1
|
Houdelet C, Blondeau-Bidet E, Mialhe X, Lallement S, Devilliers S, Falguière JC, Geffroy B. Plasma cortisol and production of miRNAs in red drum (Sciaenops ocellatus) exposed to three distinct challenges. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:757-766. [PMID: 38265685 DOI: 10.1007/s10695-024-01304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
The red drum Sciaenops ocellatus is a marine fish species of high commercial interest. Despite improvements in current aquaculture practices, there are still concerns about the impact of daily manipulations regarding fish welfare. To investigate how does fish respond to various challenges, S. ocellatus juveniles were submitted to two acute challenges, namely a confinement stress and a cold-temperature shock, as well as a chronic stress challenge consisting of 18 days of repetitive challenge events. The level of cortisol produced by individuals was used as a measure of activation hypothalamic-pituitary-interrenal (HPI) axis. A significant increase in cortisol levels was detected only after the confinement stress. Interestingly, the fish exposed to a chronic stress for 18 days exhibited cortisol levels significantly lower than those of non-challenged fish. The small RNA-sequencing conducted for the chronic stress experiment only allowed us to identify two plasmatic microRNAs more abundant in non-challenged fish (miR-205-1-5p and let-7b-5p) compared to challenged fish. The miR-205-1-5p was of particular interest since it was already detected in previous studies on other fish species. In silico analysis allowed to predict potentially highly conserved mRNA targets of this specific miRNA, among which is tnfrsfa that plays a key role in the secondary stress response.
Collapse
Affiliation(s)
- Camille Houdelet
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.
| | | | - Xavier Mialhe
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | | | - Samson Devilliers
- Délégation IFREMER Des Antilles, Unité Biodiversité Et Environnement, 79, Route de Pointe-Fort, 97231, Le Robert, Martinique, France
| | - Jean-Claude Falguière
- Délégation IFREMER Des Antilles, Unité Biodiversité Et Environnement, 79, Route de Pointe-Fort, 97231, Le Robert, Martinique, France
| | - Benjamin Geffroy
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| |
Collapse
|
2
|
Best C, Mennigen JA, Gilmour KM. Exploring transcriptional and post-transcriptional epigenetic regulation of crf and 11βhsd2 in rainbow trout brain during chronic social stress. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111557. [PMID: 38043640 DOI: 10.1016/j.cbpa.2023.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Using dominance hierarchies in juvenile rainbow trout (Oncorhynchus mykiss) as a model of chronic social stress in fish, we explored whether epigenetic transcriptional and post-transcriptional mechanisms are involved in the gene expression of corticotropin-releasing factor (crf) and 11β-hydroxysteroid dehydrogenase (11βhsd2), key factors involved in the regulation of the endocrine stress axis response. In juvenile rainbow trout pairs, subordinate individuals display sustained elevation of circulating cortisol concentrations. Cortisol production is controlled by the hypothalamic-pituitary-interrenal (HPI) axis in fish and initiated by CRF release from the preoptic area (POA). Given that crf is modulated during chronic social stress, and that such stress has been implicated in the epigenetic regulation of crf in other taxa, we probed a role for epigenetic regulation of crf transcript abundance in chronically stressed rainbow trout. We also investigated the regulation of the cortisol-metabolising enzyme 11βhsd2 in the POA, which is upregulated in subordinates. The potential involvement of DNA methylation and microRNAs (miRNAs) in the regulation of crf transcript abundance was investigated during social stress in the POA of fish, as was the potential involvement of miRNAs in 11βhsd2 regulation. Although transcript abundances of crf were elevated in subordinate fish after 4 days, DNA methylation profiles within putative promoter sequences upstream of the crf gene were not significantly affected by chronic stress. An inverse relationship between crf and its predicted posttranscriptional regulator miR-103a-3p in the POA suggests that miRNAs may be involved in mediating the effects of chronic social stress on key components of the endocrine stress axis.
