1
|
Du S, Wang H, Li J, Huang W, Jiang X, Cui E, Du L, Wang Y. Design and synthesis of 9-phenanthranilamide derivatives and the study of anti-inflammatory, antioxidant and neuroprotective activities. Bioorg Chem 2023; 141:106861. [PMID: 37778192 DOI: 10.1016/j.bioorg.2023.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/19/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Oxidative stress and a series of excessive inflammatory responses are major obstacles to neurological functional recovery after ischemic stroke. In this study, we synthesized several novel 9-phenanthranilamide derivatives and evaluated their anti-inflammatory and antioxidant activities. Among the initially screened compounds, most could strongly inhibi lipopolysaccharide (LPS)-stimulated production of IL-1β, IL-6 and TNF-α in microglial cells. Additionally, compounds 8b, 8q, 8r and 8s significantly inhibited the production of NO, and they also had dose-dependent protective effects on PC12 neuronal cells induced by H2O2. The antineuroinflammatory effects of 8r and 8s were associated with the downregulation of LPS-induced inflammatory mediators of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and both compounds inhibited the NF-κB signaling pathway. Further examinations showed that 8s had a significant neuroprotective effect on rats with middle cerebral artery occlusion (MCAO). It decreased the infarct volume and the neurological deficit score. Overall, our results suggested that compound 8s might be a promising agent for stroke treatment.
Collapse
Affiliation(s)
- Shuaishuai Du
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Hongwei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Jiaming Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230031, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Weijun Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China.
| | - Xueyang Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230031, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China; Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Enjing Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Le Du
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China
| | - Yang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230031, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230031, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
2
|
Lou Q, Chen F, Li B, Zhang M, Yin F, Liu X, Zhang Z, Zhang X, Fan C, Gao Y, Yang Y. Malignant growth of arsenic-transformed cells depends on activated Akt induced by reactive oxygen species. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2023; 33:284-298. [PMID: 34974760 DOI: 10.1080/09603123.2021.2023113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Arsenic is an identified carcinogen for humans.In this study, chronic exposure of human hepatocyte L-02 to low-doses of inorganic arsenic caused cell malignant proliferation. Meanwhile, compared with normal L-02 cells, arsenic-transformed malignant cells, L-02-As displayed more ROS and significantly higher Cyclin D1 expression as well as aerobic glycolysis. Moreover, Akt activation is followed by the upregulation of Cyclin D1 and HK2 expression in L-02-As cells, since inhibition of Akt activity by Ly294002 attenuated the colony formation in soft agar and decreased the levels of Cyclin D1 and HK2. In addition, scavenging of ROS by NAC resulted in a decreased expression of phospho-Akt, HK2 and Cyclin D1, and attenuates the ability of anchorage-independent growth ofL-02-As cells, suggested that ROS mediated the Akt activation in L-02-As cells. In summary, our results demonstrated that ROS contributes to the malignant phenotype of arsenic-transformed human hepatocyte L-02-As via the activation of Akt pathway.
Collapse
Affiliation(s)
- Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fuxun Chen
- Yantai Center for Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yantai, Shandong, China
| | - Bingyang Li
- Yantai Center for Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Yantai, Shandong, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zaihong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xin Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Chenlu Fan
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
3
|
ROS-Related miRNAs Regulate Immune Response and Chemoradiotherapy Sensitivity in Hepatocellular Carcinoma by Comprehensive Analysis and Experiment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4713518. [PMID: 35585886 PMCID: PMC9110211 DOI: 10.1155/2022/4713518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/09/2022] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species (ROS) plays an essential role in the development of cancer. Here, we chose ROS-related miRNAs for consensus clustering analysis and ROS score construction. We find that ROS is extremely associated with prognosis, tumor immune microenvironment (TIME), gene mutations, N6-methyladenosine (m6A) methylation, and chemotherapy sensitivity in hepatocellular carcinoma (HCC). Mechanistically, ROS may affect the prognosis of HCC patients in numerous ways. Moreover, miR-210-3p and miR-106a-5p significantly increased the ROS level and stagnated cell cycle at G2/M in HCC; the results were more obvious in cells after ionizing radiation (IR). Finally, the two miRNAs suppressed cell proliferation, migration, and invasion and promoted apoptosis in huh7 and smmc7721 cells. It indicated that ROS might affect the prognosis of HCC patients through immune response and increase the sensitivity of HCC patients to radiotherapy and chemotherapy.
