1
|
Pereira AR, Campos AS, Matos MJ, Maistro EL. Study of the DNA damage and cell death in human peripheral blood mononuclear and HepG2/C3A cells exposed to the synthetic 3-(3-hydroxyphenyl)-7-hydroxycoumarin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:33-46. [PMID: 37886814 DOI: 10.1080/15287394.2023.2274331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Hydroxycoumarins are an important source of biologically active compounds. Previous studies have shown that the number and position of the hydroxyl substituents in the scaffold play an important role for the observed biological activity. In the present study, 3-(3-hydroxyphenyl)-7-hydroxycoumarin was synthesized, and potential cytogenotoxic effects determined in human HepG2/C3A cells displaying phase 1 and phase 2 enzymes (metabolizing cell ability) and compared to human peripheral blood mononuclear cells (PBMC) without xenobiotics metabolizing capacity. Cell viability was determined with concentrations between 0.01 and 10 µg/ml of 3-(3-hydroxyphenyl)-7-hydroxycoumarin using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) and trypan blue tests. Genotoxicity was determined utilizing the comet assay, and the clastogenic/aneugenic potential employing the micronucleus (MN) test. The results of the in vitro cytotoxicity assays showed a significant decrease in cell viability of PBMC following exposure to 10 µg/ml concentration of the studied compound after 48 and 72 hr. Comet assay observations noted significant DNA damage in PBMC after 4 hr treatment. No marked cytogenotoxic effects were found in HepG2/C3A cells. No chromosomal mutations were observed in both cell lines. It is important to note that 3-(3-hydroxyphenyl)-7-hydroxycoumarin may exert beneficial pharmacological actions at the low micromolar range and with half-life less than 24 hr. Therefore, the results obtained encourage the continuation of studies on this new molecule for medicinal purposes, but its potential toxicity at higher concentrations and longer exposure times needs to be investigated in further studies.
Collapse
Affiliation(s)
- André Rogerio Pereira
- Faculty of Philosophy and Sciences, Speech and Hearing Therapy Department, São Paulo State University - UNESP, Marília, SP, Brazil
| | - Ashley Silva Campos
- Faculty of Philosophy and Sciences, Speech and Hearing Therapy Department, São Paulo State University - UNESP, Marília, SP, Brazil
| | - Maria João Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, Santiago de Compostela, España
| | - Edson Luis Maistro
- Faculty of Philosophy and Sciences, Speech and Hearing Therapy Department, São Paulo State University - UNESP, Marília, SP, Brazil
| |
Collapse
|
2
|
Phytochemical Profiling, Isolation, and Pharmacological Applications of Bioactive Compounds from Insects of the Family Blattidae Together with Related Drug Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248882. [PMID: 36558015 PMCID: PMC9782659 DOI: 10.3390/molecules27248882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
In traditional Chinese medicine (TCM), insects from the family Blattidae have a long history of application, and their related active compounds have excellent pharmacological properties, making them a prominent concern with significant potential for medicinal and healthcare purposes. However, the medicinal potential of the family Blattidae has not been fully exploited, and many problems must be resolved urgently. Therefore, a comprehensive review of its chemical composition, pharmacological activities, current research status, and existing problems is necessary. In order to make the review clearer and more systematic, all the contents were independently elaborated and summarized in a certain sequence. Each part started with introducing the current situation or a framework and then was illustrated with concrete examples. Several pertinent conclusions and outlooks were provided after discussing relevant key issues that emerged in each section. This review focuses on analyzing the current studies and utilization of medicinal insects in the family Blattidae, which is expected to provide meaningful and valuable relevant information for researchers, thereby promoting further exploration and development of lead compounds or bioactive fractions for new drugs from the insects.
Collapse
|
3
|
Dual Topoisomerase I/II Inhibition-Induced Apoptosis and Necro-Apoptosis in Cancer Cells by a Novel Ciprofloxacin Derivative via RIPK1/RIPK3/MLKL Activation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227993. [PMID: 36432094 PMCID: PMC9694631 DOI: 10.3390/molecules27227993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Fluoroquinolones (FQs) are synthetic broad-spectrum antimicrobial agents that have been recently repurposed to anticancer candidates. Designing new derivatives of FQs with different moieties to target DNA topoisomerases could improve their anticancer efficacy. The present study aimed to synthesize a novel ciprofloxacin derivative, examine its anticancer activity against HepG2 and A549 cancer cells, and investigate the possible molecular mechanism underlying this activity by examining its ability to inhibit the topo I/II activity and to induce the apoptotic and necro-apoptotic pathways. Molecular docking, cell viability, cell migration, colony formation, cell cycle, Annexin V, lactate dehydrogenase (LDH) release, ELISA, and western blotting assays were utilized. Molecular docking results showed that this novel ciprofloxacin derivative exerted dual topo I and topo II binding and inhibition. It significantly inhibited the proliferation of A549 and HepG2 cancer cells and decreased their cell migration and colony formation abilities. In addition, it significantly increased the % of apoptotic cells, caused cell cycle arrest at G2/M phase, and elevated the LDH release levels in both cancer cells. Furthermore, it increased the expression of cleaved caspase 3, RIPK1, RIPK3, and MLKL proteins. This novel ciprofloxacin derivative exerted substantial dual inhibition of topo I/II enzyme activities, showed antiproliferative activity, suppressed the cell migration and colony formation abilities for A549 and HepG2 cancer cells and activated the apoptotic pathway. In addition, it initiated another backup deadly pathway, necro-apoptosis, through the activation of the RIPK1/RIPK3/MLKL pathway.
Collapse
|
4
|
Alaaeldin R, Ali FEM, Bekhit AA, Zhao QL, Fathy M. Inhibition of NF-kB/IL-6/JAK2/STAT3 Pathway and Epithelial-Mesenchymal Transition in Breast Cancer Cells by Azilsartan. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227825. [PMID: 36431925 PMCID: PMC9693603 DOI: 10.3390/molecules27227825] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Metastatic breast cancer is an incurable form of breast cancer that exhibits high levels of epithelial-mesenchymal transition (EMT) markers. Angiotensin II has been linked to various signaling pathways involved in tumor cell growth and metastasis. The aim of this study is to investigate, for the first time, the anti-proliferative activity of azilsartan, an angiotensin II receptor blocker, against breast cancer cell lines MCF-7 and MDA-MB-231 at the molecular level. Cell viability, cell cycle, apoptosis, colony formation, and cell migration assays were performed. RT-PCR and western blotting analysis were used to explain the molecular mechanism. Azilsartan significantly decreased the cancer cells survival, induced apoptosis and cell cycle arrest, and inhibited colony formation and cell migration abilities. Furthermore, azilsartan reduced the mRNA levels of NF-kB, TWIST, SNAIL, SLUG and bcl2, and increased the mRNA level of bax. Additionally, azilsartan inhibited the expression of IL-6, JAK2, STAT3, MMP9 and bcl2 proteins, and increased the expression of bax, c-PARP and cleaved caspase 3 protein. Interestingly, it reduced the in vivo metastatic capacity of MDA-MBA-231 breast cancer cells. In conclusion, the present study revealed, for the first time, the anti-proliferative, apoptotic, anti-migration and EMT inhibition activities of azilsartan against breast cancer cells through modulating NF-kB/IL-6/JAK2/STAT3/MMP9, TWIST/SNAIL/SLUG and apoptosis signaling pathways.
Collapse
Affiliation(s)
- Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt
| | - Fares E. M. Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | | | - Qing-Li Zhao
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
- Correspondence: (Q.-L.Z.); (M.F.)
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
- Correspondence: (Q.-L.Z.); (M.F.)
| |
Collapse
|
5
|
Sevastre AS, Manea EV, Popescu OS, Tache DE, Danoiu S, Sfredel V, Tataranu LG, Dricu A. Intracellular Pathways and Mechanisms of Colored Secondary Metabolites in Cancer Therapy. Int J Mol Sci 2022; 23:ijms23179943. [PMID: 36077338 PMCID: PMC9456420 DOI: 10.3390/ijms23179943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
Despite the great advancements made in cancer treatment, there are still many unsatisfied aspects, such as the wide palette of side effects and the drug resistance. There is an obvious increasing scientific attention towards nature and what it can offer the human race. Natural products can be used to treat many diseases, of which some plant products are currently used to treat cancer. Plants produce secondary metabolites for their signaling mechanisms and natural defense. A variety of plant-derived products have shown promising anticancer properties in vitro and in vivo. Rather than recreating the natural production environment, ongoing studies are currently setting various strategies to significantly manipulate the quantity of anticancer molecules in plants. This review focuses on the recently studied secondary metabolite agents that have shown promising anticancer activity, outlining their potential mechanisms of action and pathways.