Collapse
Affiliation(s)
- Carol Best
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.
| | | |
Collapse
|
3
|
Pelyhe C, Sturve J. Isolation and characterization of the morphology, size and particle number of rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio) cell line derived large and small extracellular vesicles. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1199-1214. [PMID: 37870723 PMCID: PMC10757702 DOI: 10.1007/s10695-023-01251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Extracellular vesicles (EVs) are 50-1,000 nm lipid bilayer-bound vesicles, released into the extracellular environment by various cell types for intercellular communication purposes. The quantitative and qualitative characteristics of EVs can be affected by stress and pathological conditions. The majority of extracellular vesicle (EV) studies have been performed on mammalian cell lines or bodily fluids. EVs have been previously described from bodily fluids like plasma, serum or mucus in different fish species, however the available knowledge of fish cell line derived EVs is limited and in the vast majority of studies, the overall focus is on small EVs (< 200 nm). We isolated large and small extracellular vesicles from zebrafish (Danio rerio) liver (ZFL), rainbow trout (Oncorhynchus mykiss) liver (RTL-W1), gill (RTgill-W1) and intestinal epithelial (RTgutGC) cell lines using stepwise centrifugation and characterized the size and morphology of EVs. Here we demonstrated that large and small extracellular vesicles can be successfully isolated using stepwise centrifugation from the serum-free medium of the selected piscine cell lines after a 24-h incubation period. The size distribution of large and small EVs isolated from the piscine cell lines suggest that large and small EV groups show high diversity in size ranges, containing heterogenous subpopulations in sizes, and the results highly depend on the applied method and whether filtration steps were included following the isolation. The spherical morphology of EVs was verified by transmission electron microscopy.
Collapse
Affiliation(s)
- Csilla Pelyhe
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Houdelet C, Blondeau-Bidet E, Estevez-Villar M, Mialhe X, Hermet S, Ruelle F, Dutto G, Bajek A, Bobe J, Geffroy B. Circulating MicroRNAs Indicative of Sex and Stress in the European Seabass (Dicentrarchus labrax): Toward the Identification of New Biomarkers. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:749-762. [PMID: 37581865 DOI: 10.1007/s10126-023-10237-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/01/2023] [Indexed: 08/16/2023]
Abstract
MicroRNAs (miRNAs) constitute a new category of biomarkers. Studies on miRNAs in non-mammalian species have drastically increased in the last few years. Here, we explored the use of miRNAs as potential, poorly invasive markers, to identify sex and characterize acute stress in fish. The European seabass (Dicentrarchus labrax) was chosen as a model because of its rapid response to stress and its specific sex determination system, devoid of sexual chromosomes. We performed a small RNA-sequencing analysis in the blood plasma of male and female European seabass (mature and immature) as well as in the blood plasma of juveniles submitted to an acute stress and sampled throughout the recovery period (at 0 h, 0.5 h, 1.5 h and 6 h). In immature individuals, both miR-1388-3p and miR-7132a-5p were up-regulated in females, while miR-499a-5p was more abundant in males. However, no miRNAs were found to be differentially expressed between sexes in the blood plasma of mature individuals. For the acute stress analysis, five miRNAs (miR-155-5p, miR-200a-3p, miR-205-1-5p, miR-143-3p, and miR-223-3p) followed cortisol production over time. All miRNAs identified were tested and validated by RT-qPCR on sequenced samples. A complementary analysis on the 3'UTR sequences of the European seabass allowed to predict potential mRNA targets, some of them being particularly relevant regarding stress regulation, e.g., the glucocorticoid receptor 1 and the mineralocorticoid receptor. The present study provides new avenues and recommendations on the use of miRNAs as biomarkers of sex or stress of the European seabass, with potential application on other fish species.
