1
|
Al-Amin M, Fazalul Rahiman SS, Khairuddean M, Muhamad Salhimi S. (R)-(-)-Xanthorrhizol Inhibits the Migration and Invasion of Triple-Negative Breast Cancer Cells by Suppressing Matrix Metalloproteinases via the NF-κB Signaling Pathway. PLANTA MEDICA 2024; 90:785-791. [PMID: 38838716 DOI: 10.1055/a-2339-2633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
(R)-(-)-xanthorrhizol is a bioactive sesquiterpenoid and major chemical constituent of Curcuma zanthorrhiza rhizomes. It was reported to have many pharmacological activities including nephroprotective, hepatoprotective, antimicrobial, anti-inflammatory, antioxidant, antihypertensive, antihyperglycemic, antiplatelet, estrogenic, and antiestrogenic properties. (R)-(-)-xanthorrhizol was also investigated for antiproliferative activity against many cancer cells including breast, lung, liver, ovarian, and colon cancer. It was also revealed to have a potential effect on TNBC cells MDA-MB-231. Considering the previous studies, this study has aimed to investigate the antimigratory and anti-invasive properties, as well as the possible molecular mechanisms, behind these properties. The findings of (R)-(-)-xanthorrhizol on MDA-MB-231 cell migration and invasion demonstrated significant inhibition at three different concentrations in a concentration-dependent manner, which was observed in the scratch, transwell migration, and invasion assays. Further investigation of the molecular mechanism using gelatin zymography revealed that (R)-(-)-xanthorrhizol prevented cell migration and invasion of breast cancer cells through the inhibition of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression. Western blot analysis indicated that the inhibition of matrix metalloproteinases is possibly the result of the inhibition of phosphorylation in the NF-κB signaling pathway. These findings corroborate (R)-(-)-xanthorrhizol to proceed for the further studies as a possible future drug candidate for cancer patients.
Collapse
Affiliation(s)
- Mohammad Al-Amin
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | | - Melati Khairuddean
- School of Chemical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | | |
Collapse
|
2
|
Wudtiwai B, Kodchakorn K, Shwe TH, Pothacharoen P, Phitak T, Suninthaboonrana R, Kongtawelert P. Brazilein inhibits epithelial-mesenchymal transition (EMT) and programmed death ligand 1 (PD-L1) expression in breast cancer cells. Int Immunopharmacol 2023; 118:109988. [PMID: 36933493 DOI: 10.1016/j.intimp.2023.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Triple-negative breast cancer (TNBC) exhibits high levels of Epithelial-mesenchymal transition (EMT) and Programmed death ligand 1 (PD-L1) expression, which promotes immune escape and metastasis. Brazilein is a natural compound extracted from Caesalpinia sappan L., and has been demonstrated to be an anti-inflammatory anti- proliferative and apoptosis-inducer in various cancer cells. Here, we investigated the effect of brazilein on EMT and PD-L1 expression in breast cancer cells and its related molecular mechanisms using MCF-7 and MDA-MB-231 cells as a model. Since the AKT, NF-κB, and GSK3β/β-catenin signaling were reported to be important mechanisms in immune escape and metastasis, the effect of brazilein on these signaling pathways were also found out in our study. Firstly, brazilein was treated on breast cancer cells at various concentrations to study cell viability, apoptosis, and apoptosis proteins. Then, breast cancer cells were treated with non-toxic concentrations of brazilein to study its influence on EMT and expression of PD-L1 protein using MTT, flow cytometry, western blot, and wound healing analysis, respectively. We found that brazilein exerts an anti-cancer effect by reducing cell viability via induction of apoptosis, while it also downregulated EMT and PD-L1 through suppression of phosphorylation of AKT, NF-κB, and GSK3β/β-catenin. Moreover, the migration ability was diminished by inhibiting the activation of MMP-9 and MMP-2. Taken together, brazilein might delay cancer progression through inhibition of EMT, PD-L1, and metastasis suggesting it might be a potential therapeutic option in breast cancer patients having a high level of EMT and PD-L1.