Collapse
Affiliation(s)
- Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Elena Victoria Manea
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Oana Stefana Popescu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Daniela Elise Tache
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania
- Correspondence: ; Tel.: +40-21-334-30-25
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 200349 Craiova, Romania
| |
Collapse
|
6
|
A New EGFR Inhibitor from Ficus benghalensis Exerted Potential Anti-Inflammatory Activity via Akt/PI3K Pathway Inhibition. Curr Issues Mol Biol 2022; 44:2967-2981. [PMID: 35877429 PMCID: PMC9324879 DOI: 10.3390/cimb44070205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2022] Open
Abstract
Inflammation is a critical defensive mechanism mainly arising due to the production of prostaglandins via cyclooxygenase enzymes. This study aimed to examine the anti-inflammatory activity of fatty acid glucoside (FAG), which is isolated from Ficus benghalensis against lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. The cytotoxic activity of the FAG on RAW 264.7 macrophages was evaluated with an MTT assay. The levels of PGE2 and NO and the activity of iNOS, COX-1, and COX-2 enzymes in LPS-stimulated RAW 264.7 cells were evaluated. The gene expression of IL-6, TNF-α, and PGE2 was investigated by qRT-PCR. The expression of epidermal growth factor receptor (EGFR), Akt, and PI3K proteins was examined using Western blotting analysis. Furthermore, molecular docking of the new FAG against EGFR was investigated. A non-cytotoxic concentration of FAG increased NO release and iNOS activity, inhibited COX-1 and COX-2 activities, and reduced PGE2 levels in LPS-stimulated RAW 264.7 cells. It diminished the expression of TNF-α, IL-6, PGE2, EGFR, Akt, and PI3K. Furthermore, the molecular docking study proposed the potential direct binding of FAG with EGFR with a high affinity. This study showed that FAG is a natural EGFR inhibitor, NO-releasing, and COX-inhibiting anti-inflammatory agent via EGFR/Akt/PI3K pathway inhibition.
Collapse
|
7
|
Bhaskaran ST, Mathew P. Microwave assisted synthesis of functionalized 2H-chromene-2-thiones and 1,2-dithiole-3-thiones from β-oxodithioesters: Characterization, in vitro cytotoxicity and in silico docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Alaaeldin R, Abdel-Rahman IAM, Hassan HA, Youssef N, Allam AE, Abdelwahab SF, Zhao QL, Fathy M. Carpachromene Ameliorates Insulin Resistance in HepG2 Cells via Modulating IR/IRS1/PI3k/Akt/GSK3/FoxO1 Pathway. Molecules 2021; 26:7629. [PMID: 34946711 PMCID: PMC8708443 DOI: 10.3390/molecules26247629] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
Insulin resistance contributes to several disorders including type 2 diabetes and cardiovascular diseases. Carpachromene is a natural active compound that inhibits α-glucosidase enzyme. The aim of the present study is to investigate the potential activity of carpachromene on glucose consumption, metabolism and insulin signalling in a HepG2 cells insulin resistant model. A HepG2 insulin resistant cell model (HepG2/IRM) was established. Cell viability assay of HepG2/IRM cells was performed after carpachromene/metformin treatment. Glucose concentration and glycogen content were determined. Western blot analysis of insulin receptor, IRS1, IRS2, PI3k, Akt, GSK3, FoxO1 proteins after carpachromene treatment was performed. Phosphoenolpyruvate carboxykinase (PEPCK) and hexokinase (HK) enzymes activity was also estimated. Viability of HepG2/IRM cells was over 90% after carpachromene treatment at concentrations 6.3, 10, and 20 µg/mL. Treatment of HepG2/IRM cells with carpachromene decreased glucose concentration in a concentration- and time-dependant manner. In addition, carpachromene increased glycogen content of HepG2/IRM cells. Moreover, carpachromene treatment of HepG2/IRM cells significantly increased the expression of phosphorylated/total ratios of IR, IRS1, PI3K, Akt, GSK3, and FoxO1 proteins. Furthermore, PEPCK enzyme activity was significantly decreased, and HK enzyme activity was significantly increased after carpachromene treatment. The present study examined, for the first time, the potential antidiabetic activity of carpachromene on a biochemical and molecular basis. It increased the expression ratio of insulin receptor and IRS1 which further phosphorylated/activated PI3K/Akt pathway and phosphorylated/inhibited GSK3 and FoxO1 proteins. Our findings revealed that carpachromene showed central molecular regulation of glucose metabolism and insulin signalling via IR/IRS1/ PI3K/Akt/GSK3/FoxO1 pathway.
Collapse
Affiliation(s)
- Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt;
| | - Iman A. M. Abdel-Rahman
- Department of Pharmacognosy, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt;
| | - Heba Ali Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt;
| | - Nancy Youssef
- Department of Clinical Pathology, Faculty of Medicine, Minia University, Minia 61512, Egypt;
| | - Ahmed E. Allam
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Sayed F. Abdelwahab
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Qing-Li Zhao
- Department of Radiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| |
Collapse
|
9
|
Kumar A, Kaushik P, Incerpi S, Pedersen JZ, Goel S, Prasad AK, Rohil V, Parmar VS, Saso L, Len C. Evaluation of the Free Radical Scavenging Activities of Ellagic Acid and Ellagic Acid Peracetate by EPR Spectrometry. Molecules 2021; 26:4800. [PMID: 34443388 PMCID: PMC8399592 DOI: 10.3390/molecules26164800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/25/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to examine the free radical scavenging and antioxidant activities of ellagic acid (EA) and ellagic acid peracetate (EAPA) by measuring their reactions with the radicals, 2,2-diphenyl-1-picrylhydrazyl and galvinoxyl using EPR spectroscopy. We have also evaluated the influence of EA and EAPA on the ROS production in L-6 myoblasts and rat liver microsomal lipid peroxidation catalyzed by NADPH. The results obtained clearly indicated that EA has tremendous ability to scavenge free radicals, even at concentration of 1 µM. Interestingly even in the absence of esterase, EAPA, the acetylated product of EA, was also found to be a good scavenger but at a relatively slower rate. Kinetic studies revealed that both EA and EAPA have ability to scavenge free radicals at the concentrations of 1 µM over extended periods of time. In cellular systems, EA and EAPA were found to have similar potentials for the inhibition of ROS production in L-6 myoblasts and NADPH-dependent catalyzed microsomal lipid peroxidation.
Collapse
Affiliation(s)
- Ajit Kumar
- Department of Chemistry, SRM University, Delhi-NCR, Haryana, 39, RGEC, Sonepat 131 029, India; (A.K.); (P.K.)
- Department of Biochemistry, V. P. Chest Institute, University of Delhi, Delhi 110 007, India; (S.G.); (V.R.)
| | - Preeti Kaushik
- Department of Chemistry, SRM University, Delhi-NCR, Haryana, 39, RGEC, Sonepat 131 029, India; (A.K.); (P.K.)
| | - Sandra Incerpi
- Department of Sciences, University of Rome “Roma Tre”, 00146 Rome, Italy;
| | - Jens Z. Pedersen
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca, Scientifica 1, 00133 Rome, Italy;
| | - Sanjay Goel
- Department of Biochemistry, V. P. Chest Institute, University of Delhi, Delhi 110 007, India; (S.G.); (V.R.)
| | - Ashok K. Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India; (A.K.P.); (V.S.P.)
| | - Vishwajeet Rohil
- Department of Biochemistry, V. P. Chest Institute, University of Delhi, Delhi 110 007, India; (S.G.); (V.R.)
| | - Virinder S. Parmar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi 110 007, India; (A.K.P.); (V.S.P.)
- Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, 1638 Bedford Avenue, Brooklyn, NY 11225, USA
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, P. le. Aldo Moro 5, 00185 Rome, Italy;
| | - Christophe Len
- Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, PSL Research University, CNRS, UMR8060, 11 rue Pierre et Marie Curie, F-75005 Paris, France
| |
Collapse
|
10
|
Alaaeldin R, Mustafa M, Abuo-Rahma GEDA, Fathy M. In vitro inhibition and molecular docking of a new ciprofloxacin-chalcone against SARS-CoV-2 main protease. Fundam Clin Pharmacol 2021; 36:160-170. [PMID: 34268806 PMCID: PMC8444764 DOI: 10.1111/fcp.12708] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
Background/Aim SARS‐CoV‐2 is one of the coronavirus families that emerged at the end of 2019. It infected the respiratory system and caused a pandemic worldwide. Fluoroquinolones (FQs) have been safely used as antibacterial agents for decades. The antiviral activity of FQs was observed. Moreover, substitution on the C‐7 position of ciprofloxacin enhanced its antiviral activity. Therefore, this study aims to investigate the antiviral activity of 7‐(4‐(N‐substituted‐carbamoyl‐methyl)piperazin‐1yl)‐chalcone in comparison with ciprofloxacin against SARS‐CoV‐2 main protease (Mpro). Materials and methods Vero cells were infected with SARS‐CoV‐2. After treatment with ciprofloxacin and the chalcone at the concentrations of 1.6, 16, 160 nmol/L for 48 h, SARS‐CoV‐2 viral load was detected using real‐time qPCR, SARS‐CoV‐2 infectivity was determined using plaque assay, and the main protease enzyme activity was detected using in vitro 3CL‐protease inhibition assay. The activity of the chalcone was justified through molecular docking within SARS‐CoV‐2 Mpro, in comparison with ciprofloxacin. Results The new chalcone significantly inhibited viral load replication where the EC50 was 3.93 nmol/L, the plaque formation ability of the virus was inhibited to 86.8% ± 2.47. The chalcone exhibited a significant inhibitory effect against SARS‐CoV‐2 Mpro in vitro in a dose‐dependent manner. The docking study into SARS‐CoV‐2 Mpro active site justified the importance of adding a substitution to the parent drug. Additionally, the assessment of the drug‐likeness properties indicated that the chalcone might have acceptable ADMET properties. Conclusion The new chalcone might be useful and has new insights for the inhibition of SARS‐CoV‐2 Mpro.
