1
|
Hsieh H, Horwath MC, Genter MB. Zinc gluconate toxicity in wild-type vs. MT1/2-deficient mice. Neurotoxicology 2016; 58:130-136. [PMID: 27979773 DOI: 10.1016/j.neuro.2016.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 10/20/2022]
Abstract
Previous studies have suggested that oral zinc supplementation can help reduce the duration of the common cold; however, the use of intranasal (IN) zinc is strongly associated with anosmia, or the loss of the sense of smell, in humans. Prior studies from this lab showed that upregulation of metallothioneins (MT) is a rapid and robust response to zinc gluconate (ZG). Therefore, we assessed the role of MT in the recovery of nasal epithelial damage resulting from IN zinc administration. The main studies in this investigation used a high dose of ZG (170mM) to ensure ablation of the olfactory mucosa, so that the progression of histological and functional recovery could be assessed. In vivo studies using wild-type, MT1/2 knockout mice (MT KO), and heterozygotes administered ZG by IN instillation showed profound loss of the olfactory mucosa in the nasal cavity. Recovery was monitored, and a lower percentage of the MT KO mice were able to smell 28 d after treatment; however, no significant difference was observed in the rate of cell proliferation in the basal layer of the olfactory epithelium between MT KO and wild-type mice. A lower concentration of ZG (33mM), equivalent to that found in homeopathic IN ZG preparations, also caused olfactory epithelial toxicity in mice. These studies suggest that the use of zinc in drug formulations intended for IN administration in humans must be carefully evaluated for their potential to cause olfactory functional deficits.
Collapse
Affiliation(s)
- Heidi Hsieh
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, United States
| | - Michael C Horwath
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267-0557, United States; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Mary Beth Genter
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267-0056, United States.
| |
Collapse
|
2
|
Ooi TC, Mohammad NH, Sharif R. Zinc carnosine protects against hydrogen peroxide-induced DNA damage in WIL2-NS lymphoblastoid cell line independent of poly (ADP-Ribose) polymerase expression. Biol Trace Elem Res 2014; 162:8-17. [PMID: 25326781 DOI: 10.1007/s12011-014-0153-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 10/07/2014] [Indexed: 12/13/2022]
Abstract
The aim of this study is to investigate the ability of zinc carnosine to protect the human lymphoblastoid (WIL2-NS) cell line from hydrogen peroxide-induced DNA damage. Cells were cultured with medium containing zinc carnosine at the concentrations of 0.4, 4, 16 and 32 μM for 9 days prior to treatment with 30 μM of hydrogen peroxide (30 min). Zinc carnosine at the concentration 16 μM was optimal in protecting cells from hydrogen peroxide-induced cytotoxicity and gave the lowest percentage of apoptotic and necrotic cells. Results showed that zinc carnosine was able to induce glutathione production and protect cells from hydrogen peroxide-induced oxidative stress at all concentration and the highest protection was observed at 32-μM zinc carnosine culture. Cytokinesis-block micronucleus cytome assay showed that cells cultured with 4-32 μM of zinc carnosine showed significant reduction in micronuclei formation, nucleoplasmic bridges and nuclear bud frequencies (p < 0.05), suggesting that these concentrations maybe optimal in protecting cells from hydrogen peroxide-induced DNA damage. However, after being challenged with hydrogen peroxide, no increase in poly(ADP-ribose) polymerase expression was observed. Thus, results from this study demonstrate that zinc carnosines possess antioxidant properties and are able to reduce hydrogen peroxide-induced DNA damage in vitro independent of poly(ADP-ribose) polymerase. Further studies are warranted to understand the mechanism of protection of zinc carnosine against hydrogen peroxide-induced damage.
Collapse
Affiliation(s)
- Theng Choon Ooi
- Biomedical Science Programme, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | | |
Collapse
|
3
|
Kukic I, Kelleher SL, Kiselyov K. Zn2+ efflux through lysosomal exocytosis prevents Zn2+-induced toxicity. J Cell Sci 2014; 127:3094-103. [PMID: 24829149 DOI: 10.1242/jcs.145318] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Zn(2+) is an essential micronutrient and an important ionic signal whose excess, as well as scarcity, is detrimental to cells. Free cytoplasmic Zn(2+) is controlled by a network of Zn(2+) transporters and chelating proteins. Recently, lysosomes became the focus of studies in Zn(2+) transport, as they were shown to play a role in Zn(2+)-induced toxicity by serving as Zn(2+) sinks that absorb Zn(2+) from the cytoplasm. Here, we investigated the impact of the lysosomal Zn(2+) sink on the net cellular Zn(2+) distribution and its role in cell death. We found that lysosomes played a cytoprotective role during exposure to extracellular Zn(2+). Such a role required lysosomal acidification and exocytosis. Specifically, we found that the inhibition of lysosomal acidification using Bafilomycin A1 (Baf) led to a redistribution of Zn(2+) pools and increased apoptosis. Additionally, the inhibition of lysosomal exocytosis through knockdown (KD) of the lysosomal SNARE proteins VAMP7 and synaptotagmin VII (SYT7) suppressed Zn(2+) secretion and VAMP7 KD cells had increased apoptosis. These data show that lysosomes play a central role in Zn(2+) handling, suggesting that there is a new Zn(2+) detoxification pathway.