Collapse
Affiliation(s)
- Benjawan Wudtiwai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Kanchanok Kodchakorn
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Thuzar Hla Shwe
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Thanyaluck Phitak
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
3
|
Correia Soeiro MDN, Vergoten G, Bailly C. Molecular docking of brazilin and its analogs to barrier‐to‐autointegration factor 1 (BAF1). Ann N Y Acad Sci 2022; 1511:154-163. [DOI: 10.1111/nyas.14742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/12/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022]
Affiliation(s)
| | - Gérard Vergoten
- University of Lille, Inserm, INFINITE ‐ U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL) Faculté de Pharmacie Lille France
| | - Christian Bailly
- OncoWitan Scientific Consulting Office Lille (Wasquehal), 59290 France
| |
Collapse
|
4
|
Datta S, Luthra R, Bharadvaja N. Medicinal Plants for Glioblastoma Treatment. Anticancer Agents Med Chem 2021; 22:2367-2384. [PMID: 34939551 DOI: 10.2174/1871520622666211221144739] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/26/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma, an aggressive brain cancer, demonstrates the least life expectancy among all brain cancers. Because of the regulation of diverse signaling pathways in cancers, the chemotherapeutic approaches used to suppress their multiplication and spreading are restricted. Sensitivity towards chemotherapeutic agents has developed because of the pathological and drug-evading abilities of these diverse mechanisms. As a result, the identification and exploration of strategies or treatments, which can overcome such refractory obstacles to improve glioblastoma response to treatment as well as recovery, is essential. Medicinal herbs contain a wide variety of bioactive compounds, which could trigger aggressive brain cancers, regulate their anti-cancer mechanisms and immune responses to assist in cancer elimination, and cause cell death. Numerous tumor-causing proteins, which facilitate invasion as well as metastasis of cancer, tolerance of chemotherapies, and angiogenesis, are also inhibited by these phytochemicals. Such herbs remain valuable for glioblastoma prevention and its incidence by effectively being used as anti-glioma therapies. This review thus presents the latest findings on medicinal plants using which the extracts or bioactive components are being used against glioblastoma, their mechanism of functioning, pharmacological description as well as recent clinical studies conducted on them.
Collapse
Affiliation(s)
- Shreeja Datta
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Ritika Luthra
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi-110042. India
| |
Collapse
|
5
|
Cayetano-Salazar L, Olea-Flores M, Zuñiga-Eulogio MD, Weinstein-Oppenheimer C, Fernández-Tilapa G, Mendoza-Catalán MA, Zacapala-Gómez AE, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. Natural isoflavonoids in invasive cancer therapy: From bench to bedside. Phytother Res 2021; 35:4092-4110. [PMID: 33720455 DOI: 10.1002/ptr.7072] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/08/2021] [Accepted: 02/23/2021] [Indexed: 01/23/2023]
Abstract
Cancer is a public health problem worldwide, and one of the crucial steps within tumor progression is the invasion and metastasis of cancer cells, which are directly related to cancer-associated deaths in patients. Recognizing the molecular markers involved in invasion and metastasis is essential to find targeted therapies in cancer. Interestingly, about 50% of the discovered drugs used in chemotherapy have been obtained from natural sources such as plants, including isoflavonoids. Until now, most drugs are used in chemotherapy targeting proliferation and apoptosis-related molecules. Here, we review recent studies about the effect of isoflavonoids on molecular targets and signaling pathways related to invasion and metastasis in cancer cell cultures, in vivo assays, and clinical trials. This review also reports that glycitein, daidzein, and genistein are the isoflavonoids most studied in preclinical and clinical trials and displayed the most anticancer activity targeting invasion-related proteins such as MMP-2 and MMP-9 and also EMT-associated proteins. Therefore, the diversity of isoflavonoids is promising molecules to be used as chemotherapeutic in invasive cancer. In the future, more clinical trials are needed to validate the effectiveness of the various natural isoflavonoids in the treatment of invasive cancer.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miriam D Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | | | - Gloria Fernández-Tilapa