Collapse
Affiliation(s)
- Rania Alaaeldin
- Department of Biochemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Muhamad Mustafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Gamal El-Din A Abuo-Rahma
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt.,Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, Egypt.,Department of Regenerative Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
11
|
Kumar S, Kumar M, Tyagi YK, Kumar S. Inhibition of Amyloid Fibrillation of HEWL by 4-Methylcoumarin and 4-Methylthiocoumarin Derivatives. Curr Pharm Biotechnol 2021; 22:232-244. [PMID: 32933456 DOI: 10.2174/1389201021666200915112849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/28/2020] [Accepted: 07/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Several human diseases like Parkinson's, Alzheimer's disease, and systemic amyloidosis are associated with the misfolding and aggregation of protein molecules. OBJECTIVE The present study demonstrated the comparison of 4-methyl coumarin and 4-methylthiocoumarin derivative for their anti-amyloidogenic and disaggregation activities. The hen egg-white lysozyme is used as a model system to study protein aggregation and disaggregation under in vitro conditions. METHODS Techniques used in the study were Thioflavin T fluorescence assay, intrinsic fluorescence assay, circular dichroism, transmission electron microscopy, and molecular dynamics. RESULTS Fifteen compounds were screened for their anti-amyloidogenic and disaggregation potential. Six compounds significantly inhibited the fibril formation, whereas ten compounds showed disaggregation property of pre-formed fibrils. Under in vitro conditions, the compound C3 and C7 showed significant inhibition of fibril formation in a concentration-dependent manner as compared to control. C3 and C7 demonstrated 93% and 76% inhibition of fibril formation, respectively. Furthermore, C3 and C7 exhibited 83% and 76% disaggregation activity, respectively, of pre-formed HEWL fibrils at their highest concentration. These anti-amyloidogenic and disaggregation potential of C3 and C7 were validated by intrinsic fluorescence, CD, molecular dynamics, and TEM study. DISCUSSION 4-methylthiocoumarins derivatives have shown better anti-amyloidogenic activity as compared to 4-methylcoumarin derivatives for both amyloid formation as well as disaggregation of preformed amyloid fibrils. Structurally, the derivatives of 4-methylthiocoumarins (C3 and C7) contain thio group on 2nd position that might be responsible for anti-amyloidogenic activity as compared to 4- methylcoumarin derivatives (C2 and C4). CONCLUSION C3 and C7 are novel 4-methylthiocoumarin derivatives that can be used as a lead for alleviation and symptoms associated with protein aggregation disorders.
Collapse
Affiliation(s)
- Shivani Kumar
- University School of Biotechnology Guru Gobind Singh Indraprastha University Dwarka, Sector 16C, New Delhi- 110078, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Yogesh K Tyagi
- University School of Basic and Applied Sciences Guru Gobind Singh Indraprastha University Dwarka, Sector 16C, New Delhi- 110078, India
| | - Suresh Kumar
- University School of Biotechnology Guru Gobind Singh Indraprastha University Dwarka, Sector 16C, New Delhi- 110078, India
| |
Collapse
|
12
|
Kumar S, Tyagi YK, Kumar M, Kumar S. Synthesis of novel 4-methylthiocoumarin and comparison with conventional coumarin derivative as a multi-target-directed ligand in Alzheimer's disease. 3 Biotech 2020; 10:509. [PMID: 33184595 PMCID: PMC7644673 DOI: 10.1007/s13205-020-02481-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disorder characterized by cognitive deficit and memory loss. The pathological feature of the disease involves β-amyloid senile plaques, reduced levels of acetylcholine neurotransmitter, oxidative stress and neurofibrillary tangles formation within the brain of AD patients. The present study aims to screen the inhibitory activity of newly synthesized and existing novel 4-methylthiocoumarin derivative against acetylcholinesterase, butyrylcholinesterase, BACE1, β-amyloid aggregation and oxidative stress involved in the AD pathogenesis. The in vitro assays used in this study were Ellman's assay, FRET assays, Thioflavin T, transmission electron microscopy, circular dichroism, FRAP, and TEAC. Molecular docking and dynamics studies were performed to correlate the results. C3 and C7 (thiocoumarin derivatives) were found to be the most potent inhibitors of acetylcholinesterase (IC50-5.63 µM) and butyrylcholinesterase (IC50-3.40 µM) using Ellman's assays. Enzyme kinetic studies showed that C3 and C7 compounds followed by the mixed mode of inhibition using LB plot. C3 also moderately inhibited the BACE1 using FRET assay. C3 inhibited the fibrillization of β-amyloid peptides in a concentration-dependent manner as observed by Thioflavin T, TEM studies and Circular dichroism data. Molecular modeling studies were performed to understand the probable mode of binding of C3 and C7 in the binding pocket of acetylcholinesterase, butyrylcholinesterase, BACE1 and amyloid β peptides. This indicates the important role of hydrophobic interactions between C3 and acetylcholinesterase. C3 also exhibited significant antioxidant potential by FRAP and TEAC assays. Hence, C3 might serve as a promising lead for developing novel multi target-directed ligand for the treatment of AD.
Collapse
Affiliation(s)
- Shivani Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Sector 16C, New Delhi, 110078 India
| | - Yogesh Kumar Tyagi
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, Sector 16C, New Delhi, 110078 India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Suresh Kumar
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, Sector 16C, New Delhi, 110078 India
| |
Collapse
|
13
|
Chaudhary D, Pramanik T, Santra S. Thiocoumarins and Dithiocoumarins: Advances in Synthesis and Pharmacological Activity. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200812132707] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Thiocoumarins and dithiocoumarins are two important classes of sulphurcontaining
heterocyclic compounds, which are bioisosteres of coumarins. Herein, various
synthetic strategies for these two classes of heterocyclic compounds reported in the literature
have been discussed. Different solvents, catalysts, reagents and reaction conditions,
which were employed successfully for synthesizing thiocoumarins and dithiocoumarins
have also been described concisely in this review. Mechanistic overview has been given
wherever it was necessary. In addition, a comparative view of various solvents, catalysts
and reagents focusing on their efficiency for synthesizing thiocoumarins and dithiocoumarins,
has been discussed as well. Furthermore, pharmacological activities of these two
classes of compounds have also been discussed.
Collapse
Affiliation(s)
- Diksha Chaudhary
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Tanay Pramanik
- Department of Chemistry, University of Engineering and Management, University Area, Action Area III, B/5, Newtown, Kolkata, West Bengal - 700160, India
| | - Soumava Santra
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
14
|
Maleki EH, Bahrami AR, Sadeghian H, Matin MM. Discovering the structure-activity relationships of different O-prenylated coumarin derivatives as effective anticancer agents in human cervical cancer cells. Toxicol In Vitro 2019; 63:104745. [PMID: 31830504 DOI: 10.1016/j.tiv.2019.104745] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/24/2019] [Accepted: 12/09/2019] [Indexed: 12/24/2022]
Abstract
Cervical cancer remains one of the greatest life threatening diseases for women worldwide. Although chemotherapy is considered as a standard treatment for advanced cervical cancers, there are still some drawbacks in this procedure including side effects and acquired drug resistance, which necessitate further research on development of more effective agents with less side effects. Among natural compounds, coumarin derivatives have shown anticancer properties on various cancerous cells and coumarin ring has proven to have a paramount role in development of anticancer drugs. Here, we aimed to establish the structure-activity relationships of eighteen O-prenylated coumarin derivatives and determined their anticancer properties on HeLa cervical cancer and HDF normal cells by MTT assay. Moreover, the mechanism of cell death induced by these compounds and their effects on cell cycle were studied using flow cytometry. MTT results indicated that twelve O-prenylated coumarin derivatives exhibited selective toxicity on HeLa cells, while they had no significant toxic effects on normal cells. Besides, flow cytometric analyses, showed that the selected compounds induced apoptosis in HeLa cells, and could also result to G1 cell cycle arrest. In conclusion, analyzing structural-activity relationships revealed that a prenylation substitution at position 6 of the coumarin ring greatly improved anticancer properties of these agents. As these derivatives exerted their cytotoxic effects via apoptosis and were not toxic on normal cells, they can be considered as effective anticancer agents for further preclinical experiments.
