1
|
Sládeková L, Mani S, Dvořák Z. Ligands and agonists of the aryl hydrocarbon receptor AhR: Facts and myths. Biochem Pharmacol 2023; 213:115626. [PMID: 37247746 DOI: 10.1016/j.bcp.2023.115626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The aryl hydrocarbon receptor (AhR) belongs to the essential helix-loop-helix transcription factors family. This receptor has a central role in determining host physiology and a variety of pathophysiologies ranging from inflammation and metabolism to cancer. AhR is a ligand-driven receptor with intricate pharmacology of activation depending on the type and quantity of ligand present. Therefore, a better understanding of AhR ligands per se is critical to move the field forward. In this minireview, we clarify some facts and myths about AhR ligands and how further studies could shed light on the true nature of AhR activation by these ligands. The review covers select chemical classes and explores parameters that qualify them as true receptor ligands.
Collapse
Affiliation(s)
- Lucia Sládeková
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Sridhar Mani
- Department of Genetics and Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Zdeněk Dvořák
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Benoit L, Jornod F, Zgheib E, Tomkiewicz C, Koual M, Coustillet T, Barouki R, Audouze K, Vinken M, Coumoul X. Adverse outcome pathway from activation of the AhR to breast cancer-related death. ENVIRONMENT INTERNATIONAL 2022; 165:107323. [PMID: 35660951 DOI: 10.1016/j.envint.2022.107323] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 05/15/2023]
Abstract
Adverse outcome pathways (AOPs) are formalized and structured linear concepts that connect one molecular initiating event (MIE) to an adverse outcome (AO) via different key events (KE) through key event relationships (KER). They are mainly used in eco-toxicology toxicology, and regulatory health issues. AOPs must respond to specific guidelines from the Organization for Economic Co-operation and Development (OECD) to weight the evidence between each KE. Breast cancer is the deadliest cancer in women with a poor prognosis in case of metastatic breast cancer. The role of the environments in the formation of metastasis has been suggested. We hypothesized that activation of the AhR (MIE), a xenobiotic receptor, could lead to breast cancer related death (AO), through different KEs, constituting a new AOP. An artificial intelligence tool (AOP-helpfinder), which screens the available literature, was used to collect all existing scientific abstracts to build a novel AOP, using a list of key words. Four hundred and seven abstracts were found containing at least a word from our MIE list and either one word from our AO or KE list. A manual curation retained 113 pertinent articles, which were also screened using PubTator. From these analyses, an AOP was created linking the activation of the AhR to breast cancer related death through decreased apoptosis, inflammation, endothelial cell migration, angiogenesis, and invasion. These KEs promote an increased tumor growth, angiogenesis and migration which leads to breast cancer metastasis and breast cancer related death. The evidence of the proposed AOP was weighted using the tailored Bradford Hill criteria and the OECD guidelines. The confidence in our AOP was considered strong. An in vitro validation must be carried out, but our review proposes a strong relationship between AhR activation and breast cancer-related death with an innovative use of an artificial intelligence literature search.
Collapse
Affiliation(s)
- Louise Benoit
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France.
| | - Florence Jornod
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Elias Zgheib
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Celine Tomkiewicz
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Meriem Koual
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Thibaut Coustillet
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Robert Barouki
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France; Assistance Publique-Hôpitaux de Paris, European Hospital Georges-Pompidou, Gynecologic and Breast Oncologic Surgery Department, Paris, France
| | - Karine Audouze
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| | - Mathieu Vinken
- Entity of In Vitro Toxicology and Dermato-Cosmetology, Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Xavier Coumoul
- Université Paris Cité, T3S, INSERM UMR-S 1124, 45 rue des Saints Pères, Paris, France
| |
Collapse
|
3
|
Amare DE, Bovee TF, Mulder PP, Hamers A, Hoogenboom RL. Acid condensation products of indole-3-carbinol and their in-vitro (anti)estrogenic, (anti)androgenic and aryl hydrocarbon receptor activities. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
4
|
Klejn D, Luliński P, Maciejewska D. Molecularly imprinted solid phase extraction in an efficient analytical protocol for indole-3-methanol determination in artificial gastric juice. RSC Adv 2016. [DOI: 10.1039/c6ra23593j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecularly imprinted solid phase extraction was employed in separation step of new and efficient analytical protocol for analysis of indole-3-methanol.
