1
|
Huang S, Wang J, Lin T, He C, Chen Z. Esketamine Exposure Impairs Cardiac Development and Function in Zebrafish Larvae. TOXICS 2024; 12:427. [PMID: 38922107 PMCID: PMC11209413 DOI: 10.3390/toxics12060427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Esketamine is a widely used intravenous general anesthetic. However, its safety, particularly its effects on the heart, is not fully understood. In this study, we investigated the effects of esketamine exposure on zebrafish embryonic heart development. Zebrafish embryos were exposed to esketamine at concentrations of 1, 10, and 100 mg/L from 48 h post-fertilization (hpf) to 72 hpf. We found that after exposure, zebrafish embryos had an increased hatching rate, decreased heart rate, stroke volume, and cardiac output. When we exposed transgenic zebrafish of the Tg(cmlc2:EGFP) strain to esketamine, we observed ventricular dilation and thickening of atrial walls in developing embryos. Additionally, we further discovered the abnormal expression of genes associated with cardiac development, including nkx2.5, gata4, tbx5, and myh6, calcium signaling pathways, namely ryr2a, ryr2b, atp2a2a, atp2a2b, slc8a3, slc8a4a, and cacna1aa, as well as an increase in acetylcholine concentration. In conclusion, our findings suggest that esketamine may impair zebrafish larvae's cardiac development and function by affecting acetylcholine concentration, resulting in weakened cardiac neural regulation and subsequent effects on cardiac function. The insights garnered from this research advocate for a comprehensive safety assessment of esketamine in clinical applications.
Collapse
Affiliation(s)
- Shuo Huang
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China;
| | - Jingyi Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (J.W.); (T.L.)
| | - Tingting Lin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (J.W.); (T.L.)
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; (J.W.); (T.L.)
| | - Zhiyuan Chen
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China;
| |
Collapse
|
2
|
Raman R, Antony M, Nivelle R, Lavergne A, Zappia J, Guerrero-Limón G, Caetano da Silva C, Kumari P, Sojan JM, Degueldre C, Bahri MA, Ostertag A, Collet C, Cohen-Solal M, Plenevaux A, Henrotin Y, Renn J, Muller M. The Osteoblast Transcriptome in Developing Zebrafish Reveals Key Roles for Extracellular Matrix Proteins Col10a1a and Fbln1 in Skeletal Development and Homeostasis. Biomolecules 2024; 14:139. [PMID: 38397376 PMCID: PMC10886564 DOI: 10.3390/biom14020139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are now widely used to study skeletal development and bone-related diseases. To that end, understanding osteoblast differentiation and function, the expression of essential transcription factors, signaling molecules, and extracellular matrix proteins is crucial. We isolated Sp7-expressing osteoblasts from 4-day-old larvae using a fluorescent reporter. We identified two distinct subpopulations and characterized their specific transcriptome as well as their structural, regulatory, and signaling profile. Based on their differential expression in these subpopulations, we generated mutants for the extracellular matrix protein genes col10a1a and fbln1 to study their functions. The col10a1a-/- mutant larvae display reduced chondrocranium size and decreased bone mineralization, while in adults a reduced vertebral thickness and tissue mineral density, and fusion of the caudal fin vertebrae were observed. In contrast, fbln1-/- mutants showed an increased mineralization of cranial elements and a reduced ceratohyal angle in larvae, while in adults a significantly increased vertebral centra thickness, length, volume, surface area, and tissue mineral density was observed. In addition, absence of the opercle specifically on the right side was observed. Transcriptomic analysis reveals up-regulation of genes involved in collagen biosynthesis and down-regulation of Fgf8 signaling in fbln1-/- mutants. Taken together, our results highlight the importance of bone extracellular matrix protein genes col10a1a and fbln1 in skeletal development and homeostasis.
Collapse
Affiliation(s)
- Ratish Raman
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Mishal Antony
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Renaud Nivelle
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Arnaud Lavergne
- GIGA Genomics Platform, B34, GIGA Institute, University of Liège, 4000 Liège, Belgium;
| | - Jérémie Zappia
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium (Y.H.)
| | - Gustavo Guerrero-Limón
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Caroline Caetano da Silva
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Priyanka Kumari
- Laboratory of Pharmaceutical and Analytical Chemistry, Department of Pharmacy, CIRM, Sart Tilman, 4000 Liège, Belgium;
| | - Jerry Maria Sojan
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Christian Degueldre
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Mohamed Ali Bahri
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Agnes Ostertag
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Corinne Collet
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
- UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, F-75019 Paris, France
| | - Martine Cohen-Solal
- Hospital Lariboisière, Reference Centre for Rare Bone Diseases, INSERM U1132, Université de Paris-Cité, F-75010 Paris, France; (C.C.d.S.); (A.O.); (C.C.); (M.C.-S.)
| | - Alain Plenevaux
- GIGA CRC In Vivo Imaging, University of Liège, Sart Tilman, 4000 Liège, Belgium; (C.D.); (M.A.B.); (A.P.)
| | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, Center for Interdisciplinary Research on Medicines, University of Liège, 4000 Liège, Belgium (Y.H.)
| | - Jörg Renn
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration (LOR), GIGA Institute, University of Liège, 4000 Liège, Belgium; (R.R.); (M.A.); (R.N.); (G.G.-L.); (J.R.)
| |
Collapse
|
3
|
Yuan W, Xiao Y, Zhang Y, Xiang K, Huang T, Diaby M, Gao J. Apoptotic mechanism of development inhibition in zebrafish induced by esketamine. Toxicol Appl Pharmacol 2024; 482:116789. [PMID: 38103741 DOI: 10.1016/j.taap.2023.116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Esketamine, a widely used intravenous general anesthetic, is also employed for obstetric and pediatric anesthesia, and depression treatment. However, concerns regarding esketamine abuse have emerged. Moreover, the potential in vivo toxicity of esketamine on growth and development remains unclear. To address these concerns, we investigated the effects of esketamine exposure on developmental parameters, cell apoptosis, and gene expression in zebrafish. Esketamine exposure concentration-dependently decreased the heart rate and body length of zebrafish embryos/larvae while increasing the hatching rate and spontaneous movement frequency. Developmental retardation of zebrafish larvae, including shallow pigmentation, small eyes, and delayed yolk sac absorption, was also observed following esketamine treatment. Esketamine exposure altered the expression of apoptosis-related genes in zebrafish heads, primarily downregulating bax, caspase9, caspase3, caspase6, and caspase7. Intriguingly, BTSA1, a Bax agonist, reversed the anti-apoptotic and decelerated body growth effects of esketamine in zebrafish. Collectively, our findings suggest that esketamine may hinder embryonic development by inhibiting embryonic apoptosis via the Bax/Caspase9/Caspase3 pathway. To the best of our knowledge, this is the first study to report the lethal toxicity of esketamine in zebrafish. We have elucidated the developmental toxic effects of esketamine on zebrafish larvae and its potential apoptotic mechanisms. Further studies are warranted to evaluate the safety of esketamine in animals and humans.
Collapse
Affiliation(s)
- Wenjuan Yuan
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yinggang Xiao
- Medical College of Yangzhou University, Yangzhou, China; Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Kuilin Xiang
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Tianfeng Huang
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Mohamed Diaby
- College of Animal Science and Technology, Yangzhou University, Jiangsu, China
| | - Ju Gao
- Department of Anesthesiology, Institute of Anesthesia, Emergency and Critical Care, Yangzhou University Affiliated Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China.
| |
Collapse
|