Collapse
Affiliation(s)
- Ebrahim H Maleki
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Hamid Sadeghian
- Neurogenic Inflammation Research Center, Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran.
| |
Collapse
|
15
|
Corton JC, Witt KL, Yauk CL. Identification of p53 Activators in a Human Microarray Compendium. Chem Res Toxicol 2019; 32:1748-1759. [PMID: 31397557 DOI: 10.1021/acs.chemrestox.9b00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biomarkers predictive of molecular and toxicological effects are needed to interpret emerging high-throughput transcriptomic data streams. The previously characterized 63 gene TGx-DDI biomarker that includes 20 genes known to be regulated by p53 was previously shown to accurately predict DNA damage in chemically treated cells. We comprehensively evaluated whether the molecular basis of the DDI predictions was based on a p53-dependent response. The biomarker was compared to microarray data in a compendium derived from human cells using the Running Fisher test, a nonparametric correlation test. Using the biomarker, we identified conditions that led to p53 activation, including exposure to the chemical nutlin-3 which disrupts interactions between p53 and the negative regulator MDM2 or by knockdown of MDM2. The expression of most of the genes in the biomarker (75%) were found to depend on p53 activation status based on gene behavior after TP53 overexpression or knockdown. The biomarker identified DDI chemicals that were strong inducers of p53 in wild-type cells; these p53 responses were decreased or abolished in cells after p53 knockdown by siRNAs. Using the biomarker, we screened ∼1950 chemicals in ∼9800 human cell line chemical vs control comparisons and identified ∼100 chemicals that caused p53 activation. Among the positive chemicals were many that are known to activate p53 through direct and indirect DNA damaging mechanisms. These results contribute to the evidence that the TGx-DDI biomarker is useful for identifying chemicals that cause DDI and activate p53.
Collapse
Affiliation(s)
- J Christopher Corton
- Integrated Systems Toxicology Division, NHEERL , United States Environmental Protection Agency , Research Triangle Park, Durham , North Carolina 27711 , United States
| | - Kristine L Witt
- Division of the National Toxicology Program , National Institute of Environmental Health Sciences , Research Triangle Park, Durham , North Carolina 27709 , United States
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada , Ottawa , Ontario K1A 0K9 , Canada
| |
Collapse
|
16
|
Wang B, Cai Y, Kong Y, Li X, Fu H, Zhang S, Zhang T. Analysis of the role of DAMTC in lung adenocarcinoma cells based on the DNA microarrays. Oncol Lett 2019; 17:4787-4794. [PMID: 31186684 PMCID: PMC6507315 DOI: 10.3892/ol.2019.10146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 01/21/2019] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of 7, 8-diacetoxy-4-methylcoumarin (DAMTC) on lung adenocarcinoma cells (A549) and analyze the molecular mechanism underlying DAMTC-treated lung adenocarcinoma. Gene expression profile GSE29698 was downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) in 3 DAMTC-treated A549 samples were analyzed and compared with 3 DAMTC-untreated samples using the limma package. Gene Ontology (GO) and pathway enrichment analyses of DEGs were performed, followed by the functional annotation and protein-protein interaction (PPI) network construction. Finally, pathway crosstalk analysis was conducted. A total of 500 upregulated and 389 downregulated DEGs were identified. The upregulated and downregulated DEGs were enriched in different GO terms and pathways, including metabolic process, p53 signaling pathway and metabolic pathways. A total of 9 DEGs were determined to have node degrees >16 in the PPI network, including interleukin 6 (IL6), MDM2 oncogene, E3 ubiquitin protein ligase (MDM2), cell division cycle 42 (CDC42) and MYC associated factor X (MAX). Furthermore, numerous DEGs were identified to function as transcription factors and tumor suppressor genes, including histone deacetylase 3 and MAX. Additionally, apoptosis, tight junction, and endocytosis pathway were determined to cross-talk with small cell and non-small cell lung cancer. The DEGs (IL6, MDM2, CDC42 and MAX) involved in different pathways, including the p53 signaling pathway and endocytosis, may be the potential targets for DAMTC in lung adenocarcinoma. The elucidation of the underlying mechanism of the DAMTC effect may make it a potential drug.
Collapse
Affiliation(s)
- Binliang Wang
- Respiratory Medicine Department, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| | - Yuanyuan Cai
- Respiratory Medicine Department, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| | - Yiming Kong
- Respiratory Medicine Department, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| | - Xiaobo Li
- Respiratory Medicine Department, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| | - Haiwei Fu
- Respiratory Medicine Department, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| | - Song Zhang
- Respiratory Medicine Department, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| | - Tianwei Zhang
- Respiratory Medicine Department, Taizhou First People's Hospital, Taizhou, Zhejiang 318020, P.R. China
| |
Collapse
|
17
|
Musa MA, Gbadebo AJ, Latinwo LM, Badisa VL. 7,8-Dihydroxy-3-(4-nitrophenyl)coumarin induces cell death via reactive oxygen species-independent S-phase cell arrest. J Biochem Mol Toxicol 2018; 32:e22203. [PMID: 30368977 DOI: 10.1002/jbt.22203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 07/06/2018] [Accepted: 07/06/2018] [Indexed: 11/09/2022]
Abstract
We herein report the synthesis and in vitro cytotoxicity of 3-arylcoumarin derivatives (6a-f and 7a-f) in human liver (HepG2), prostate (LNCap), and pancreatic (BxPC3) cancer cell lines. Among the tested compounds, 7,8-dihydroxy-3-(4-nitrophenyl) coumarin (7b) showed the highest cytotoxicity in the HepG2 cell line. The mechanism of cytotoxic action indicated that compound (7b) arrested HepG2 cells at the S phase of the cell cycle progression, induced loss of mitochondrial membrane potential, and caused reactive oxygen species (ROS)-independent cell death. The cell viability result of pretreated HepG2 cells with antioxidant N-acetylcysteine followed by compound (7b) treatment and the free radical scavenging activities of compound (7b) confirmed the ROS-independent cell death. These results demonstrate that compound (7b) could serve as a valuable template for the development of novel synthetic compounds as potential anticancer agents for hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Musiliyu A Musa
- Department of Chemistry, Florida A&M University, Tallahassee, Florida
| | - Akintunde J Gbadebo
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida
| | - Lekan M Latinwo
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida
| | - Veera Ld Badisa
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida
| |
Collapse
|
18
|
Revankar HM, Bukhari SNA, Kumar GB, Qin HL. Coumarins scaffolds as COX inhibitors. Bioorg Chem 2017; 71:146-159. [DOI: 10.1016/j.bioorg.2017.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/22/2017] [Accepted: 02/06/2017] [Indexed: 12/30/2022]
|
19
|
Zhao ZF, Wang K, Guo FF, Lu H. Inhibition of T24 and RT4 Human Bladder Cancer Cell Lines by Heterocyclic Molecules. Med Sci Monit 2017; 23:1156-1164. [PMID: 28260746 PMCID: PMC5352006 DOI: 10.12659/msm.898265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Bladder cancer is a major widespread tumor of the genitourinary tract. Around 30% of patients with superficial cancers develop invasive and metastatic pathology. Material/Methods Some new heterocyclic 4-methyl coumarin derivatives were designed using molecular modeling studies to evaluate their potential against bladder cancer lines T24 and RT-4. The designed compounds that showed good binding affinity to T24 and RT4 were synthesized, with excellent yield. The synthesized compounds after structural evaluation were further evaluated for their antiproliferative activity by cell viability assay, cell cycle analysis, and apoptosis assay. Results The compound BC-14 exhibited the best cytotoxicity against T24 cells, but were not highly active against RT4 cells. Conclusions The results of the present study may suggest the selectivity pattern of the synthesized compounds. These results should be explored further with chemical modification for other cancer types.