Collapse
Affiliation(s)
- Camille Houdelet
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | | | | | - Xavier Mialhe
- MGX-Montpellier GenomiX, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Sophie Hermet
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - François Ruelle
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Gilbert Dutto
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Aline Bajek
- Ecloserie Marine de Gravelines-Ichtus, Voie des Enrochements, F-59820, Gravelines, France
| | - Julien Bobe
- INRAE, UR1037, Fish Physiology and Genomic laboratory, F-35000, Rennes, France
| | - Benjamin Geffroy
- MARBEC Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France.
| |
Collapse
|
5
|
Heinrichs-Caldas W, Ikert H, Almeida-Val VMF, Craig PM. Sex matters: Gamete-specific contribution of microRNA following parental exposure to hypoxia in zebrafish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 47:101090. [PMID: 37267726 DOI: 10.1016/j.cbd.2023.101090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023]
Abstract
Oxygen availability varies among aquatic environments, and oxygen concentration has been demonstrated to drive behavioral, metabolic, and genetic adaptations in numerous aquatic species. MicroRNAs (miRNAs) are epigenetic modulators that act at the interface of the environment and the transcriptome and are known to drive plastic responses following environmental stressors. An area of miRNA that has remained underexplored is the sex specific action of miRNAs following hypoxia exposure and its effects as gene expression regulator in fishes. This study aimed to identify differences in mRNA and miRNA expression in the F1 generation of zebrafish (Danio rerio) at 1 hpf after either F0 parental male or female were exposed to 2 weeks of continuous (45 %) hypoxia. In general, F1 embryos at 1 hpf demonstrated differences in mRNA and miRNAs expression related to the stressor and to the specific sex of the F0 that was exposed to hypoxia. Bioinformatic pathway analysis of predicted miRNA:mRNA relationships indicated responses in known hypoxia signaling and mitochondrial bioenergetic pathways. This research demonstrates the importance of examining the specific male and female contributions to phenotypic variation in subsequent generations and provides evidence that there is both maternal and paternal contribution of miRNA through eggs and sperm.
Collapse
Affiliation(s)
- Waldir Heinrichs-Caldas
- LEEM - Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Campus I, Manaus, Amazonas, Brazil.
| | - Heather Ikert
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| | - Vera Maria Fonseca Almeida-Val
- LEEM - Laboratório de Ecofisiologia e Evolução Molecular, Instituto Nacional de Pesquisas da Amazônia, Campus I, Manaus, Amazonas, Brazil
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave. W., Waterloo N2L 3G1, Ontario, Canada
| |
Collapse
|
6
|
Madaro A, Nilsson J, Whatmore P, Roh H, Grove S, Stien LH, Olsen RE. Acute stress response on Atlantic salmon: a time-course study of the effects on plasma metabolites, mucus cortisol levels, and head kidney transcriptome profile. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:97-116. [PMID: 36574113 PMCID: PMC9935726 DOI: 10.1007/s10695-022-01163-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
Farmed Atlantic salmon (Salmo salar) welfare and performance can be strongly influenced by stress episodes caused by handling during farming practices. To better understand the changes occurring after an acute stress response, we exposed a group of Atlantic salmon parr to an acute stressor, which involved netting and transferring fish to several new holding tanks. We describe a time-course response to stress by sampling parr in groups before (T0) and 10, 20, 30, 45, 60, 120, 240, 300, and 330 min post-stress. A subgroup of fish was also subjected to the same stressor for a second time to assess their capacity to respond to the same challenge again within a short timeframe (ReStressed). Fish plasma was assessed for adrenocorticotropic hormone (ACTH), cortisol, and ions levels. Mucus cortisol levels were analyzed and compared with the plasma cortisol levels. At 5 selected time points (T0, 60, 90, 120, 240, and ReStressed), we compared the head kidney transcriptome profile of 10 fish per time point. The considerably delayed increase of ACTH in the plasma (60 min post-stress), and the earlier rise of cortisol levels (10 min post-stress), suggests that cortisol release could be triggered by more rapidly responding factors, such as the sympathetic system. This hypothesis may be supported by a high upregulation of several genes involved in synaptic triggering, observed both during the first and the second stress episodes. Furthermore, while the transcriptome profile showed few changes at 60 min post-stress, expression of genes in several immune-related pathways increased markedly with each successive time point, demonstrating the role of the immune system in fish coping capacity. Although many of the genes discussed in this paper are still poorly characterized, this study provides new insights regarding the mechanisms occurring during the stress response of salmon parr and may form the basis for a useful guideline on timing of sampling protocols.
