot JF, Allam B. Comparative analysis of the Mercenaria mercenaria genome provides insights into the diversity of transposable elements and immune molecules in bivalve mollusks. BMC Genomics 2022; 23:192. [PMID: 35260071 PMCID: PMC8905726 DOI: 10.1186/s12864-021-08262-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The hard clam Mercenaria mercenaria is a major marine resource along the Atlantic coasts of North America and has been introduced to other continents for resource restoration or aquaculture activities. Significant mortality events have been reported in the species throughout its native range as a result of diseases (microbial infections, leukemia) and acute environmental stress. In this context, the characterization of the hard clam genome can provide highly needed resources to enable basic (e.g., oncogenesis and cancer transmission, adaptation biology) and applied (clam stock enhancement, genomic selection) sciences. RESULTS Using a combination of long and short-read sequencing technologies, a 1.86 Gb chromosome-level assembly of the clam genome was generated. The assembly was scaffolded into 19 chromosomes, with an N50 of 83 Mb. Genome annotation yielded 34,728 predicted protein-coding genes, markedly more than the few other members of the Venerida sequenced so far, with coding regions representing only 2% of the assembly. Indeed, more than half of the genome is composed of repeated elements, including transposable elements. Major chromosome rearrangements were detected between this assembly and another recent assembly derived from a genetically segregated clam stock. Comparative analysis of the clam genome allowed the identification of a marked diversification in immune-related proteins, particularly extensive tandem duplications and expansions in tumor necrosis factors (TNFs) and C1q domain-containing proteins, some of which were previously shown to play a role in clam interactions with infectious microbes. The study also generated a comparative repertoire highlighting the diversity and, in some instances, the specificity of LTR-retrotransposons elements, particularly Steamer elements in bivalves. CONCLUSIONS The diversity of immune molecules in M. mercenaria may allow this species to cope with varying and complex microbial and environmental landscapes. The repertoire of transposable elements identified in this study, particularly Steamer elements, should be a prime target for the investigation of cancer cell development and transmission among bivalve mollusks.
Collapse
Affiliation(s)
- Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, 100 Nicolls Road, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | - Eric Bonnivard
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France
| | - Emmanuelle Pales Espinosa
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, 100 Nicolls Road, Stony Brook University, Stony Brook, NY, 11794-5000, USA
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France
| | - Isabelle Boutet
- Sorbonne Université, CNRS, UMR 7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29688, Roscoff, France
| | - Nadège Guiglielmoni
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, Avenue F.D. Roosevelt 50, B-1050, Brussels, Belgium
| | - Jean-François Flot
- Université libre de Bruxelles (ULB), Evolutionary Biology & Ecology, Avenue F.D. Roosevelt 50, B-1050, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels - (IB)2, B-1050, Brussels, Belgium
| | - Bassem Allam
- Marine Animal Disease Laboratory, School of Marine and Atmospheric Sciences, 100 Nicolls Road, Stony Brook University, Stony Brook, NY, 11794-5000, USA.
| |
Collapse
|
5
|
Xu Q, Nie H, Yin Z, Zhang Y, Huo Z, Yan X. MiRNA-mRNA Integration Analysis Reveals the Regulatory Roles of MiRNAs in Shell Pigmentation of the Manila clam (Ruditapes philippinarum). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:976-993. [PMID: 34773538 DOI: 10.1007/s10126-021-10080-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The shell color of the Manila clam (Ruditapes philippinarum) is an economically important trait. We used high-throughput sequencing and transcriptome analysis to study the molecular mechanisms that underlie shell color formation and regulation in this species. We constructed small RNA libraries from mantle tissues from four shell color strains of Manila clam, subjected them to high-throughput sequencing. Notably, the results suggested that a number of pigment-associated genes including Mitf, HERC2, were negatively regulated by nvi-miR-2a, tgu-miR-133-3p, respectively. They might be involved in melanin formation via the activation of the melanogenesis pathway. And aae-miR-71-5p and dme-miR-7-5p linked to shell formation-related genes such as Calmodulin and IMSP3 were considered to participate in the calcium signaling pathway. We then used quantitative PCR to verify the candidate miRNAs and target genes in different shell color groups. Our results indicated that miR-7, miR-71, and miR-133 may regulate target mRNAs to participate in shell color pigmentation. These results provide the foundation to further characterize miRNA effects on the regulation of shell color and have significant implications for the breeding of new varieties of clams.
Collapse
Affiliation(s)
- Qiaoyue Xu
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| | - Zhihui Yin
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Yanming Zhang
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Zhongming Huo
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Xiwu Yan
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
6
|
Li Z, Li Q, Liu S, Han Z, Kong L, Yu H. Integrated Analysis of Coding Genes and Non-coding RNAs Associated with Shell Color in the Pacific Oyster (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:417-429. [PMID: 33929611 DOI: 10.1007/s10126-021-10034-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Molluscan shell color polymorphism is important in genetic breeding, while the molecular information mechanism for shell coloring is unclear. Here, high-throughput RNA sequencing was used to compare expression profiles of coding and non-coding RNAs (ncRNAs) from Pacific oyster Crassostrea gigas with orange and black shell, which were from an F2 family constructed by crossing an orange shell male with a black shell female. First, 458, 13, and 8 differentially expressed genes (DEGs), lncRNAs (DELs), and miRNAs (DEMs) were identified, respectively. Functional analysis suggested that the DEGs were significantly enriched in 9 pathways including tyrosine metabolism and oxidative phosphorylation pathways. Several genes related to melanin synthesis and biomineralization expressed higher whereas genes associated with carotenoid pigmentation or metabolism expressed lower in orange shell oyster. Then, based on the ncRNA analysis, 163 and 20 genes were targeted by 13 and 8 differentially expressed lncRNAs (DELs) and miRNAs (DEMs), severally. Potential DELs-DEMs-DEGs interactions were also examined. Seven DEMs-DEGs pairs were detected, in which tyrosinase-like protein 1 was targeted by lgi-miR-133-3p and lgi-miR-252a and cytochrome P450 was targeted by dme-miRNA-1-3p. These results revealed that melanin synthesis-related genes and miRNAs-mRNA interactions functioned on orange shell coloration, which shed light on the molecular regulation of shell coloration in marine shellfish.