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Ana E Zacapala-Gómez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Julio Ortiz-Ortiz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Carlos Ortuño-Pineda
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo, Gro, Mexico
| |
Collapse
|
6
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
7
|
Meiyanto E, Larasati YA. The Chemopreventive Activity of Indonesia Medicinal Plants Targeting on Hallmarks of Cancer. Adv Pharm Bull 2019; 9:219-230. [PMID: 31380247 PMCID: PMC6664113 DOI: 10.15171/apb.2019.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 03/05/2019] [Accepted: 04/14/2019] [Indexed: 02/06/2023] Open
Abstract
Cancer remains a complex disease with increasing global mortality and morbidity. Numerous theories have been established to understand the biological mechanism underlying cancer. One of the most renowned frameworks is the hallmark of cancer proposed by Hanahan and Weinberg that covers ten eminent characteristics of cancer: (i) genome instability and mutation, (ii) sustaining proliferative signaling, (iii) evading growth suppressor, (iv) enabling replicative immortality, (v) resisting cell death, (vi) inducing angiogenesis, (vii) activating invasion and metastasis, (viii) avoiding immune destruction, (ix) tumor-promoting inflammation, and (x) deregulating cellular energetics. These hallmarks provide a rational approach to design an anticancer therapy. In the current review, we summarized specific target molecules on each hallmark of cancer. Further, we evaluated the biological activity of several Indonesia medicinal plants against those specific targets. We explicated the anticancer and chemopreventive activities of some medicinal plants that have been used for centuries by local communities in Indonesia, including Curcuma genus, Brucea javanica, Boesenbergia pandurata, Caesalpinia sappan, and Nigella sativa. Interestingly, these medicinal plants target several hallmarks of cancer, and even Curcuma genus exhibited biological activities that target all hallmarks of cancer. Further, we also discuss several strategies to develop those medicinal plants and/or their active compounds as anticancer and chemopreventive agents.
Collapse
Affiliation(s)
- Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| | - Yonika Arum Larasati
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Sekip Utara, Yogyakarta 55281, Indonesia
| |
Collapse
|
8
|
Li Q, Ma L, Wu Z, Wang G, Huang Q, Shen Z, Yu R. Zinc finger E‑box binding homeobox 2 functions as an oncogene in human laryngeal squamous cell carcinoma. Mol Med Rep 2019; 19:4545-4552. [PMID: 30957184 PMCID: PMC6522803 DOI: 10.3892/mmr.2019.10126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Zinc finger E‑box binding homeobox 2 (ZEB2) is a member of the Zfh1 family of two‑handed zinc finger/homeodomain proteins. To date, the role of ZEB2 in human laryngeal carcinoma has not been clearly defined. In the present study, the level of ZEB2 expression in laryngeal squamous cell carcinoma (LSCC) tissues and adjacent normal tissues was evaluated using reverse transcription‑quantitative polymerase chain reaction. The effects of ZEB2 on the growth, migration, invasion, cell cycle distribution and apoptosis of laryngeal cancer cells were also explored using MTT, Transwell and flow cytometry assays. It was identified that ZEB2 was upregulated in LSCC tissues compared with normal tissues. Silencing of ZEB2 inhibited the viability, migration and invasion of LSCC cells. It was also observed that ZEB2 silencing induced cell cycle arrest and apoptosis in LSCC cells. Furthermore, ZEB2 silencing inhibited the process of epithelial‑mesenchymal transition. Overall, the results indicated that ZEB2 promotes the progression of LSCC and that it may be a potential target for the treatment of this type of cancer.