Collapse
Affiliation(s)
- Zhi-Feng Zhao
- Department of Urinary Surgery, Linyi People's Hospital, Linyi, Shandong, China (mainland)
| | - Kai Wang
- Department of Urinary Surgery, Linyi People's Hospital, Linyi, Shandong, China (mainland)
| | - Feng-Fu Guo
- Department of Urinary Surgery, Linyi People's Hospital, Linyi, Shandong, China (mainland)
| | - Hua Lu
- Department of Urinary Surgery, Linyi People's Hospital, Linyi, Shandong, China (mainland)
| |
Collapse
|
20
|
|
21
|
Transition metal oxide nanoparticles are effective in inhibiting lung cancer cell survival in the hypoxic tumor microenvironment. Chem Biol Interact 2016; 254:221-30. [DOI: 10.1016/j.cbi.2016.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/05/2016] [Accepted: 06/03/2016] [Indexed: 01/27/2023]
|
22
|
Rashidi M, Ziai SA, Moini Zanjani T, Khalilnezhad A, Jamshidi H, Amani D. Umbelliprenin is Potentially Toxic Against the HT29, CT26, MCF-7, 4T1, A172, and GL26 Cell Lines, Potentially Harmful Against Bone Marrow-Derived Stem Cells, and Non-Toxic Against Peripheral Blood Mononuclear Cells. IRANIAN RED CRESCENT MEDICAL JOURNAL 2016; 18:e35167. [PMID: 27703798 PMCID: PMC5027671 DOI: 10.5812/ircmj.35167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 01/24/2016] [Accepted: 02/21/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Resistance to chemotherapy is a growing concern, thus natural anticancer agents are drawing the attention of many scientists and clinicians. One natural anticancer agent, umbelliprenin, is a coumarin produced by many species of Ferula. OBJECTIVES We aimed to examine the inhibitory effect of umbelliprenin on human and mouse bone marrow-derived stem cells (BMDSCs), peripheral blood mononuclear cells (PBMCs), and different cancer cell lines. MATERIALS AND METHODS In this in vitro experimental study, the HT29, CT26, MCF-7, 4T1, A172, and GL26 cancer cells and human and mouse BMDSCs and PBMCs were cultured in RPMI-1640 medium supplemented with 10% fetal bovine serum (FBS), incubated at 37°C for 24 hours in a 5% CO2 atmosphere, and then were treated with different concentrations of umbelliprenin dissolved in dimethyl sulfoxide (DMSO) (3, 6, 12, 25, 50, 100, and 200 µg/mL) for 24, 48, and 72 hours at 37°C. Each experiment was performed in triplicate. Finally, the cell survival rate was assessed by MTT assay. The IC50 values were calculated based on the log values using GraphPad Prism version 5 software for windows (La Jolla CA, USA) and were expressed as mean ± SEM. RESULTS Umbelliprenin inhibited the cancer cells in a concentration-dependent (P < 0.05) but not time-dependent manner (P > 0.05). The most sensitive and resistant cell lines at the 24-hour incubation time were 4T1 (IC50, 30.9 ± 3.1 µg/mL) and A172 (IC50, 51.9 ± 6.7 µg/mL); at the 48-hour incubation time: 4T1 (IC50, 30.6 ± 2.6 µg/mL) and CT26 (IC50, 53.2 ± 3.6 µg/mL); and at the 72-hour incubation time: HT29 (IC50, 37.1 ± 1.4 µg/mL) and 4T1 (IC50, 62.2 ± 4.8 µg/mL). Both human and mouse BMDSCs showed the highest resistance at the 24-hour incubation time (IC50s, 254.7 ± 21 and 204.4 ± 4.5 µg/mL, respectively) and the highest sensitivity at the 72-hour incubation time (IC50s, 120.4 ± 5 and 159.0 ± 7.3 µg/mL, respectively). The PBMCs of both human and mouse origin revealed very strong resistance to the studied concentrations of umbelliprenin (IC50s ranging from 713.5 ± 499.1 to 6651 ± 3670.7 µg/mL). CONCLUSIONS Our findings indicate that umbelliprenin exhibits concentration-dependent inhibitory effects on various cell types; it is potentially toxic against the HT29, CT26, MCF-7, 4T1, A172, and GL26 cell lines, potentially harmful against BMDSCs, and non-toxic against PBMCs. Therefore, if our results are approved in the future, umbelliprenin can be an appropriate candidate for developing treatments against different cancers.
Collapse
Affiliation(s)
- Mohsen Rashidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Seyed Ali Ziai
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Taraneh Moini Zanjani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Ahad Khalilnezhad
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Hamidreza Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Davar Amani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
23
|
Soto-Nuñez M, Díaz-Morales KA, Cuautle-Rodríguez P, Torres-Flores V, López-González JS, Mandoki-Weitzner JJ, Molina-Guarneros JA. Single-cell microinjection assay indicates that 7-hydroxycoumarin induces rapid activation of caspase-3 in A549 cancer cells. Exp Ther Med 2015; 10:1789-1795. [PMID: 26640551 PMCID: PMC4665690 DOI: 10.3892/etm.2015.2765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 09/01/2015] [Indexed: 01/06/2023] Open
Abstract
Coumarins have attracted intense interest in recent years due to their apoptogenic effects. The aim of the present study was to determine whether 7-hydroxycoumarin (7-HC) induces changes in caspase-3 (C-3) activity in A549 human lung carcinoma cells. A range of analytical techniques, including colorimetric and fluorometric assays, western blotting, single-cell microinjection, fluorescence microscopy and image analysis were conducted to elucidate the effects of 7-HC. A 24-h exposure to 1.85 mM 7-HC induced a 65% increase in C-3 activity, and a notable conversion of procaspase-3 to C-3, in addition to poly(ADP-ribose)polymerase cleavage. Furthermore, morphological changes associated with apoptosis were observed. Exposure of the cells to 7-HC for 3 or 6 h increased calcium conductance by 27%. By performing the single-cell microinjection of a specific fluorescent substrate of C-3 into previously 7-HC-exposed cells, a typical enzymatic kinetic profile of C-3 activation was identified a number of hours prior to the morphological and biochemical changes associated with apoptosis being observed. These results suggest that the rapid in vivo activation of C-3 is induced by 7-HC, the most relevant biotransformation product of coumarin in humans.
Collapse
Affiliation(s)
- Maribel Soto-Nuñez
- Department of Pharmacology, School of Medicine, National University of Mexico, Mexico City 04510, Mexico
| | - Karen Azucena Díaz-Morales
- Department of Pharmacology, School of Medicine, National University of Mexico, Mexico City 04510, Mexico
| | | | - Víctor Torres-Flores
- Department of Pharmacology, School of Medicine, National University of Mexico, Mexico City 04510, Mexico
| | - José Sullivan López-González
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases 'Ismael Cosio Villegas', Mexican Ministry of Health, Mexico City 14080, Mexico
| | - Juan José Mandoki-Weitzner
- Department of Pharmacology, School of Medicine, National University of Mexico, Mexico City 04510, Mexico
| | | |
Collapse
|
24
|
Yadav V, Varshney P, Sultana S, Yadav J, Saini N. Moxifloxacin and ciprofloxacin induces S-phase arrest and augments apoptotic effects of cisplatin in human pancreatic cancer cells via ERK activation. BMC Cancer 2015; 15:581. [PMID: 26260159 PMCID: PMC4531397 DOI: 10.1186/s12885-015-1560-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023] Open
Abstract
Background Pancreatic cancer, one of the most dreadful gastrointestinal tract malignancies, with the current chemotherapeutic drugs has posed a major impediment owing to poor prognosis and chemo-resistance thereby suggesting critical need for additional drugs as therapeutics in combating the situation. Fluoroquinolones have shown promising and significant anti-tumor effects on several carcinoma cell lines. Methods Previously, we reported growth inhibitory effects of fourth generation fluoroquinolone Gatifloxacin, while in the current study we have investigated the anti-proliferative and apoptosis-inducing mechanism of older generation fluoroquinolones Moxifloxacin and Ciprofloxacin on the pancreatic cancer cell-lines MIA PaCa-2 and Panc-1. Cytotoxicity was measured by MTT assay. Apoptosis induction was evaluated using annexin assay, cell cycle assay and activation of caspase-3, 8, 9 were measured by western blotting and enzyme activity assay. Results Herein, we found that both the fluoroquinolones suppressed the proliferation of pancreatic cancer cells by causing S-phase arrest and apoptosis. Blockade in S-phase of cell cycle was associated with decrease in the levels of p27, p21, CDK2, cyclin-A and cyclin-E. Herein we also observed triggering of extrinsic as well as intrinsic mitochondrial apoptotic pathway as suggested by the activation of caspase-8, 9, 3, and Bid respectively. All this was accompanied by downregulation of antiapoptotic protein Bcl-xL and upregulation of proapoptotic protein Bak. Our results strongly suggest the role of extracellular-signal-regulated kinases (ERK1/2), but not p53, p38 and c-JUN N-terminal kinase (JNK) in fluoroquinolone induced growth inhibitory effects in both the cell lines. Additionally, we also found both the fluoroquinolones to augment the apoptotic effects of broad spectrum anticancer drug Cisplatin via ERK. Conclusion The fact that these fluoroquinolones synergize the effect of cisplatin opens new insight into therapeutic index in treatment of pancreatic cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1560-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vikas Yadav
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India. .,Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India.
| | - Pallavi Varshney
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India.
| | - Sarwat Sultana
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India.
| | - Jyoti Yadav
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India.
| | - Neeru Saini
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi, India.
