1
|
Zheng X, Tang J, Song A, Zhou Y, Miao J, Li Z, Pan L. Study on reproductive endocrine disturbance and DNA damage mechanism of female Ruditapes philippinarum under Benzo[a]pyrene stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122844. [PMID: 37918772 DOI: 10.1016/j.envpol.2023.122844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/22/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
The reproductive toxicity of polycyclic aromatic hydrocarbons (PAHs) in aquatic organisms has attracted increasing attention from scholars. Currently, research in this field primarily focuses on vertebrates such as zebrafish and other model species. However, there is still a significant knowledge gap in the toxicity of PAHs to invertebrates and its potential mechanisms. Benzo[a]pyrene (B[a]P) is one of the most representative PAHs. In this study, female Ruditapes philippinarum (R. philippinarum) was treated with B[a]P concentrations of 0, 0.8, 4, and 20 μg/L to investigate reproductive indicators in the proliferative, growth, mature, and spawn stages. Transcriptomics was used to investigate the expression of genes associated with the reproductive endocrine system, DNA repair, autophagy, apoptosis, and ovarian development at different reproductive stages. Our results suggested that B[a]P disrupted the endocrine system by interfering with the production of steroid hormones and the transmission of estrogen signals in female R. philippinarum. The structure of the ovarian DNA duplex is severely damaged under the stress of B[a]P, and a series of cellular responses caused by DNA damage are also interfered. Additionally, we observed a reduction in the gonadosomatic index (GSI) and mature oocytes numbers after B[a]P exposed. Tissue section indicated that severe damage to the ovarian structure at mature and spawn stages. In conclusion, this study combined transcriptomic and toxicological to explore the negative effects on ovarian development induced by B[a]P, focusing on reproductive endocrine disturbance and DNA damage.
Collapse
Affiliation(s)
- Xin Zheng
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jian Tang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Aimin Song
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
2
|
Zhou T, Chen G, Chen M, Wang Y, Zou G, Liang H. Tandem Mass Tag-Based Quantitative Proteomics Analysis of Gonads Reveals New Insight into Sexual Reversal Mechanism in Chinese Soft-Shelled Turtles. BIOLOGY 2022; 11:biology11071081. [PMID: 36101459 PMCID: PMC9312195 DOI: 10.3390/biology11071081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/10/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Chinese soft-shelled turtles display obvious sex dimorphism. The exogenous application of hormones (estradiol and methyltestosterone) can change the direction of gonadal differentiation of P. sinensis to produce sex reversed individuals. However, the molecular mechanism remains unclear. In this study, TMT-based quantitative proteomics analysis of four types of P. sinensis (female, male, pseudo-female, and pseudo-male) gonads were compared. Quantitative analysis of 6107 labeled proteins in the four types of P. sinensis gonads was performed. We identified 440 downregulated and 423 upregulated proteins between pseudo-females and males, as well as 394 downregulated and 959 upregulated proteins between pseudo-males and females. In the two comparisons, the differentially expressed proteins, including K7FKG1, K7GIQ2, COL4A6, K7F2U2, and K7FF80, were enriched in some important pathways, such as focal adhesion, endocytosis, apoptosis, extracellular matrix-receptor interaction, and the regulation of actin cytoskeleton, which were upregulated in pseudo-female vs. male and downregulated in pseudo-male vs. female. In pathways such as ribosome and spliceosome, the levels of RPL28, SRSF3, SNRNP40, and HNRNPK were increased from male to pseudo-female, while they decreased from female to pseudo-male. All differentially expressed proteins after sexual reversal were divided into six clusters, according to their altered levels in the four types of P. sinensis, and associated with cellular processes, such as embryonic development and catabolic process, that were closely related to sexual reversal. These data will provide clues for the sexual reversal mechanism in P. sinensis.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Meng Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
| | - Yubin Wang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
- College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
- Correspondence: (G.Z.); (H.L.); Tel.: +86-27-8178-0097 (H.L.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (T.Z.); (G.C.); (M.C.); (Y.W.)