Collapse
Affiliation(s)
- Qun Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Liang Ma
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhenhua Wu
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center, Lihuili Eastern Hospital, Ningbo, Zhejiang 315030, P.R. China
| | - Guoli Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Qi Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Ningbo Medical Center, Lihuili Eastern Hospital, Ningbo, Zhejiang 315030, P.R. China
| | - Zhisen Shen
- Department of Otorhinolaryngology, Head and Neck Surgery, Lihuili Hospital of Ningbo University, Ningbo, Zhejiang 315040, P.R. China
| | - Rui Yu
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
9
|
Mou Z, Wang Y, Li Y. RETRACTED: Brazilein induces apoptosis and G1/G0 phase cell cycle arrest by up-regulation of miR-133a in human vestibular schwannoma cells. Exp Mol Pathol 2019; 107:95-101. [PMID: 30610843 DOI: 10.1016/j.yexmp.2018.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/29/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Given the comments of Dr Elisabeth Bik regarding this article “... the Western blot bands in all 400+ papers are all very regularly spaced and have a smooth appearance in the shape of a dumbbell or tadpole, without any of the usual smudges or stains. All bands are placed on similar looking backgrounds, suggesting they were copy/pasted from other sources, or computer generated”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Zhongyan Mou
- Department of Chinese Medicine, Yantai Hospital of Traditional Chinese Medicine, Yantai 264000, China
| | - Yan Wang
- Department of Chinese Medicine, Yantai Hospital of Traditional Chinese Medicine, Yantai 264000, China
| | - Yongmei Li
- Department of Chinese Medicine, Yantai Hospital of Traditional Chinese Medicine, Yantai 264000, China.
| |
Collapse
|
10
|
Yu CC, Chen CA, Fu SL, Lin HY, Lee MS, Chiou WY, Su YC, Hung SK. Andrographolide enhances the anti-metastatic effect of radiation in Ras-transformed cells via suppression of ERK-mediated MMP-2 activity. PLoS One 2018; 13:e0205666. [PMID: 30359388 PMCID: PMC6201887 DOI: 10.1371/journal.pone.0205666] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/30/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Activation of Ras oncogene in human tumors is associated with radiation-associated metastatic potential. Although ionizing radiation is one important method of cancer treatments, it has been shown to enhance matrix metalloproteinases (MMPs) activity and facilitates a more aggressive cancer phenotype. Our previous studies showed that andrographolide with lower dose rates of radiation could inhibit RAS-transformed cancer metastasis in vivo; however, the molecular mechanisms are not yet clear. In this study, we aimed to explore the anti-metastatic effect of andrographolide combined with radiation on Ras-transformed cells. METHODS RAS-transformed cells were treated with andrographolide in the presence or absence of irradiation (2-4 Gy) or angiotensin II to examine cell invasion. In vivo tumorigenesis assays were also performed. The MMP-2 activity was detected by using Gelatin zymography. Signal transduction of NF-κB subunit, p65 and phosphor-ERK 1/2, were examined by using Western blotting analysis. RESULTS Treatment with andrographolide inhibited migration of Ras-transformed cells. Andrographolide treatment with radiation significantly inhibited cancer metastasis in vivo. We found that andrographolide exhibited anti-migration and anti-invasive ability against cancer metastasis via inhibition of MMP2 activity rather than affected MMP-9 and EMT. In addition, combined andrographolide with radiation appeared to be more effective in reducing MMP-2 expression, and this effect was accompanied by suppression of ERK activation that inhibits cancer cell migration and invasion. CONCLUSIONS These findings suggest that andrographolide enhances the anti-metastatic effect of radiation in Ras-transformed cells via suppression of ERK-mediated MMP-2 activity.