Collapse
Affiliation(s)
| | | | - Paul Whatmore
- Department of eResearch, Queensland University of Technology, GPO Box 2434, Brisbane, QLD, 4001, Australia
| | - HyeongJin Roh
- Institute of Marine Research, NO-5984, Matredal, Norway
| | - Søren Grove
- Institute of Marine Research, NO-5984, Matredal, Norway
- Fish Health Group, Norwegian Veterinary Institute, 1433, Ås, Norway
| | - Lars H Stien
- Institute of Marine Research, NO-5984, Matredal, Norway
| | - Rolf Erik Olsen
- Institute of Marine Research, NO-5984, Matredal, Norway
- Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
7
|
Zhao T, Zou Y, Yan H, Chang Y, Zhan Y. Non-coding RNAs targeting NF-κB pathways in aquatic animals: A review. Front Immunol 2023; 14:1091607. [PMID: 36825023 PMCID: PMC9941745 DOI: 10.3389/fimmu.2023.1091607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Nuclear factor-kappa B (NF-κB) pathways have a close relationship with many diseases, especially in terms of the regulation of inflammation and the immune response. Non-coding RNAs (ncRNAs) are a heterogeneous subset of endogenous RNAs that directly affect cellular function in the absence of proteins or peptide products; these include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), etc. Studies on the roles of ncRNAs in targeting the NF-κB pathways in aquatic animals are scarce. A few research studies have confirmed detailed regulatory mechanisms among ncRNAs and the NF-κB pathways in aquatic animals. This comprehensive review is presented concerning ncRNAs targeting the NF-κB pathway in aquatic animals and provides new insights into NF-κB pathways regulatory mechanisms of aquatic animals. The review discusses new possibilities for developing non-coding-RNA-based antiviral applications in fisheries.
Collapse
Affiliation(s)
- Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yang Zou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hanyu Yan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
8
|
Cardona E, Milhade L, Pourtau A, Panserat S, Terrier F, Lanuque A, Roy J, Marandel L, Bobe J, Skiba-Cassy S. Tissue origin of circulating microRNAs and their response to nutritional and environmental stress in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158584. [PMID: 36087674 DOI: 10.1016/j.scitotenv.2022.158584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 05/19/2023]
Abstract
Stresses associated with changes in diet or environmental disturbances are common situations that fish encounter during their lifetime. The stability and ease of measuring microRNAs (miRNAs) present in biological fluids make these molecules particularly interesting biomarkers for non-lethal assessment of stress in animals. Rainbow trout were exposed for four weeks to abiotic stress (moderate hypoxia) and/or nutritional stress (a high-carbohydrate/low-protein diet). Blood plasma and epidermal mucus were sampled at the end of the experiment, and miRNAs were assessed using small RNA sequencing. We identified four miRNAs (miR-122-5p, miR-184-3p, miR-192-5p and miR-194a-5p) and three miRNAs (miR-210-3p, miR-153a-3p and miR-218c-5p) that accumulated in response to stress in blood plasma and epidermal mucus, respectively. In particular, the abundance of miR-210-3p, a hypoxamiR in mammals, increased strongly in the epidermal mucus of rainbow trout subjected to moderate hypoxia, and can thus be considered a relevant biomarker of hypoxic stress in trout. We explored the contribution of 22 tissues/organs to the abundance of circulating miRNAs (c-miRNAs) in blood plasma and epidermal mucus influenced by the treatments. Some miRNAs were tissue-specific, while others were distributed among several tissues. Some c-miRNAs (e.g., miR-210-3p, miR184-3p) showed similar variations in both tissues and fluids, while others showed an inverse trend (e.g., miR-122-5p) or no apparent relationship (e.g. miR-192-5p, miR-194a-5p. Overall, these results demonstrate that c-miRNAs can be used as non-lethal biomarkers to study stress in fish. In particular, the upregulation of miR-210-3p in epidermal mucus induced by hypoxia demonstrates the potential of using epidermal mucus as a matrix for identifying non-invasive biomarkers of stress. This study provides information about the tissue sources of c-miRNAs and highlights the potential difficulty in relating variations in miRNA abundance in biological fluids to that in tissues.