| |
Collapse
|
25
|
Miri R, Nejati M, Saso L, Khakdan F, Parshad B, Mathur D, Parmar VS, Bracke ME, Prasad AK, Sharma SK, Firuzi O. Structure-activity relationship studies of 4-methylcoumarin derivatives as anticancer agents. PHARMACEUTICAL BIOLOGY 2015; 54:105-10. [PMID: 26017566 DOI: 10.3109/13880209.2015.1016183] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CONTEXT Cancer is a leading cause of death worldwide and novel chemotherapeutic agents with better efficacy and safety profiles are much needed. Coumarins are natural polyphenolic compounds with important pharmacological activities, which are present in many dietary plants and herbal remedies. OBJECTIVES The objective of this study is to investigate natural and synthetic coumarin derivatives with considerable anticancer capacity against three human cancer cell lines. MATERIALS AND METHODS We synthesized 27 coumarin derivatives (mostly having 4-methyl moiety) and examined their cytotoxic effect on three human cancer cell lines, K562 (chronic myelogenous leukemia), LS180 (colon adenocarcinoma), and MCF-7 (breast adenocarcinoma) by MTT reduction assay. Screened compounds included 7-hydroxy-4-methylcoumarins (7-HMCs), 7-acetoxy-4-methylcoumarins (7-AMCs), and different dihydroxy-4-methylcoumarin (DHMC) and diacetoxy-4-methylcoumarin (DAMC) derivatives. Some compounds with methoxy, amine, and bromine substitutions were also examined. RESULTS 7,8-DHMCs bearing alkyl groups at C3 position were the most effective subgroup, and of which, the most potent is compound 11, with an n-decyl chain at C3, which had IC50 values of 42.4, 25.2, and 25.1 µM against K562, LS180, and MCF-7 cells, respectively. The second most active subgroup was 7,8-DAMCs containing ethoxycarbonylmethyl and ethoxycarbonylethyl moieties at C3 position. Compound 27 (6-bromo-4-bromomethyl-7-hydroxycoumarin), the only derivative containing bromine also showed reasonable cytotoxic activities (IC50 range: 32.7-45.8 µM). DISCUSSION AND CONCLUSION This structure-activity relationship (SAR) study of 4-methylcoumarins shows that further investigation of these derivatives may lead to the discovery of novel anticancer agents.
Collapse
Affiliation(s)
- Ramin Miri
- a Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Maryam Nejati
- a Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Luciano Saso
- b Department of Physiology and Pharmacology "Vittorio Erspamer" , Sapienza University of Rome , Rome , Italy
| | - Fatemeh Khakdan
- a Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Badri Parshad
- c Bioorganic Laboratory, Department of Chemistry , University of Delhi , Delhi , India , and
| | - Divya Mathur
- c Bioorganic Laboratory, Department of Chemistry , University of Delhi , Delhi , India , and
| | - Virinder S Parmar
- c Bioorganic Laboratory, Department of Chemistry , University of Delhi , Delhi , India , and
- d Laboratory of Experimental Cancer Research , University Hospital, University of Gent , Gent , Belgium
| | - Marc E Bracke
- d Laboratory of Experimental Cancer Research , University Hospital, University of Gent , Gent , Belgium
| | - Ashok K Prasad
- c Bioorganic Laboratory, Department of Chemistry , University of Delhi , Delhi , India , and
| | - Sunil K Sharma
- c Bioorganic Laboratory, Department of Chemistry , University of Delhi , Delhi , India , and
| | - Omidreza Firuzi
- a Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
26
|
Marzaro G, Lampronti I, Borgatti M, Manzini P, Gambari R, Chilin A. Psoralen derivatives as inhibitors of NF-κB interaction: the critical role of the furan ring. Mol Divers 2015; 19:551-61. [PMID: 25869956 DOI: 10.1007/s11030-015-9586-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 03/21/2015] [Indexed: 12/26/2022]
Abstract
Simplified analogues of previously reported NF-κB interaction inhibitors, lacking the furan moiety, were synthesized and evaluated by performing experiments based on electrophoretic mobility shift assay (EMSA). The synthetic modifications led to simpler coumarin derivatives with lower activity allowing to better understand the minimal structural requirement for the binding to NF-κB.
Collapse
Affiliation(s)
- Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Hejchman E, Taciak P, Kowalski S, Maciejewska D, Czajkowska A, Borowska J, Śladowski D, Młynarczuk-Biały I. Synthesis and anticancer activity of 7-hydroxycoumarinyl gallates. Pharmacol Rep 2015; 67:236-44. [DOI: 10.1016/j.pharep.2014.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 12/24/2022]
|
28
|
Li L, Zhao P, Hu J, Liu J, Liu Y, Wang Z, Xia Y, Dai Y, Chen L. Synthesis, in vitro and in vivo antitumor activity of scopoletin-cinnamic acid hybrids. Eur J Med Chem 2015; 93:300-7. [PMID: 25703298 DOI: 10.1016/j.ejmech.2015.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 01/19/2015] [Accepted: 01/20/2015] [Indexed: 02/04/2023]
Abstract
A series of hybrids of scopoletin and substituted cinnamic acid were designed, synthesized and evaluated in vitro and in vivo against five human tumor cell lines [MCF-7, MDA-MB-231, A549, HCT-116, and HeLa] with doxorubicin as the positive control. Compounds 17a, 17b, 17c and 17g exhibited potent cytotoxic activity. Especially, compound 17b displayed broad spectrum activity with IC50 values ranging from 0.249 μM to 0.684 μM. Moreover, in a preliminary pharmacological study, 17b not only remarkably induced cellular apoptosis, but also clearly induced A549 cells cycle arrest at S phase. In vivo study showed that 17b significantly suppressed tumor growth in a dose-dependent manner without causing the loss of the mean body weight of mice, which was superior to doxorubicin. These preliminary results indicate that 17b is an optimal anti-cancer leading compound and merit further structural modification.
Collapse
Affiliation(s)
- Linhu Li
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Peng Zhao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jinglin Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Jinhong Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yan Liu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Zhiqiang Wang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yufeng Xia
- Department of Chinese Materia Medica Analysis, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Li Chen
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
29
|
Vianna DR, Ruschel L, Dietrich F, Figueiró F, Morrone FB, Canto RFS, Corvello F, Velho A, Crestani A, Teixeira H, von Poser GL, Battastini AMO, Eifler-Lima VL. 4-Methylcoumarins with cytotoxic activity against T24 and RT4 human bladder cancer cell lines. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00039d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
4-Methylcoumarins were synthesized by microwave-assisted synthesis via Pechmann condensation and their cytotoxic activity against human bladder cancer cell lines was investigated.
Collapse
|
30
|
Dubey R, Saini N. STAT6 silencing up-regulates cholesterol synthesis via miR-197/FOXJ2 axis and induces ER stress-mediated apoptosis in lung cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:32-43. [PMID: 25451482 DOI: 10.1016/j.bbagrm.2014.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 01/06/2023]
Abstract
MiRNAs and transcription factors have emerged as important regulators for gene expression and are known to regulate various biological processes, including cell proliferation, differentiation and apoptosis. Previously, using genome-wide expression profiling studies, we have shown an inverse relationship of STAT6 and cholesterol biosynthesis and also identified FOXJ2 binding sites in the upstream region of 3 key genes (HMGCR, HMGCS1 and IDI1) of the cholesterol synthesis pathway. Our previous study also provided clues toward the anti-apoptotic role played by STAT6. For better understanding of the cellular response and underlying signaling pathways activated by STAT6 silencing, we examined the changes in miRNome profile after the siRNA-mediated silencing of STAT6 gene in NCI-H460 cells using LNA-based miRNA microarray. Our analysis showed significant downregulation of miRNAs, let-7b and miR-197, out of which miR-197 was predicted to target FOXJ2. We here show that miR-197 not only negatively regulates FOXJ2 expression through direct binding to its respective binding site in its 3'UTR but also alters total cholesterol levels by regulating genes associated with cholesterol biosynthesis pathway. We further demonstrated that STAT6 silencing elicited ER stress-mediated apoptosis in NCI-H460 cells through C/EBP homologous protein (CHOP) induction, alteration of BH3 only proteins expression and ROS production. The apoptosis induced by STAT6 downregulation was partially reversed by NAC, the ROS scavenger. Based on the above findings, we suggest that ER stress plays a major role in STAT6-induced apoptosis.