Collapse
Affiliation(s)
- Chih-Chia Yu
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
| | - Chien-An Chen
- Department of Radiation Oncology, Zhongxing Branch, Taipei City Hospital, Taipei, Taiwan
| | - Shu-Ling Fu
- Institute of Traditional Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Moon-Sing Lee
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Wen-Yen Chiou
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
| | - Yu-Chieh Su
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Kai Hung
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chia-Yi, Taiwan, R.O.C
- School of Medicine, Tzu Chi University, Hualian, Taiwan, R.O.C
- * E-mail:
| |
Collapse
|
11
|
Jenie RI, Handayani S, Susidarti RA, Udin LZ, Meiyanto E. The Cytotoxic and Antimigratory Activity of Brazilin-Doxorubicin on MCF-7/HER2 Cells. Adv Pharm Bull 2018; 8:507-516. [PMID: 30276148 PMCID: PMC6156471 DOI: 10.15171/apb.2018.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 12/21/2022] Open
Abstract
Purpose: Breast cancer cells with overexpression of HER2 are known to be more aggressive, invasive, and resistant to chemotherapeutic agent. Brazilin, the major compound in the Caesalpinia sappan L. (CS) heartwood, has been studied for it's anticancer activity. The purpose of this study was to investigate the cytotoxic and antimigratory activity of brazilin (Bi) in combination with doxorubicin (Dox) on MCF-7/HER2 cells. Methods: Cytotoxic activities of Bi individually and in combination with Dox were examined by MTT assay. Synergistic effects were analyzed by combination index (CI). Apoptosis and cell cycle profiles were observed by using flow cytometry. Migrating and invading cells were observed by using a Boyden chamber assay. Levels of MMP2 and MMP9 activity were observed by using a gelatin zymography assay. Levels of HER2, Bcl-2, Rac1, and p120 protein expression were observed by using an immunoblotting assay. Results: The results of the MTT assay showed that Bi inhibited MCF-7/HER2 cell growth in a dose-dependent manner with an IC50 of 54 ± 3.7 µM. Furthermore, the combination of Bi and Dox showed a synergistic effect (CI <1). Flow cytometric analysis of Bi and its combination with Dox showed cellular accumulation in the G2/M phase and induction of apoptosis through suppression of Bcl-2 protein expression. In the Boyden chamber assay, gelatin zymography, and subsequent immunoblotting assay, the combination Bi and Dox inhibited migration, possibly through downregulation of MMP9, MMP2, HER2, Rac1, and p120 protein expression. Conclusion: We conclude that Bi enhanced cytotoxic activity of Dox and inhibited migration of MCF-7/HER2 cells. Therefore, we believe that it has strong potential to be developed for the treatment of metastatic breast cancer with HER2 overexpression.
Collapse
Affiliation(s)
- Riris Istighfari Jenie
- Departement of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia.,Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
| | - Sri Handayani
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia.,Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Indonesia
| | - Ratna Asmah Susidarti
- Departement of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia.,Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
| | - Linar Zalinar Udin
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Indonesia
| | - Edy Meiyanto
- Departement of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia.,Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Indonesia
| |
Collapse
|
12
|
KIAA0100 Modulates Cancer Cell Aggression Behavior of MDA-MB-231 through Microtubule and Heat Shock Proteins. Cancers (Basel) 2018; 10:cancers10060180. [PMID: 29867023 PMCID: PMC6025110 DOI: 10.3390/cancers10060180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 12/25/2022] Open
Abstract
The KIAA0100 gene was identified in the human immature myeloid cell line cDNA library. Recent studies have shown that its expression is elevated in breast cancer and associated with more aggressive cancer types as well as poor outcomes. However, its cellular and molecular function is yet to be understood. Here we show that silencing KIAA0100 by siRNA in the breast cancer cell line MDA-MB-231 significantly reduced the cancer cells’ aggressive behavior, including cell aggregation, reattachment, cell metastasis and invasion. Most importantly, silencing the expression of KIAA0100 particularly sensitized the quiescent cancer cells in suspension culture to anoikis. Immunoprecipitation, mass spectrometry and immunofluorescence analysis revealed that KIAA0100 may play multiple roles in the cancer cells, including stabilizing microtubule structure as a microtubule binding protein, and contributing to MDA-MB-231 cells Anoikis resistance by the interaction with stress protein HSPA1A. Our study also implies that the interaction between KIAA0100 and HSPA1A may be targeted for new drug development to specifically induce anoikis cell death in the cancer cell.