Collapse
|
4
|
Li Y, Wang L, Zhang Q, Tian L, Gan C, Liu H, Yin W, Ye T. Blueberry Juice Attenuates Pulmonary Fibrosis via Blocking the TGF-β1/Smad Signaling Pathway. Front Pharmacol 2022; 13:825915. [PMID: 35418869 PMCID: PMC8996108 DOI: 10.3389/fphar.2022.825915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, fatal, and chronic lung disease, lacking a validated and effective therapy. Blueberry has demonstrated multiple pharmacological activities including anti-inflammatory, antioxidant, and anticancer. Therefore, the objective of this study was to investigate whether blueberry juice (BBJ) could ameliorate IPF. Experiments in vitro revealed that BBJ could significantly reduce the expressions of TGF-β1 modulated fibrotic protein, which were involved in the cascade of fibrosis in NIH/3T3 cells and human pulmonary fibroblasts. In addition, for rat primary lung fibroblasts (RPLFs), BBJ promoted the cell apoptosis along with reducing the expressions of α-SMA, vimentin, and collagen I, while increasing the E-cadherin level. Furthermore, BBJ could reverse epithelial–mesenchymal transition (EMT) phenotypic changes and inhibit cell migration, along with inducing the upregulation of E-cadherin in A549 cells. Compared with the vehicle group, BBJ treatment alleviated fibrotic pathological changes and collagen deposition in both bleomycin-induced prevention and treatment pulmonary fibrosis models. In fibrotic lung tissues, BBJ remarkably suppressed the expressions of collagen I, α-SMA, and vimentin and improved E-cadherin, which may be related to its inhibition of the TGF-β1/Smad pathway and anti-inflammation efficacy. Taken together, these findings comprehensively proved that BBJ could effectively prevent and attenuate idiopathic pulmonary fibrosis via suppressing EMT and the TGF-β1/Smad signaling pathway.
Collapse
Affiliation(s)
- Yali Li
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.,Prenatal Diagnosis Center, The Third Affiliated Hospital of Zhengzhou University-Maternal and Child Health Hospital of Henan Province, Zhengzhou, China
| | - Liqun Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qianyu Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Li Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wenya Yin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Sun Y, Liu X, Wang L, Xu L, Liu K, Xu L, Shi F, Zhang Y, Gu N, Xiong F. High-performance SOD mimetic enzyme Au@Ce for arresting cell cycle and proliferation of acute myeloid leukemia. Bioact Mater 2021; 10:117-130. [PMID: 34901534 PMCID: PMC8637344 DOI: 10.1016/j.bioactmat.2021.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022] Open
Abstract
SOD-like activity of CeO2 nanoparticles (Ce NPs) is driven by Ce3+/Ce4+, high oxidative stress can oxidize Ce3+ to reduce the ratio of Ce3+/Ce4+, inactivating the SOD activity of Ce NPs. Herein, we found Au@Ce NPs, assembled by Au NPs and Ce NPs, exhibited high-performance of SOD mimetic enzyme activity even upon the oxidation of H2O2. Ce NPs supported by nano-Au can acquire the electrons from Au NPs through the enhanced localized surface plasmon resonance (LSPR), maintaining the stability of Ce3+/Ce4+ and SOD-like activity. Meanwhile, Au@Ce NPs retained the peroxidase function and catalase function. As a result, Au@Ce NPs effectively scavenged O2•- and the derived ROS in AML cells, which are the important signaling source that drives AML cell proliferation and accelerates cell cycle progression. When HL-60 cells were treated by Au@Ce NPs, the removal of endogenous ROS signal significantly arrested cell cycle at G1 phase and suppressed the cell proliferation by blocking the mitogen-activated protein kinases (MAPKs) signaling and the Akt/Cyclin D1 cell cycle signaling. Importantly, this treatment strategy showed therapeutic effect for subcutaneous transplantation of AML model as well as a satisfactory result in diminishing the leukocyte infiltration of liver and spleen particularly. Thus, assembled Au@Ce NPs show the high-performance SOD-like activity, promising the potential in treating AML and regulating abnormal ROS in other diseases safely and efficiently. Assembled Au@Ce NPs exhibited multi-enzyme activity and the high-performance SOD-like activity even upon the oxidation of H2O2. In the assembled Au@Ce NPs, Ce NPs can acquire the electrons from Au NPs to maintain the stability of Ce3+/Ce4+ and SOD activity. Au@Ce can scavenge O2•- and the derived ROS in AML cells to arrest cell cycle signal and proliferation signal. Au@Ce treatment suppressed the growth of HL-60 bearing tumors and prolonged the survival time in systemic AML mice.