Collapse
Affiliation(s)
- Emilie Cardona
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France; INRAE, UR1037 Fish Physiology and Genomic Laboratory, F-35000 Rennes, France.
| | - Léo Milhade
- IRISA, INRIA, CNRS, University of Rennes 1, UMR 6074, F-35000, Rennes, France
| | - Angéline Pourtau
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France; INRAE, Gip Geves St Martin 0652, F-40390 Saint-Martin-de-Hinx, France
| | - Stéphane Panserat
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Fréderic Terrier
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Jérôme Roy
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Julien Bobe
- INRAE, UR1037 Fish Physiology and Genomic Laboratory, F-35000 Rennes, France
| | - Sandrine Skiba-Cassy
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| |
Collapse
|
9
|
Skin Mucus as a Relevant Low-Invasive Biological Matrix for the Measurement of an Acute Stress Response in Rainbow Trout (Oncorhynchus mykiss). WATER 2022. [DOI: 10.3390/w14111754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Skin mucus is a non-lethal and low-invasive matrix appropriate to assess fish welfare as it contributes to their defence against external aggressions and reflects changes in fish health status. However, more information on the response of this matrix to specific stressors is needed. In this study, rainbow trout (Oncorhynchus mykiss) specimens were subjected to an acute stress by air exposure and sampled after 1, 6, and 24 h post-stress. Blood and skin mucus were collected, and a battery of biochemical biomarkers were measured in both matrices. Cortisol and glucose values showed the expected classical stress response in plasma, increasing after the acute stress. The same pattern was observed in skin mucus, corroborating previous data in fish, and allowing us to confirm that skin mucus can be a useful complementary matrix for stress assessment in fish. The results showed sensitivity to hypoxic stress in skin mucus for cortisol, glucose, alkaline phosphatase (ALP), aspartate transaminase (AST), alanine aminotransferase (ALT), creatinine kinase (CK), and calcium. From the 15 parameters evaluated, 12 did not show statistically significant changes between plasma and mucus; therefore, using skin mucus cannot replace the use of plasma. Finally, the principal component analysis in skin mucus revealed a complete separation between the two experimental groups, being ALP, AST, glucose, cortisol, and CK, the biomarkers that contributed the most to this separation.
Collapse
|
10
|
Cardona E, Guyomar C, Desvignes T, Montfort J, Guendouz S, Postlethwait JH, Skiba-Cassy S, Bobe J. Circulating miRNA repertoire as a biomarker of metabolic and reproductive states in rainbow trout. BMC Biol 2021; 19:235. [PMID: 34781956 PMCID: PMC8594080 DOI: 10.1186/s12915-021-01163-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background Circulating miRNAs (c-miRNAs) are found in most, if not all, biological fluids and are becoming well-established non-invasive biomarkers of many human pathologies. However, their features in non-pathological contexts and whether their expression profiles reflect normal life history events have received little attention, especially in non-mammalian species. The aim of the present study was to investigate the potential of c-miRNAs to serve as biomarkers of reproductive and metabolic states in fish. Results The blood plasma was sampled throughout the reproductive cycle of female rainbow trout subjected to two different feeding regimes that triggered contrasting metabolic states. In addition, ovarian fluid was sampled at ovulation, and all samples were subjected to small RNA-seq analysis, leading to the establishment of a comprehensive miRNA repertoire (i.e., miRNAome) and enabling subsequent comparative analyses to a panel of RNA-seq libraries from a wide variety of tissues and organs. We showed that biological fluid miRNAomes are complex and encompass a high proportion of the overall rainbow trout miRNAome. While sharing a high proportion of common miRNAs, the blood plasma and ovarian fluid miRNAomes exhibited strong fluid-specific signatures. We further revealed that the blood plasma miRNAome significantly changed depending on metabolic and reproductive states. We subsequently identified three evolutionarily conserved muscle-specific miRNAs or myomiRs (miR-1-1/2-3p, miR-133a-1/2-3p, and miR-206-3p) that accumulated in the blood plasma in response to high feeding rates, making these myomiRs strong candidate biomarkers of active myogenesis. We also identified miR-202-5p as a candidate biomarker for reproductive success that could be used to predict ovulation and/or egg quality. Conclusions Together, these promising results reveal the high potential of c-miRNAs, including evolutionarily conserved myomiRs, as physiologically relevant biomarker candidates and pave the way for the use of c-miRNAs for non-invasive phenotyping in various fish species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01163-5.