Collapse
Affiliation(s)
- Dorota Klejn
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| | - Piotr Luliński
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| | - Dorota Maciejewska
- Department of Organic Chemistry
- Faculty of Pharmacy
- Medical University of Warsaw
- 02-097 Warsaw
- Poland
| |
Collapse
|
5
|
|
6
|
Anticancer efficacy of unique pyridine-based tetraindoles. Eur J Med Chem 2015; 104:165-76. [DOI: 10.1016/j.ejmech.2015.09.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023]
|
7
|
Rengarajan T, Nandakumar N, Rajendran P, Haribabu L, Nishigaki I, Balasubramanian MP. D-pinitol promotes apoptosis in MCF-7 cells via induction of p53 and Bax and inhibition of Bcl-2 and NF-κB. Asian Pac J Cancer Prev 2014; 15:1757-62. [PMID: 24641404 DOI: 10.7314/apjcp.2014.15.4.1757] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Development of drugs from natural products has been undergoing a gradual evoluation. Many plant derived compounds have excellent therapeutic potential against various human ailments. They are important sources especially for anticancer agents. A number of promising new agents are in clinical development based on their selective molecular targets in the field of oncology. D-pinitol is a naturally occurring compound derived from soy which has significant pharmacological activitites. Therefore we selected D-pinitol in order to evaluate apoptotic potential in the MCF-7 cell line. Human breast cancer cells were treated with different concentrations of D-pinitol and cytotoxicity was measured by MTT and LDH assays. The mechanism of apoptosis was studied with reference to expression of p53, Bcl-2, Bax and NF-kB proteins. The results revealed that D-pinitol significantly inhibited the proliferation of MCF-7 cells in a concentration-dependent manner, while upregulating the expression of p53, Bax and down regulating Bcl-2 and NF-kB. Thus the results obtained in this study clearly vindicated that D-pinitol induces apotosis in MCF-7 cells through regulation of proteins of pro- and anti-apoptotic cascades.
Collapse
Affiliation(s)
- Thamaraiselvan Rengarajan
- Department of Pharmacology and Environmental Toxicology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Chennai, India E-mail :
| | | | | | | | | | | |
Collapse
|
8
|
Li WS, Wang CH, Ko S, Chang TT, Jen YC, Yao CF, More SV, Jao SC. Synthesis and Evaluation of the Cytotoxicities of Tetraindoles: Observation that the 5-Hydroxy Tetraindole (SK228) Induces G2 Arrest and Apoptosis in Human Breast Cancer Cells. J Med Chem 2012; 55:1583-92. [DOI: 10.1021/jm2013425] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wen-Shan Li
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chie-Hong Wang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Shengkai Ko
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Tzu Ting Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Ya Ching Jen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | | | - Shu-Chuan Jao
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
9
|
Natarajan N, Thamaraiselvan R, Lingaiah H, Srinivasan P, Maruthaiveeran Periyasamy B. Effect of flavonone hesperidin on the apoptosis of human mammary carcinoma cell line MCF-7. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.bionut.2011.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Barluenga J, Piedrafita M, Ballesteros A, Suárez‐Sobrino ÁL, González JM. Gold‐Catalyzed Annulations of 1‐(2,3‐Butadienyl)‐1
H
‐Indole Derivatives. Chemistry 2010; 16:11827-31. [DOI: 10.1002/chem.201001754] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- José Barluenga
- Department of Organic and Inorganic Chemistry and Instituto Universitario de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo (Spain), Fax: (+34) 98510‐3450
| | - María Piedrafita
- Department of Organic and Inorganic Chemistry and Instituto Universitario de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo (Spain), Fax: (+34) 98510‐3450
| | - Alfredo Ballesteros
- Department of Organic and Inorganic Chemistry and Instituto Universitario de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo (Spain), Fax: (+34) 98510‐3450
| | - Ángel L. Suárez‐Sobrino
- Department of Organic and Inorganic Chemistry and Instituto Universitario de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo (Spain), Fax: (+34) 98510‐3450
| | - José M. González
- Department of Organic and Inorganic Chemistry and Instituto Universitario de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Julián Clavería 8, 33006 Oviedo (Spain), Fax: (+34) 98510‐3450
| |
Collapse
|
11
|
Lucarini S, Santi MD, Antonietti F, Brandi G, Diamantini G, Fraternale A, Paoletti MF, Tontini A, Magnani M, Duranti A. Synthesis and biological evaluation of a gamma-cyclodextrin-based formulation of the anticancer agent 5,6,11,12,17,18,23,24-octahydrocyclododeca[1,2-b:4,5-b':7,8-b'':10,11-b''']tetraindole (CTet). Molecules 2010; 15:4085-93. [PMID: 20657428 PMCID: PMC6264452 DOI: 10.3390/molecules15064085] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 05/27/2010] [Accepted: 06/01/2010] [Indexed: 12/03/2022] Open
Abstract
5,6,11,12,17,18,23,24-Octahydrocyclododeca[1,2-b:4,5-b':7,8-b'':10,11- b''']tetrai ndole (CTet), an indole-3-carbinol (I3C) metabolite endowed with anticancer properties, is poorly soluble in the solvents most frequently used in biological tests. This study indicates that the use of gamma-cyclodextrin (gamma-CD) avoids this problem. Formulated with gamma-CD CTet is a potent inhibitor of DNA synthesis in both estrogen receptor positive (MCF-7) and estrogen receptor negative (MDA-MB-231) human breast cell lines (IC50 = 1.20 +/- 0.04 microM and 1.0 +/- 0.1 microM, respectively).