Collapse
Affiliation(s)
- Yuxiang Sun
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano-Science and Technology, Southeast University, Nanjing, 210096, PR China
| | - Xin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano-Science and Technology, Southeast University, Nanjing, 210096, PR China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, PR China
| | - Li Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, PR China
| | - Kunliang Liu
- Department of Research and Development, Jinan Guoke Medical Technology Development Co., Ltd., Address: No. 1, Gangxing 3rd Road, High-tech Industrial Development Zone, Jinan City, Shandong Province, 250013, PR China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, PR China
| | - Fangfang Shi
- Department of Oncology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano-Science and Technology, Southeast University, Nanjing, 210096, PR China
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano-Science and Technology, Southeast University, Nanjing, 210096, PR China
| | - Fei Xiong
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano-Science and Technology, Southeast University, Nanjing, 210096, PR China
| |
Collapse
|
6
|
Pan H, Wang BH, Li ZB, Gong XG, Qin Y, Jiang Y, Han WL. Mitochondrial superoxide anions induced by exogenous oxidative stress determine tumor cell fate: an individual cell-based study. J Zhejiang Univ Sci B 2019; 20:310-321. [PMID: 30932376 DOI: 10.1631/jzus.b1800319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Reactive oxygen species (ROS) are involved in a variety of biological phenomena and serve both deleterious and beneficial roles. ROS quantification and assessment of reaction networks are desirable but difficult because of their short half-life and high reactivity. Here, we describe a pro-oxidative model in a single human lung carcinoma SPC-A-1 cell that was created by application of extracellular H2O2 stimuli. METHODS Modified microfluidics and imaging techniques were used to determine O2 •- levels and construct an O2 •- reaction network. To elucidate the consequences of increased O2 •- input, the mitochondria were given a central role in the oxidative stress mode, by manipulating mitochondria-interrelated cytosolic Ca2+ levels, mitochondrial Ca2+ uptake, auto-amplification of intracellular ROS and the intrinsic apoptotic pathway. RESULTS AND CONCLUSIONS Results from a modified microchip demonstrated that 1 mmol/L H2O2 induced a rapid increase in cellular O2 •- levels (>27 vs. >406 amol in 20 min), leading to increased cellular oxidizing power (evaluated by ROS levels) and decreased reducing power (evaluated by glutathione (GSH) levels). In addition, we examined the dynamics of cytosolic Ca2+ and mitochondrial Ca2+ by confocal laser scanning microscopy and confirmed that Ca2+ stores in the endoplasmic reticulum were the primary source of H2O2-induced cytosolic Ca2+ bursts. It is clear that mitochondria have pivotal roles in determining how exogenous oxidative stress affects cell fate. The stress response involves the transfer of Ca2+ signals between organelles, ROS auto-amplification, mitochondrial dysfunction, and a caspase-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Hui Pan
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Bao-Hui Wang
- Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Zhou-Bin Li
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xing-Guo Gong
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Qin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Jiang
- Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - Wei-Li Han
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
7
|
Yu H, Kuang M, Wang Y, Rodeni S, Wei Q, Wang W, Mao D. Sodium Arsenite Injection Induces Ovarian Oxidative Stress and Affects Steroidogenesis in Rats. Biol Trace Elem Res 2019; 189:186-193. [PMID: 30151564 DOI: 10.1007/s12011-018-1467-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
Oxidative stress is involved in the regulation of mammalian reproduction. The present study was conducted to detect the sodium arsenite-induced oxidative stress and alterations in the structure and steroidogenesis in rat ovary. Twenty female adult rats were injected i.p. with sodium arsenite (8 mg/kg BW, T) or 0.9% saline (C) for 16 days. The oxidative stress indexes and morphology of the liver, kidney, and ovary were detected using commercial kits and HE staining, respectively. The serum progesterone and estradiol were detected by RIA, and the ovarian steroidogenic gene expressions were detected by real-time PCR. Results showed that the ovarian activities of SOD and GSH-PX decreased (P < 0.05), while the ROS activity and MDA level increased (P < 0.05) in the T group. HE staining results showed that treatment with sodium arsenite damaged the ovarian morphology, resulting in reduced large and medium follicles and increased atretic follicles. Nonetheless, neither the liver nor kidney showed evident changes in the oxidative stress indexes or morphology after sodium arsenite treatment. The serum progesterone and estradiol levels decreased (P < 0.05) with the reduced expressions in the ovarian steroidogenic genes (StAR, P450scc, and 3β-HSD) (P < 0.05). In conclusion, sodium arsenite injection can induce ovarian oxidative stress in rats which set up an appropriate model for future studies of ovarian diseases as well as the toxic mechanism of arsenic in the reproduction.