Collapse
Affiliation(s)
- Ira Kukic
- The Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Shannon L Kelleher
- The Department of Nutritional Sciences, College of Health and Human Development, The Pennsylvania State University, University Park, PA 16802, USA Department of Surgery, Penn State Hershey Medical Center, Hershey, PA 17033, USA Department of Cellular and Molecular Physiology, Penn State Hershey Medical Center, Hershey, PA 17033, USA
| | - Kirill Kiselyov
- The Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
4
|
Oxidation reactivity of zinc–cysteine clusters in metallothionein. J Biol Inorg Chem 2013; 18:333-42. [DOI: 10.1007/s00775-013-0977-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/06/2013] [Indexed: 12/24/2022]
|
5
|
Babula P, Masarik M, Adam V, Eckschlager T, Stiborova M, Trnkova L, Skutkova H, Provaznik I, Hubalek J, Kizek R. Mammalian metallothioneins: properties and functions. Metallomics 2012; 4:739-50. [PMID: 22791193 DOI: 10.1039/c2mt20081c] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Metallothioneins (MT) are a family of ubiquitous proteins, whose role is still discussed in numerous papers, but their affinity to some metal ions is undisputable. These cysteine-rich proteins are connected with antioxidant activity and protective effects on biomolecules against free radicals, especially reactive oxygen species. In this review, the connection between zinc(II) ions, reactive oxygen species, heavy metal ions and metallothioneins is demonstrated with respect to effect of these proteins on cell proliferation and a possible negative role in resistance to heavy metal-based and non-heavy metal-based drugs.
Collapse
Affiliation(s)
- Petr Babula
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhang J, Song W, Guo J, Zhang J, Sun Z, Ding F, Gao M. Toxic effect of different ZnO particles on mouse alveolar macrophages. JOURNAL OF HAZARDOUS MATERIALS 2012; 219-220:148-155. [PMID: 22521135 DOI: 10.1016/j.jhazmat.2012.03.069] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/21/2012] [Accepted: 03/26/2012] [Indexed: 05/31/2023]
Abstract
To study the toxicity mechanism of ZnO nanoparticles on mouse macrophages, the toxic effect of different ZnO nanoparticles on mouse alveolar macrophages (MH-S) was investigated in this study. The results showed that the 24h IC(50) of four ZnO particles were 48.53, 47.37, 45.43 and 26.74 μg/ml for bulk ZnO, 100 nm, 30 nm and 10-30 nm ZnO particles, respectively. At the concentration of 10 μg/ml and below, dissolved zinc ions induced metallothionein synthesis, enhanced cellular resistance to oxidative stress. ZnO particles mainly induced cell apoptosis. When the concentration of ZnO particles was 20 μg/ml and above, excessive zinc destroyed mitochondrial function and cell membrane, caused cell necrosis. Dissolved zinc ions first cause toxicity in MH-S cells. However, the toxic effect of dissolved zinc ions may exist a threshold on mouse macrophages, inducing about 50% cell death. The toxic difference of different ZnO particles mainly depended on the effect of nondissolved ZnO particles.
Collapse
Affiliation(s)
- Jinyang Zhang
- College of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | | | | | | | | | | | | |
Collapse
|
7
|
Antioxidant supplementation attenuates oxidative stress in chronic hepatitis C patients. GASTROENTEROLOGIA Y HEPATOLOGIA 2012; 35:386-94. [PMID: 22608494 DOI: 10.1016/j.gastrohep.2012.03.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/28/2012] [Accepted: 03/06/2012] [Indexed: 01/06/2023]
Abstract
UNLABELLED Reactive oxygen species (ROS) overgeneration is involved in the pathogenesis of hepatitis C. The aim of this study was to evaluate the antioxidant status in the blood of HCV infected patients treated or not with standard therapy before and after supplementation of vitamins E, C and zinc. Biomarkers of oxidative stress were evaluated in the blood of three groups of patients: group 1 - controls; group 2 - HCV patients without treatment examined before and after a daily antioxidant supplementation (vitamin E 800 mg, C 500 mg and zinc 40 mg) for 6 months; and group 3 - HCV patients treated with pegylated interferon combined with ribavirin, also examined before and after the same antioxidant supplementation. Before antiviral treatment HCV patients showed enhanced superoxide dismutase, catalase and glutathione peroxidase activities and decreased glutathione reductase activity, while lipoperoxidation was increased and reduced glutathione showed decreased levels compared to controls. Treatment with standard therapy enhanced the activities of catalase and glutathione S-transferase, increased contents of protein carbonyl and promoted further reduced glutathione depletion. After antioxidant supplementation, decreased catalase and glutathione S-transferase activities, decreased lipoperoxidation in group 2, and increased reduced glutathione contents in both supplemented groups were detected. Before antioxidant supplementation, alanine aminotransferase and gamma glutamyl transferase contents showed significant increases in group 2. CONCLUSION Untreated HCV patients and also those treated with the standard therapy are coping with a systemic oxidative stress. The antioxidant supplementation conferred an antioxidant protection to both supplemented groups attenuating oxidation processes related to the disease.