Collapse
Affiliation(s)
- Emilie Cardona
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.,INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint-Pée-sur-Nivelle, France
| | - Cervin Guyomar
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.,GenPhySE, University of Toulouse, INRAE, ENVT, F-31326, Castanet-Tolosan, France
| | - Thomas Desvignes
- Institute of Neurosciences, University of Oregon, Eugene, OR, 97403, USA
| | - Jérôme Montfort
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France
| | - Samia Guendouz
- Institute of Functional Genomics, MGX, UMR 5203 CNRS - U1191 INSERM, F-34094, Montpellier, France
| | | | - Sandrine Skiba-Cassy
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint-Pée-sur-Nivelle, France
| | - Julien Bobe
- INRAE, LPGP, Fish Physiology and Genomics, F-35000, Rennes, France.
| |
Collapse
|
11
|
Ikert H, Osokin S, Saito JR, Craig PM. Responses of microRNA and predicted mRNA and enzymatic targets in liver of two salmonids (Oncorhynchus mykiss and Salvelinus fontinalis) following air exposure. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110646. [PMID: 34271192 DOI: 10.1016/j.cbpb.2021.110646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 10/20/2022]
Abstract
The acute stress response is well-characterized, with rainbow trout as a teleost model for physiological and molecular responses. Air exposure, which stimulates an acute stress response, modulates liver microRNAs in rainbow trout; however, these highly conserved non-coding RNAs that bind to mRNA and repress translation, have never been measured in brook trout and it is unknown how miRNA expression responds following air exposure in this less studied salmonid. Our objective was to characterize the effects of air exposure on rainbow and brook trout liver miRNA expression, as well as the mRNA expression and enzyme activity that the miRNAs are predicted to target. Brook and rainbow trout were sampled pre- and 1-, 3-, and 24-h post- a three-minute air exposure. Plasma cortisol, glucose, and lactate were measured. Relative expression of miR-21a-5p, miR-143-3p, let-7a-5p and relative expression and enzyme activities of five predicted targets (pyruvate kinase, glucokinase, citrate synthase, cytochrome c oxidase, and catalase) were measured in liver. Rainbow and brook trout both had increases in plasma cortisol and lactate, while only rainbow trout had significant post-stress increases in plasma glucose. Furthermore, both trout species had increased miR-143-3p and miR-21a-5p relative expression 24-h post-stress. Four of the five enzymes measured had altered activity following stress. Brook trout miRNAs had inverse relative expression with relative catalase mRNA expression and cytochrome c oxidase enzyme activity, but no relationship was found in rainbow trout. Therefore, we have further characterized the transcriptional and enzymatic response to air exposure in two salmonids.
Collapse
Affiliation(s)
- Heather Ikert
- University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada.