Collapse
Affiliation(s)
- Hao Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Meiqian Kuang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yalei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Saif Rodeni
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Wei Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
8
|
Vomund S, Schäfer A, Parnham MJ, Brüne B, von Knethen A. Nrf2, the Master Regulator of Anti-Oxidative Responses. Int J Mol Sci 2017; 18:ijms18122772. [PMID: 29261130 PMCID: PMC5751370 DOI: 10.3390/ijms18122772] [Citation(s) in RCA: 495] [Impact Index Per Article: 61.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/11/2017] [Accepted: 12/16/2017] [Indexed: 12/15/2022] Open
Abstract
Tight regulation of inflammation is very important to guarantee a balanced immune response without developing chronic inflammation. One of the major mediators of the resolution of inflammation is the transcription factor: the nuclear factor erythroid 2-like 2 (Nrf2). Stabilized following oxidative stress, Nrf2 induces the expression of antioxidants as well as cytoprotective genes, which provoke an anti-inflammatory expression profile, and is crucial for the initiation of healing. In view of this fundamental modulatory role, it is clear that both hyper- or hypoactivation of Nrf2 contribute to the onset of chronic diseases. Understanding the tight regulation of Nrf2 expression/activation and its interaction with signaling pathways, known to affect inflammatory processes, will facilitate development of therapeutic approaches to prevent Nrf2 dysregulation and ameliorate chronic inflammatory diseases. We discuss in this review the principle mechanisms of Nrf2 regulation with a focus on inflammation and autophagy, extending the role of dysregulated Nrf2 to chronic diseases and tumor development.
Collapse
Affiliation(s)
- Sandra Vomund
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Anne Schäfer
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Bernhard Brüne
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Andreas von Knethen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
9
|
Lima NA, Santana NDCS, de Lima NCA, Lazarin-Bidóia D, Bonfim-Mendonça PDS, Ueda Nakamura T, Nakamura CV, Consolaro MEL, Ximenes VF, Silva SDO. Antiproliferative effect of apocynin in cervical epithelial cells infected by HPV 16 involves change of ROS production and cell cycle. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Kalantar H, Sabetkasaei M, Shahriari A, Haj Molla Hoseini M, Mansouri S, Kalantar M, Kalantari A, Khazaei Poul Y, Labibi F, Moini-Zanjani T. The Effect of Rapamycin on Oxidative Stress in MCF-7 and MDA MB-231 Human Breast Cancer Cell Lines. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-38177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
11
|
Brain Food for Alzheimer-Free Ageing: Focus on Herbal Medicines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:95-116. [DOI: 10.1007/978-3-319-18365-7_5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Glasauer A, Chandel NS. Targeting antioxidants for cancer therapy. Biochem Pharmacol 2014; 92:90-101. [DOI: 10.1016/j.bcp.2014.07.017] [Citation(s) in RCA: 259] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 02/07/2023]
|
13
|
Abstract
Intracellular free Ca(2+) ([Ca(2+)]i) is a highly versatile second messenger that regulates a wide range of functions in every type of cell and tissue. To achieve this versatility, the Ca(2+) signaling system operates in a variety of ways to regulate cellular processes that function over a wide dynamic range. This is particularly well exemplified for Ca(2+) signals in the liver, which modulate diverse and specialized functions such as bile secretion, glucose metabolism, cell proliferation, and apoptosis. These Ca(2+) signals are organized to control distinct cellular processes through tight spatial and temporal coordination of [Ca(2+)]i signals, both within and between cells. This article will review the machinery responsible for the formation of Ca(2+) signals in the liver, the types of subcellular, cellular, and intercellular signals that occur, the physiological role of Ca(2+) signaling in the liver, and the role of Ca(2+) signaling in liver disease.