Collapse
Affiliation(s)
- Simone Lucarini
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Urbino “Carlo Bo” I-61029 Urbino, Piazza del Rinascimento 6, Italy; E-Mails: (S.L.); (F.A.); (G.D.); (A.T.)
| | - Mauro De Santi
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo” I-61029 Urbino, Via Aurelio Saffi 2, Italy; E-Mails: (M.D.S.); (G.B.); (A.F.); (M.F.P.); (M.M.)
| | - Francesca Antonietti
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Urbino “Carlo Bo” I-61029 Urbino, Piazza del Rinascimento 6, Italy; E-Mails: (S.L.); (F.A.); (G.D.); (A.T.)
| | - Giorgio Brandi
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo” I-61029 Urbino, Via Aurelio Saffi 2, Italy; E-Mails: (M.D.S.); (G.B.); (A.F.); (M.F.P.); (M.M.)
| | - Giuseppe Diamantini
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Urbino “Carlo Bo” I-61029 Urbino, Piazza del Rinascimento 6, Italy; E-Mails: (S.L.); (F.A.); (G.D.); (A.T.)
| | - Alessandra Fraternale
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo” I-61029 Urbino, Via Aurelio Saffi 2, Italy; E-Mails: (M.D.S.); (G.B.); (A.F.); (M.F.P.); (M.M.)
| | - Maria Filomena Paoletti
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo” I-61029 Urbino, Via Aurelio Saffi 2, Italy; E-Mails: (M.D.S.); (G.B.); (A.F.); (M.F.P.); (M.M.)
| | - Andrea Tontini
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Urbino “Carlo Bo” I-61029 Urbino, Piazza del Rinascimento 6, Italy; E-Mails: (S.L.); (F.A.); (G.D.); (A.T.)
| | - Mauro Magnani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo” I-61029 Urbino, Via Aurelio Saffi 2, Italy; E-Mails: (M.D.S.); (G.B.); (A.F.); (M.F.P.); (M.M.)
| | - Andrea Duranti
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Urbino “Carlo Bo” I-61029 Urbino, Piazza del Rinascimento 6, Italy; E-Mails: (S.L.); (F.A.); (G.D.); (A.T.)
| |
Collapse
|
12
|
Sundberg RJ. Electrophilic Substitution Reactions of Indoles. TOPICS IN HETEROCYCLIC CHEMISTRY 2010. [DOI: 10.1007/7081_2010_52] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
|
14
|
|
15
|
Garikapaty VPS, Ashok BT, Tadi K, Mittelman A, Tiwari RK. Synthetic dimer of indole-3-carbinol: second generation diet derived anti-cancer agent in hormone sensitive prostate cancer. Prostate 2006; 66:453-62. [PMID: 16353249 DOI: 10.1002/pros.20350] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cruciferous vegetables have been found to have anti-prostate cancer effects. The active compounds mediating these effects include indoles such as indole-3-carbinol (I3C) and isothiocyanates. I3C is unstable having tissue tropic effects and clinical utility has been partly addressed by the synthesis of a more stable dimer diindolylmethane (DIM). METHODS Anti-proliferative activity was measured by XTT assay and cytosolic proteins quantitated by Western blot analysis. RESULTS DIM (IC(50) 50 microM) is a better anti-proliferative agent than I3C (IC(50) 150 microM) in androgen dependent LNCaP cells, inhibits DNA synthesis, and growth of R1881 stimulated LNCaP cells. Androgen receptor (AR), cyclin D1, and cdk4, induced by R1881, are downregulated by DIM. DIM downregulates phosphorylated Akt and phosphatidyl inositol 3-kinase and downstream inhibition of cyclin D1 and cdk4. CONCLUSION These studies provide evidence that DIM is a second-generation chemopreventive agent with a viable cellular target and has clinical potential as an anti-prostate cancer chemopreventive.
Collapse
Affiliation(s)
- Venkata P S Garikapaty
- Department of Microbiology & Immunology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|