Collapse
|
8
|
Ambali SF, Orieji C, Abubakar WO, Shittu M, Kawu MU. Ameliorative effect of vitamin C on alterations in thyroid hormones concentrations induced by subchronic coadministration of chlorpyrifos and lead in wistar rats. J Thyroid Res 2011; 2011:214924. [PMID: 21687644 PMCID: PMC3112502 DOI: 10.4061/2011/214924] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/24/2011] [Accepted: 03/30/2011] [Indexed: 11/20/2022] Open
Abstract
The present study evaluated the ameliorative effect of vitamin C on alteration in thyroid hormones induced by low-dose subchronic coadministration of chlorpyrifos (CPF) and lead (Pb). Forty Wistar rats were divided into 4 groups of 10 animals each. Groups I and II were administered soya oil (2 mL/kg) and vitamin C (100 mg/kg), respectively. Group III was coadministered CPF (4.25 mg/kg ~1/20th LD50) and Pb (250 mg/kg ~1/20th LD50), respectively. Group IV was pretreated with vitamin C (100 mg/kg) and then coadministered with CPF (4.25 mg/kg) and Pb (250 mg/kg), 30 min later. The regimens were administered by gavage for a period of 9 weeks. The marginal decrease in serum triiodothyronine and thyroxine and the significant increase in the concentrations of thyroid stimulating hormone and malonaldehyde in the group coadministered with CPF and Pb were ameliorated by vitamin C partly due to its antioxidant properties.
Collapse
Affiliation(s)
- Suleiman F Ambali
- Department of Veterinary Physiology and Pharmacology, Ahmadu Bello University, Zaria 800007, Nigeria
| | | | | | | | | |
Collapse
|
9
|
Yu X, Guo J, Fang H, Peng S. Basal metallothionein-I/II protects against NMDA-mediated oxidative injury in cortical neuron/astrocyte cultures. Toxicology 2011; 282:16-22. [PMID: 21215786 DOI: 10.1016/j.tox.2010.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 12/24/2010] [Indexed: 10/18/2022]
Abstract
N-Methyl-D-aspartate (NMDA) receptor overactivation-mediated oxidative stress has been proposed to contribute to brain injury. Metallothionein-I/II (MT-I/II), a member of cysteine-rich metalloproteins, has been found to express in the central nervous system primarily in cortical tissues and be upregulated following brain injury. To address the role of MT-I/II on NMDA-mediated oxidative injury, we established primary cortical neuron/astrocyte cultures from neonatal MT-I/II deficient (MT⁻/⁻) and wild type (MT+/+) mice to test whether basal MT-I/II protects cortical cultures against NMDA-mediated injury. We found that MT-I/II expression was increased by NMDA in MT+/+ cultures but was not detectable in MT⁻/⁻ cultures. NMDA concentration-dependently induced oxidative injury in both MT+/+ and MT⁻/⁻ cultures as evidenced by decrease of cell viability, increases of lipid peroxidation and DNA damage. However, these toxic effects were greater in MT⁻/⁻ than MT+/+ cultures. NMDA significantly increased reactive oxygen species (ROS) generation and disrupted mitochondrial membrane potential in neurons in MT+/+ cultures, and these effects were exaggerated in MT⁻/⁻ cultures. Our findings clearly show that basal MT-I/II provides protection against NMDA-mediated oxidative injury in cortical neuron/astrocyte cultures, and suggest that the protective effects are possibly associated with inhibition of ROS generation and preservation of mitochondrial membrane potential.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, 20# Dongdajie Rd, Fengtai District, Beijing 100071, PR China
| | | | | | | |
Collapse
|
10
|
Kiliç GA, Kutlu M. Effects of exogenous metallothionein against thallium-induced oxidative stress in rat liver. Food Chem Toxicol 2010; 48:980-7. [PMID: 20079794 DOI: 10.1016/j.fct.2010.01.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/30/2009] [Accepted: 01/11/2010] [Indexed: 11/26/2022]
Abstract
Metallothionein (MT) is a low-molecular weight sulfur-rich protein that plays role in metal homeostasis/detoxification and radical scavenging. The following study investigated the ability of exogenous MT to protect against oxidative damage induced by thallium (TI) in rat liver. Male Wistar rats were divided into four groups; a control and three experimental groups. The control group received physiological saline. Group 1 animals were injected with thallium acetate intraperitoneally (i.p.) at a single dose of LD(50) (32 mg/kg). In group 2 and group 3, metallothionein I was administrated once at two different doses (1 or 2.5mg/kg i.p., respectively) 1h before TI intoxication. Levels of endogenous antioxidants, oxidative stress markers were measured and histopathological examinations were performed 4 days after TI administration. TI accumulation in liver decreased related to the dose of MT. Mostly all of the alterations in the levels antioxidants restored to normal levels in MT administrated animals. H(2)O(2) levels and lipid peroxidation decreased, integrity of hepatocytes and membranous structures inside the cells were preserved. The toxic effects of TI were modulated in MT administrated animals particularly at the dose of 2.5mg/kg. These findings suggest an active role of exogenous MT against TI-induced oxidative stress in rat liver.