Collapse
Affiliation(s)
- Maria Jimena Amaya
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
14
|
Al-Sadoon MK, Rabah DM, Badr G. Enhanced anticancer efficacy of snake venom combined with silica nanoparticles in a murine model of human multiple myeloma: Molecular targets for cell cycle arrest and apoptosis induction. Cell Immunol 2013; 284:129-38. [DOI: 10.1016/j.cellimm.2013.07.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 11/17/2022]
|
15
|
Liu L, Pan D, Zeng X, Li H. Effect of selenium-enriched exopolysaccharide produced by Lactococcus lactis subsp. lactis on signaling molecules in mouse spleen lymphocytes. Food Funct 2013; 4:1489-95. [DOI: 10.1039/c3fo60216h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Verbon EH, Post JA, Boonstra J. The influence of reactive oxygen species on cell cycle progression in mammalian cells. Gene 2012; 511:1-6. [PMID: 22981713 DOI: 10.1016/j.gene.2012.08.038] [Citation(s) in RCA: 349] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/14/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Cell cycle regulation is performed by cyclins and cyclin dependent kinases (CDKs). Recently, it has become clear that reactive oxygen species (ROS) influence the presence and activity of these enzymes and thereby control cell cycle progression. In this review, we first describe the discovery of enzymes specialized in ROS production: the NADPH oxidase (NOX) complexes. This discovery led to the recognition of ROS as essential players in many cellular processes, including cell cycle progression. ROS influence cell cycle progression in a context-dependent manner via phosphorylation and ubiquitination of CDKs and cell cycle regulatory molecules. We show that ROS often regulate ubiquitination via intermediate phosphorylation and that phosphorylation is thus the major regulatory mechanism influenced by ROS. In addition, ROS have recently been shown to be able to activate growth factor receptors. We will illustrate the diverse roles of ROS as mediators in cell cycle regulation by incorporating phosphorylation, ubiquitination and receptor activation in a model of cell cycle regulation involving EGF-receptor activation. We conclude that ROS can no longer be ignored when studying cell cycle progression.
Collapse
|
17
|
Gupta SC, Hevia D, Patchva S, Park B, Koh W, Aggarwal BB. Upsides and downsides of reactive oxygen species for cancer: the roles of reactive oxygen species in tumorigenesis, prevention, and therapy. Antioxid Redox Signal 2012; 16:1295-322. [PMID: 22117137 PMCID: PMC3324815 DOI: 10.1089/ars.2011.4414] [Citation(s) in RCA: 514] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Extensive research during the last quarter century has revealed that reactive oxygen species (ROS) produced in the body, primarily by the mitochondria, play a major role in various cell-signaling pathways. Most risk factors associated with chronic diseases (e.g., cancer), such as stress, tobacco, environmental pollutants, radiation, viral infection, diet, and bacterial infection, interact with cells through the generation of ROS. RECENT ADVANCES ROS, in turn, activate various transcription factors (e.g., nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], activator protein-1, hypoxia-inducible factor-1α, and signal transducer and activator of transcription 3), resulting in the expression of proteins that control inflammation, cellular transformation, tumor cell survival, tumor cell proliferation and invasion, angiogenesis, and metastasis. Paradoxically, ROS also control the expression of various tumor suppressor genes (p53, Rb, and PTEN). Similarly, γ-radiation and various chemotherapeutic agents used to treat cancer mediate their effects through the production of ROS. Interestingly, ROS have also been implicated in the chemopreventive and anti-tumor action of nutraceuticals derived from fruits, vegetables, spices, and other natural products used in traditional medicine. CRITICAL ISSUES These statements suggest both "upside" (cancer-suppressing) and "downside" (cancer-promoting) actions of the ROS. Thus, similar to tumor necrosis factor-α, inflammation, and NF-κB, ROS act as a double-edged sword. This paradox provides a great challenge for researchers whose aim is to exploit ROS stress for the development of cancer therapies. FUTURE DIRECTIONS the various mechanisms by which ROS mediate paradoxical effects are discussed in this article. The outstanding questions and future directions raised by our current understanding are discussed.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|