- Correspondence: (G.Z.); (H.L.); Tel.: +86-27-8178-0097 (H.L.)
| |
Collapse
|
3
|
Wan H, Zhong J, Zhang Z, Zou P, Wang Y. Comparative Transcriptome Reveals the Potential Modulation Mechanisms of Spfoxl-2 Affecting Ovarian Development of Scylla paramamosain. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:125-135. [PMID: 35107659 DOI: 10.1007/s10126-022-10091-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Previously, we reported the identification, tissue distribution and confirmed the roles of Spfoxl-2 in regulating vitellogenin (vtg) expression in Scylla paramamosain. Here, we primally analyzed its potential target genes in the ovary with RNAi and RNA-Seq technology. By comparing the transcriptome data of two groups (ovaries that injected with EGFP and Foxl-2 siRNA, respectively), we found 645 DEGs (differentially expressed genes), including several conserved crucial genes involved in ovarian development, such as vtg, vitellogenin receptor (vtgR), adenylate cyclase (AC), cyclinB, and cell division cycle 2 (cdc2). In addition, these DEGs were also enriched in pathways related to ovary development, including relaxin signaling pathway, ovarian steroidogenesis, and progesterone-mediated oocyte maturation. Moreover, several genes were selected for qRT-PCR to validate the accuracy of the bioinformatic result. To the best of our knowledge, the current study was the first report about foxl-2 function through comparative transcriptome analysis in crustacean species, which identified not only relevant genes and pathways involved in ovarian development of S. paramamosain, but also provided new insights into the regulatory mechanisms of foxl-2 at the molecular level in crustacean.
Collapse
Affiliation(s)
- Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Jinying Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
- Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| |
Collapse
|
4
|
Fu Y, Zhang F, Ma C, Wang W, Liu Z, Chen W, Zhao M, Ma L. Comparative Metabolomics and Lipidomics of Four Juvenoids Application to Scylla paramamosain Hepatopancreas: Implications of Lipid Metabolism During Ovarian Maturation. Front Endocrinol (Lausanne) 2022; 13:886351. [PMID: 35574001 PMCID: PMC9094423 DOI: 10.3389/fendo.2022.886351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
This study was the first to evaluate multiple hormonal manipulations to hepatopancreas over the ovarian development stages of the mud crab, Scylla paramamosain. A total of 1258 metabolites in 75 hepatopancreas explants from five female crabs were induced by juvenile hormone III (JH III), methyl farnesoate (MF), farnesoic acid (FA) and methoprene (Met), as identified from combined metabolomics and lipidomics (LC-MS/MS). 101 significant metabolites and 47 significant pathways were selected and compared for their comprehensive effects to ovarian maturation. While MF played an extensive role in lipid accumulation, JH III and Met shared similar effects, especially in the commonly and significantly elevated triglycerides and lysophospholipids (fold change≥2 and ≤0.5, VIP≥1). The significant upregulation of β-oxidation and key regulators in lipid degradation by FA (P ≤ 0.05) resulted in less lipid accumulation from this treatment, with a shift toward lipid export and energy consumption, unlike the effects of MF, JH III and Met. It was possible that MF and FA played their own unique roles and acted in synergy to modulate lipid metabolism during crab ovarian maturation. Our study yielded insights into the MF-related lipid metabolism in crustacean hepatopancreas for the overall regulation of ovarian maturation, and harbored the potential use of juvenoids to induce reproductive maturity of this economic crab species.
Collapse
Affiliation(s)
- Yin Fu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Fengying Zhang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Chunyan Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wei Wang
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Zhiqiang Liu
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Wei Chen
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Ming Zhao
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- *Correspondence: Lingbo Ma, ; Ming Zhao,
| | - Lingbo Ma
- Key Laboratory of East China Sea Fishery Resources Exploitation, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- *Correspondence: Lingbo Ma, ; Ming Zhao,
| |
Collapse
|