Collapse
Affiliation(s)
- Richa Dubey
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi-110007, India
| | - Neeru Saini
- Functional Genomics Unit, Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi-110007, India.
| |
Collapse
|
31
|
Talhi O, Schnekenburger M, Panning J, Pinto DG, Fernandes JA, Almeida Paz FA, Jacob C, Diederich M, Silva AM. Bis(4-hydroxy-2H-chromen-2-one): Synthesis and effects on leukemic cell lines proliferation and NF-κB regulation. Bioorg Med Chem 2014; 22:3008-15. [DOI: 10.1016/j.bmc.2014.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 01/24/2023]
|
32
|
Ballazhi L, Imeri F, Dimovski A, Jashari A, Popovski E, Breznica-Selmani P, Mikhova B, Dräger G, Alili-Idrizi E, Mladenovska K. Synergy of novel coumarin derivatives and tamoxifen in blocking growth and inducing apoptosis of breast cancer cells. ACTA ACUST UNITED AC 2014. [DOI: 10.33320/maced.pharm.bull.2014.60.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Possible synergistic effect of tamoxifen (2 μM) and hydrazinyldiene-chroman-2,4-diones (10-100 μM) was examined with an aim to create more effective treatment for ER+ breast cancer. Anti-breast cancer effect has been evaluated on the proliferation of MCF-7 breast adenocarcinoma cells using MTT and alamarBlue assays. Cell viability was evaluated after 48h-treatment and the ICs50 of the coumarin derivatives were determined. The apoptotic effect was evaluated by detection of PARP cleavage and reduced activity of the survival kinase Akt. The results demonstrated dose-dependent activity, with a percent of growth inhibition after combination treatment being significantly higher (53% to 79%, 10 μM and 100 μM, respectively) than the one in the cell lines treated with tamoxifen (29% to 37%) and the synthesized coumarin derivatives alone (11% to 68%, 10 μM and 100 μM, respectively). The ICs50 of the synthesized compounds significantly decreased in synergy with tamoxifen (33% to 51%). Coumarin derivative having thiazole moiety with additional methyl groups attached
to the carbons at positions 5 and 4 in the thiazole ring showed to be the most potent, with IC50 20 µM when administered alone and 10 µM in synergy with tamoxifen. The levels of phospho-Thr308 Akt were down-regulated by the combination treatment, pointing to tyrosine kinase phosphorylation inhibition. In conclusion, the novel coumarin derivatives enhance the activity of tamoxifen and this combination may
be suitable for prevention of ER+ breast cancer or development of related compounds. Further studies are needed to elucidate precisely the type of receptor involved in the activity and the mechanism of action.
Collapse
|
33
|
Pharmacodynamic study of the 7,8-dihydroxy-4-methylcoumarin-induced selective cytotoxicity toward U-937 leukemic cells versus mature monocytes: cytoplasmic p21(Cip1/WAF1) as resistance factor. Biochem Pharmacol 2013; 86:210-21. [PMID: 23665351 DOI: 10.1016/j.bcp.2013.04.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/20/2013] [Accepted: 04/23/2013] [Indexed: 01/04/2023]
Abstract
The development of tumor-selective drugs with low systemic toxicity has always been a major challenge in cancer treatment. Our group previously identified the 7,8-dihydroxy-4-methylcoumarin (DHMC) as a potential chemotherapeutic agent due to its potent, selective anti-proliferative and apoptosis-inducing effects on several cancer cell lines over peripheral blood mononuclear cells. However, there are still no published reports that can explain such selectivity of action. Herein, we addressed this question by using the U-937 promonocytic leukemia cell line, which can be forced to differentiate into a monocyte-like phenotype in vitro. U-937 cells differentiation is dependent on the nuclear expression of p21(Cip1/WAF1), a protein that is absent in immature U-937 cells but present in both the nucleus and the cytoplasm of normal DHMC-resistant monocytes. Considering that induction of differentiation rendered U-937 cells resistant to DHMC, we evaluated the possible causal role of cytoplasmic p21(Cip1/WAF1) in the onset of such resistance by employing U-937 cells stably transfected with a ZnCl2-inducible p21(Cip1/WAF1) variant lacking the nuclear localization signal (U-937/CB6-ΔNLS-p21 cells). Expression of cytoplasmic p21(Cip1/WAF1) did not induce differentiation of the cells but turned them resistant to DHMC through inhibition of JNK, a crucial mediator of DHMC-induced apoptosis in U-937 cells. Sub-acute toxicity evaluation of DHMC in Balb/c mice indicated that DHMC administered intraperitoneally at doses up to 100mg/kg induced no systemic damage. Collectively, our results explain for the first time the selective cytotoxicity of DHMC for tumor cells over normal monocytes, and encourage further in vivo studies on this compound as potential anti-leukemic agent.
Collapse
|
34
|
Mathew BP, Aggarwal N, Kumar R, Nath M. Synthesis and anti-bacterial activity of novel dihydrochromeno[8,7-e][1,3]oxazine-2(8H)-thiones. J Sulphur Chem 2013. [DOI: 10.1080/17415993.2013.769543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bijoy P. Mathew
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Nisha Aggarwal
- Division of Agricultural Chemicals, IARI, Pusa Campus, New Delhi 110 012, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, IARI, Pusa Campus, New Delhi 110 012, India
| | - Mahendra Nath
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| |
Collapse
|
35
|
Khaghanzadeh N, Mojtahedi Z, Ramezani M, Erfani N, Ghaderi A. Umbelliprenin is cytotoxic against QU-DB large cell lung cancer cell line but anti-proliferative against A549 adenocarcinoma cells. ACTA ACUST UNITED AC 2012; 20:69. [PMID: 23351548 PMCID: PMC3556042 DOI: 10.1186/2008-2231-20-69] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 10/10/2012] [Indexed: 11/10/2022]
Abstract
Background Umbelliprenin is a natural compound, belonging to the class of sesquiterpene coumarins. Recently, umbelliprenin has attracted the researchers' attention for its antitumor activities against skin tumors. Its effect on lung cancer is largely unknown. The aim of our study was to investigate the effects of this natural compound, which is expected to have low adverse effects, on lung cancer. Methods The QU-DB large cell and A549 adenocarcinoma lung cancer cell lines were treated with umbelliprenin. IC50 values were estimated using methyl thiazolely diphenyl-tetrazolium bromide (MTT) assay, in which a decrease in MTT reduction can occur as a result of cell death or cell proliferation inhibition. To quantify the rate of cell death at IC50 values, flow cytometry using Annexin V-FITC (for apoptotic cells), and propidium iodide (for necrotic cells) dyes were employed. Results Data from three independent MTT experiments in triplicate revealed that IC50 values for QU-DB and A549 were 47 ± 5.3 μM and 52 ± 1.97 μM, respectively. Annexin V/PI staining demonstrated that umbelliprenin treatment at IC50 induced 50% cell death in QU-DB cells, but produced no significant death in A549 cells until increasing the umbelliprenin concentration to IC80. The pattern of cell death was predominantly apoptosis in both cell lines. When peripheral blood mononuclear cells were treated with 50 μM and less concentrations of umbelliprenin, no suppressive effect was observed. Conclusions We found cytotoxic/anti-proliferative effects of umbelliprenin against two different types of lung cancer cell lines.
Collapse
Affiliation(s)
- Narges Khaghanzadeh
- Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, School of Medicine, Shiraz, Iran.
| | | | | | | | | |
Collapse
|
36
|
Yadav V, Sultana S, Yadav J, Saini N. Gatifloxacin induces S and G2-phase cell cycle arrest in pancreatic cancer cells via p21/p27/p53. PLoS One 2012; 7:e47796. [PMID: 23133524 PMCID: PMC3485023 DOI: 10.1371/journal.pone.0047796] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer, despite being the most dreadful among gastrointestinal cancers, is poorly diagnosed, and further, the situation has been aggravated owing to acquired drug resistance against the single known drug therapy. While previous studies have highlighted the growth inhibitory effects of older generation fluoroquinolones, the current study aims to evaluate the growth inhibitory effects of newer generation fluoroquinolone, Gatifloxacin, on pancreatic cancer cell lines MIA PaCa-2 and Panc-1 as well as to elucidate the underlying molecular mechanisms. Herein, we report that Gatifloxacin suppresses the proliferation of MIA PaCa-2 and Panc-1 cells by causing S and G2-phase cell cycle arrest without induction of apoptosis. Blockade in S-phase of the cell cycle was associated with increased TGF-β1 expression and translocation of Smad3-4 complex to the nucleus with subsequent activation of p21 in MIA PaCa-2 cells, whereas TGF-β signalling attenuated Panc-1 cells showed S-phase arrest by direct activation of p27. However, Gatifloxacin mediated G2–phase cell cycle arrest was found to be p53 dependent in both the cell lines. Our study is of interest because fluoroquinolones have the ability to penetrate pancreatic tissue which can be very effective in combating pancreatic cancers that are usually associated with loss or downregulation of CDK inhibitors p21/p27 as well as mutational inactivation of p53. Additionally, Gatifloxacin was also found to synergize the effect of Gemcitabine, the only known drug against pancreatic cancer, as well as the broad spectrum anticancer drug cisplatin. Taken together our results suggest that Gatifloxacin possesses anticancer activities against pancreatic cancer and is a promising candidate to be repositioned from broad spectrum antibiotics to anticancer agent.