| | - Slava Osokin
- University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
| | - Joshua R Saito
- University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
| | - Paul M Craig
- University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
| |
Collapse
|
12
|
Magnadóttir B, Kraev I, Dodds AW, Lange S. The Proteome and Citrullinome of Hippoglossus hippoglossus Extracellular Vesicles-Novel Insights into Roles of the Serum Secretome in Immune, Gene Regulatory and Metabolic Pathways. Int J Mol Sci 2021; 22:ijms22020875. [PMID: 33467210 PMCID: PMC7830382 DOI: 10.3390/ijms22020875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer vesicles which are released from cells and play multifaceted roles in cellular communication in health and disease. EVs can be isolated from various body fluids, including serum and plasma, and are usable biomarkers as they can inform health status. Studies on EVs are an emerging research field in teleost fish, with accumulating evidence for important functions in immunity and homeostasis, but remain to be characterised in most fish species, including halibut. Protein deimination is a post-translational modification caused by a conserved family of enzymes, named peptidylarginine deiminases (PADs), and results in changes in protein folding and function via conversion of arginine to citrulline in target proteins. Protein deimination has been recently described in halibut ontogeny and halibut serum. Neither EV profiles, nor total protein or deiminated protein EV cargos have yet been assessed in halibut and are reported in the current study. Halibut serum EVs showed a poly-dispersed population in the size range of 50–600 nm, with modal size of EVs falling at 138 nm, and morphology was further confirmed by transmission electron microscopy. The assessment of EV total protein cargo revealed 124 protein hits and 37 deiminated protein hits, whereof 15 hits were particularly identified in deiminated form only. Protein interaction network analysis showed that deimination hits are involved in a range of gene regulatory, immune, metabolic and developmental processes. The same was found for total EV protein cargo, although a far wider range of pathways was found than for deimination hits only. The expression of complement component C3 and C4, as well as pentraxin-like protein, which were identified by proteomic analysis, was further verified in EVs by western blotting. This showed that C3 is exported in EVs at higher levels than C4 and deiminated C3 was furthermore confirmed to be at high levels in the deimination-enriched EV fractions, while, in comparison, C4 showed very low detection in deimination-enriched EV fractions. Pentraxin was exported in EVs, but not detected in the deimination-enriched fractions. Our findings provide novel insights into EV-mediated communication in halibut serum, via transport of protein cargo, including post-translationally deiminated proteins.
Collapse
Affiliation(s)
- Bergljót Magnadóttir
- Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavik, Iceland;
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Alister W. Dodds
- MRC Immunochemistry Unit, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, Department of Biomedical Sciences, University of Westminster, London W1W 6UW, UK
- Correspondence: ; Tel.: +44-(0)207-911-5000
| |
Collapse
|
13
|
Ikert H, Lynch MDJ, Doxey AC, Giesy JP, Servos MR, Katzenback BA, Craig PM. High Throughput Sequencing of MicroRNA in Rainbow Trout Plasma, Mucus, and Surrounding Water Following Acute Stress. Front Physiol 2021; 11:588313. [PMID: 33519501 PMCID: PMC7838646 DOI: 10.3389/fphys.2020.588313] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Circulating plasma microRNAs (miRNAs) are well established as biomarkers of several diseases in humans and have recently been used as indicators of environmental exposures in fish. However, the role of plasma miRNAs in regulating acute stress responses in fish is largely unknown. Tissue and plasma miRNAs have recently been associated with excreted miRNAs; however, external miRNAs have never been measured in fish. The objective of this study was to identify the altered plasma miRNAs in response to acute stress in rainbow trout (Oncorhynchus mykiss), as well as altered miRNAs in fish epidermal mucus and the surrounding ambient water. Small RNA was extracted and sequenced from plasma, mucus, and water collected from rainbow trout pre- and 1 h-post a 3-min air stressor. Following small RNA-Seq and pathway analysis, we identified differentially expressed plasma miRNAs that targeted biosynthetic, degradation, and metabolic pathways. We successfully isolated miRNA from trout mucus and the surrounding water and detected differences in miRNA expression 1-h post air stress. The expressed miRNA profiles in mucus and water were different from the altered plasma miRNA profile, which indicated that the plasma miRNA response was not associated with or immediately reflected in external samples, which was further validated through qPCR. This research expands understanding of the role of plasma miRNA in the acute stress response of fish and is the first report of successful isolation and profiling of miRNA from fish mucus or samples of ambient water. Measurements of miRNA from plasma, mucus, or water can be further studied and have potential to be applied as non-lethal indicators of acute stress in fish.
Collapse
Affiliation(s)
- Heather Ikert
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - John P. Giesy
- Department of Veterinary Biomedical Sciences, Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Mark R. Servos
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | - Paul M. Craig
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|