Collapse
Affiliation(s)
- Zhuanzhuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ziqiang Han
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
7
|
Constructing a de novo transcriptome and a reference proteome for the bivalve Scrobicularia plana: Comparative analysis of different assembly strategies and proteomic analysis. Genomics 2021; 113:1543-1553. [PMID: 33774165 DOI: 10.1016/j.ygeno.2021.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/20/2022]
Abstract
Scrobicularia plana is a coastal and estuarine bivalve widely used in ecotoxicological studies. However, the underlying molecular mechanisms for S. plana pollutant responses are hardly known due to the lack of molecular databases. Thus, in this study we present a holistic approach to assess a robust reference transcriptome and proteome of this clam. A mixture of control and metal-exposed individuals was used for mRNA isolation. Four sets of high quality filtered preprocessed reads were generated (two quality scores and two sequenced lengths) and assembled with Mira, Ray and Trinity algorithms. The sixty-four generated assemblies were refined, filtered and evaluated for their proteomic quality. Eight assemblies presented top Detonate scores but one was selected due to its compactness and biological representation, which was generated: (i) from the highest quality dataset (Q20L100), (ii) using Trinity algorithm with all k-mers (AtKa), (iii) removing redundancy by CD-HIT (RR80), and (iv) filtering out poor contigs (F), that was subsequently named Q20L100AtKaRR80F. S. plana proteomic analysis revealed 10,017 peptide groups that corresponded to 2066 proteins with a wide coverage of molecular functions and biological processes, confirming the strength of the database generated.
Collapse
|
8
|
Hu B, Li Q, Yu H, Du S. Identification and characterization of key haem pathway genes associated with the synthesis of porphyrin in Pacific oyster (Crassostrea gigas). Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110595. [PMID: 33753220 DOI: 10.1016/j.cbpb.2021.110595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/10/2021] [Accepted: 03/15/2021] [Indexed: 12/13/2022]
Abstract
Molluscs exhibit diverse shell colors. The molecular regulation of shell coloration is however not well understood. To investigate the connection of shell coloration with pigment synthesis, we analyzed the distribution of porphyrins, a widespread group of pigments in nature, in four Pacific oyster strains of different shell colors including black, orange, golden, and white. The porphyrin distribution was analyzed in oyster mantles and shells by fluorescence imaging and UV spectrophotometer. The results showed that red fluorescence emitted by porphyrins under the UV light was detected only on the nacre of the orange-shell strain and mantles of orange, black and white-shell strains. Extracts from newly deposit shell, nacre and mantle tissue from orange-shell specimens showed peaks in UV-vis spectra that are characteristic of porphyrins, but these were not observed for the other shell-color strains. In addition, genes of the haem synthetic pathway were isolated and characterized. Phylogenetic analysis of CgALAS, CgALAD, CgPBGD, CgUROS, and CgUROD provide further evidence for a conserved genetic pathway of haem synthesis during evolution. Differential expression of the haem genes expressed in mantle tissues support these findings and are consistent with porphyrins being produced by the orange strain only. Tissue in situ hybridization demonstrated the expression of these candidate genes at the outer fold of C. gigas mantles where shell is deposited. Our studies provide a better understanding of shell pigmentation in C. gigas and candidate genes for future mechanistic analysis of shell color formation in molluscs.
Collapse
Affiliation(s)
- Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Saenko SV, Schilthuizen M. Evo-devo of shell colour in gastropods and bivalves. Curr Opin Genet Dev 2021; 69:1-5. [PMID: 33388521 DOI: 10.1016/j.gde.2020.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 11/30/2022]
Abstract
Recent technical innovations are revealing surprising patterns in mollusc shell pigmentation, such as an unexpectedly modest role for melanins and rapid divergences in the mix of pigments used to achieve similar colour patterns. The elucidation of the molecular genetic basis of shell pigmentation has been slow, probably because of the high genome complexity of gastropods and bivalves. Recent work within the old field of evolutionary ecology of shell pigmentation allows a greater role for the analysis of large-geographic-scale patterns (sometimes employing citizen-science data), as well as experimental field studies. However, the field remains dominated by land snails as model organisms, while colour pattern evolution in marine gastropods and bivalves, particularly those not exposed to visual predators, remains mysterious.
Collapse
Affiliation(s)
- Suzanne V Saenko
- Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands
| | - Menno Schilthuizen
- Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, The Netherlands; Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333BE Leiden, The Netherlands.
| |
Collapse
|