Collapse
Affiliation(s)
- Vikas Yadav
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi, India
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, Delhi, India
| | - Sarwat Sultana
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, Delhi, India
| | - Jyoti Yadav
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi, India
- * E-mail: (JY); (NS)
| | - Neeru Saini
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi, India
- * E-mail: (JY); (NS)
| |
Collapse
|
37
|
DAMTC regulates cytoskeletal reorganization and cell motility in human lung adenocarcinoma cell line: an integrated proteomics and transcriptomics approach. Cell Death Dis 2012; 3:e402. [PMID: 23059821 PMCID: PMC3481129 DOI: 10.1038/cddis.2012.141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DAMTC (7,8-diacetoxy-4-methylcoumarin) is a thioderivative of 4-methyl coumarin, and previously we have shown that DAMTC is a potent inhibitor of cell growth and an inducer of apoptosis in non-small cell lung cancer (A549) cells. It induces apoptosis through mitochondrial pathway by modulating NF-κB, mitogen-activated protein kinase (MAPK) and p53 pathways. Herein, we explored the genome-wide effects of DAMTC in A549 cells using the concerted approach of transcriptomics and proteomics. In addition to apoptotic pathways, which have been validated earlier, the bioinformatic analysis of microarray data identified small GTPase-mediated signal transduction among the significantly altered biological processes. Interestingly, we observed significant downregulation of some members of the Rho family GTPases in the proteomics data too. Downregulation of Rho GTPases (RhoGDIα (Rho GDP dissociation inhibitor-α, also known as ARHGDIA), Ras homolog family member A, Ras-related C3 botulinum toxin substrate 1 and cell division cycle 42) was validated by western blotting. The Rho protein family is implicated in maintaining the actin filament assembly and cell motility, and we also observed that DAMTC treatment causes actin cytoskeletal reorganization, promotes filopodia formation and inhibits cell motility in A549 cells. The effect of DAMTC treatment on cytoskeleton was reversed after the overexpression of RhoGDIα. In addition, DAMTC augmented the apoptotic effect of etoposide, a proapoptotic chemotherapeutic drug. This elucidation of the mechanism behind DAMTC-induced apoptosis and inhibition of cell motility in A549 cells may make it a potential therapeutic for lung cancer.
Collapse
|
38
|
The coumarin psoralidin enhances anticancer effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Molecules 2012; 17:6449-64. [PMID: 22643355 PMCID: PMC6268812 DOI: 10.3390/molecules17066449] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 11/22/2022] Open
Abstract
Coumarins are a very common type of secondary plant metabolites with a broad spectrum of biological activities. Psoralidin is a naturally occurring furanocoumarin isolated from Psoralea corylifolia possessing anticancer and chemopreventive properties. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in cancer cells with no toxicity toward normal tissues. Endogenous TRAIL plays an important role in immune surveillance and defence against cancer cells. Coumarins can modulate TRAIL-mediated apoptosis in cancer cells. We examined the cytotoxic and apoptotic activities of psoralidin in combination with TRAIL on HeLa cancer cells. The cytotoxicity was measured by MTT and LDH assays. The apoptosis was detected using annexin V-FITC staining and mitochondrial membrane potential was evaluated using DePsipher staining by fluorescence microscopy. Death receptor (TRAIL-R1/DR4 and TRAIL-R2/DR5) expression was analyzed using flow cytometry. Psoralidin enhanced TRAIL-induced apoptosis in HeLa cells through increased expression of TRAIL-R2 death receptor and depolarization of mitochondrial membrane potential. Our study indicated that psoralidin augmented the anticancer effects of TRAIL and confirmed a potential use of coumarins in cancer chemoprevention.
Collapse
|
39
|
Growth inhibition and apoptosis induced by osthole, a natural coumarin, in hepatocellular carcinoma. PLoS One 2012; 7:e37865. [PMID: 22662241 PMCID: PMC3360675 DOI: 10.1371/journal.pone.0037865] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 04/25/2012] [Indexed: 01/05/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed tumors worldwide and is known to be resistant to conventional chemotherapy. New therapeutic strategies are urgently needed for treating HCC. Osthole, a natural coumarin derivative, has been shown to have anti-tumor activity. However, the effects of osthole on HCC have not yet been reported. Methods and Findings HCC cell lines were treated with osthole at various concentrations for 24, 48 and 72 hours. The proliferations of the HCC cells were measured by MTT assays. Cell cycle distribution and apoptosis were determined by flow cytometry. HCC tumor models were established in mice by subcutaneously injection of SMMC-7721 or Hepa1-6 cells and the effect of osthole on tumor growths in vivo and the drug toxicity were studied. NF-κB activity after osthole treatment was determined by electrophoretic mobility shift assays and the expression of caspase-3 was measured by western blotting. The expression levels of other apoptosis-related genes were also determined by real-time PCR (PCR array) assays. Osthole displayed a dose- and time-dependent inhibition of the HCC cell proliferations in vitro. It also induced apoptosis and caused cell accumulation in G2 phase. Osthole could significantly suppress HCC tumor growth in vivo with no toxicity at the dose we used. NF-κB activity was significantly suppressed by osthole at the dose- and time-dependent manner. The cleaved caspase-3 was also increased by osthole treatment. The expression levels of some apoptosis-related genes that belong to TNF ligand family, TNF receptor family, Bcl-2 family, caspase family, TRAF family, death domain family, CIDE domain and death effector domain family and CARD family were all increased with osthole treatment. Conclusion Osthole could significantly inhibit HCC growth in vitro and in vivo through cell cycle arrest and inducing apoptosis by suppressing NF-κB activity and promoting the expressions of apoptosis-related genes.
Collapse
|
40
|
Verma A, Bhatt AN, Farooque A, Khanna S, Khaitan D, Arya MB, Arya A, Dhawan A, Raj HG, Saluja D, Prasad AK, Parmar VS, Dwarakanath BS. 7, 8-diacetoxy-4-methylcoumarin induced cell death in human tumor cells is influenced by calreticulin. Biochimie 2010; 93:497-505. [PMID: 21075165 DOI: 10.1016/j.biochi.2010.10.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Accepted: 10/30/2010] [Indexed: 10/18/2022]
Abstract
Calreticulin (CRT), an endoplasmic reticulum resident protein demonstrates transacetylase activity in presence of 7, 8 diacetoxy-4-methyl coumarin (DAMC) in vitro. To investigate the possible role of CRT and DAMC mediated protein acetylation in cells, we investigated the effects of DAMC in tumor cells with different levels of CRT. DAMC was more toxic (clonogenicity, metabolic viability and proliferation) to human glioma cells (BMG-1) expressing low endogenous CRT level as compared to head and neck carcinoma cells (KB) with a high CRT level. The cytotoxicity was accompanied by loss of mitochondrial membrane potential in both the cells, which correlated with corresponding changes in the levels of pro-apoptotic (Bax) and anti-apoptotic (NFkB) regulators. Manipulation of CRT protein level in KB cells by application of small RNA interference enhanced the sensitivity by four folds while over expression of CRT in BMG-1 cells reduced their sensitivity to DAMC by ~20% strongly suggesting the influence of CRT on DAMC induced cytotoxicity. The partial rescue of CROE cells from DAMC induced toxicity was accompanied by changes in NFkB levels and over all protein acetylation status, besides increase in the NADPH-cytochrome c reductase activity related to its well known antioxidant property. Since CRT is over-expressed in cancer cells, which are generally resistant to radio- and chemotherapy; targeting CRT transacetylase system, may be an attractive approach for increasing the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Amit Verma
- Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Majumdar Marg, Timarpur, Delhi, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Georgieva I, Kostova I, Trendafilova N, Rastogi VK, Kiefer W. DFT, IR, Raman and NMR study of the coordination ability of coumarin-3-carboxylic acid to Pr(III). J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2010.06.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
42
|
The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol 2010; 2010:215158. [PMID: 20339581 PMCID: PMC2841246 DOI: 10.1155/2010/215158] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 12/18/2009] [Indexed: 12/13/2022] Open
Abstract
It is well admitted that the link between chronic inflammation and cancer involves cytokines and mediators of inflammatory pathways, which act during the different steps of tumorigenesis. The cyclooxygenases (COXs) are a family of enzymes, which catalyze the rate-limiting step of prostaglandin biosynthesis. This family contains three members: ubiquitously expressed COX-1, which is involved in homeostasis; the inducible COX-2 isoform, which is upregulated during both inflammation and cancer; and COX-3, expressed in brain and spinal cord, whose functions remain to be elucidated. COX-2 was described to modulate cell proliferation and apoptosis mainly in solid tumors, that is, colorectal, breast, and prostate cancers, and, more recently, in hematological malignancies. These findings prompt us to analyze here the effects of a combination of COX-2 inhibitors together with different clinically used therapeutic strategies in order to further improve the efficiency of future anticancer treatments. COX-2 modulation is a promising field investigated by many research groups.
Collapse
|