Collapse
Affiliation(s)
- Gözde Aydoğan Kiliç
- Faculty of Science, Department of Biology, Anadolu University, 26470 Eskişehir, Turkey.
| | | |
Collapse
|
11
|
Penkowa M, Sørensen BL, Nielsen SL, Hansen PB. Metallothionein as a useful marker in Hodgkin lymphoma subclassification. Leuk Lymphoma 2009; 50:200-10. [DOI: 10.1080/10428190802699340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Cortese MM, Suschek CV, Wetzel W, Kröncke KD, Kolb-Bachofen V. Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med 2008; 44:2002-12. [PMID: 18355458 DOI: 10.1016/j.freeradbiomed.2008.02.013] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/16/2008] [Indexed: 12/30/2022]
Abstract
Oxidative stress is one of the main causes of vascular disease. This study aims to investigate the antioxidant activity exerted by zinc in primary rat endothelial cells (EC). Using a 24-h treatment with hydrogen peroxide as a model for oxidative stress, we found that zinc supplementation protects from peroxide-induced cell death via increasing the transcription of the catalytic subunit (heavy chain) of glutamate-cysteine ligase (GCLC) and the concentrations of glutathione (GSH). Conversely, zinc depletion significantly decreased the expression of GCLC and the cellular GSH levels, resulting in an increased susceptibility of EC to oxidative stress. Using confocal microscopy and the RNA silencing technique, we found that zinc upregulates the expression of GCLC by activating the transcription factor Nrf2. Surprisingly, the intracellular zinc sensor, metal-responsive transcription factor-1, is not involved in the zinc-induced expression of GCLC. The present study shows that zinc controls the redox state of EC by regulating the de novo synthesis of GSH. This molecular mechanism may contribute to the elaboration of new nutritional and/or pharmaceutical approaches for protecting the endothelium against oxidative stress.
Collapse
Affiliation(s)
- Miriam M Cortese
- Institute of Molecular Medicine, Research Group Immunobiology, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany.
| | | | | | | | | |
Collapse
|
13
|
Formigari A, Santon A, Irato P. Efficacy of zinc treatment against iron-induced toxicity in rat hepatoma cell line H4-II-E-C3. Liver Int 2007; 27:120-127. [PMID: 17241390 DOI: 10.1111/j.1478-3231.2006.01389.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE In this study, we have attempted to explore the possible protection afforded by Zn with regard to its antioxidant potential properties in the iron-induced toxicity. METHODS Rat hepatoma cell line H4-II-E-C3 was treated with 150 muM ZnSO4, 200 muM FeSO4 or 150 muM ZnSO4+ 200 muM FeSO4 for 24 h. We studied the effect of metallothionein (MT), glutathione and metal (Fe and Zn) accumulation. We evaluated the levels of both MT-1 and MT-2 mRNAs, activities of antioxidant enzymes, and also determined the distribution of MT and cell death index. RESULTS The cotreatment produced highest levels of MT. Fe concentration was significantly lower in the Zn-Fe-treated cells compared with Fe-treated cells. In both Zn treatments, the superoxide dismutase/glutathione peroxidase ratio was similar to control. The cell death index was lower in the Zn-Fe-treated cells compared with Fe-treated cells. CONCLUSIONS Zn may act as antioxidant by competitive inhibition of iron uptake by the divalent metal transporter and/or by MT induction.
Collapse
Affiliation(s)
- A Formigari
- Department of Biology, University of Padova, Padova, Italy.
| | | | | |
Collapse
|