Collapse
|
13
|
Handayani S, Susidarti RA, Jenie RI, Meiyanto E. Two Active Compounds from Caesalpinia sappan L. in Combination with Cisplatin Synergistically Induce Apoptosis and Cell Cycle Arrest on WiDr Cells. Adv Pharm Bull 2017; 7:375-380. [PMID: 29071219 PMCID: PMC5651058 DOI: 10.15171/apb.2017.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/25/2022] Open
Abstract
Purpose: The aim of this study is to observe the synergistic effect of two active compounds of secang, brazilin and brazilein, combined with cisplatin on WiDr colon cancer cells. Methods: Cytotoxic activities of brazilin (Bi) and brazilein (Be) in single and in combination with cisplatin (Cisp) were examined by MTT assay. Synergistic effect was analyzed by combination index (CI) parameter. Apoptosis and cell cycle profiles were observed by using flow cytometry. Results: The result of MTT assay showed that IC50 value of brazilin and brazilein on WiDr cancer cells were 41 µM and 52 µM respectively. The combination of ½ IC50 of Bi-Cisp reduced cells viability up to 64% and showed synergistic effect with CI value less than 1 (CI = 0.8). The combinations of ½ IC50 of Be-Cisp also reduced cells viability up to 78% and showed synergistic effect (CI=0.65). Combination of Bi-Cisp and Be-Cisp induced apoptosis higher than the single treatments. Further analysis on the cell cycle progression showed that single treatment of ½ IC50 of Be and Bi induced S-phase and G2/M-phase accumulation, while combination of Be-Cisp and Bi-Cisp enhanced S-phase accumulation. Conclusion: Both combination of Bi-Cisp and Be-Cisp showed synergistic effect on WiDr cells through induction of apoptosis and halted the cell cycle progression, thus, WiDr cells growth were significantly reduced.
Collapse
Affiliation(s)
- Sri Handayani
- Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Serpong, Indonesia.,Cancer Chemoprevention Research Center, Faculty of Pharmacy,Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ratna Asmah Susidarti
- Cancer Chemoprevention Research Center, Faculty of Pharmacy,Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Riris Istighfari Jenie
- Cancer Chemoprevention Research Center, Faculty of Pharmacy,Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy,Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
14
|
Inhibition of EGF-induced migration and invasion by sulfated polysaccharide of Sepiella maindroni ink via the suppression of EGFR/Akt/p38 MAPK/MMP-2 signaling pathway in KB cells. Biomed Pharmacother 2017; 95:95-102. [PMID: 28830011 DOI: 10.1016/j.biopha.2017.08.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 01/24/2023] Open
Abstract
SIP-SII, the sulfated Sepiella maindroni ink polysaccharide (SIP), has been manifested to possess anti-tumor and anti-metastasis activity in vivo and in vitro. In the present study, we evaluated its inhibitory effect on the epidermal growth factor (EGF)-induced migration and invasion of human epidermoid carcinoma cell (KB cell line) as well as the related signaling pathways. The results of MTT assay indicated that SIP-SII inhibited the proliferation of KB cells in a concentration and time dependent manner. Notably, the attenuation of cell growth by SIP-SII was enlarged in the presence of EGF. The wound healing assay and transwell invasion assay were used to evaluate the effect of SIP-SII on the EGF-induced migration and invasion of KB cells and the results showed that SIP-SII markedly attenuated the EGF-induced migration and invasion. Besides, the EGF-induced matrix metalloproteinase-2 (MMP-2) expression was also suppressed by SIP-SII. However, SIP-SII showed no significant inhibition of the EGF-induced matrix metalloproteinase-9 (MMP-9) expression. Further research revealed that SIP-SII decreased the EGF-induced phosphorylation of epidermal growth factor receptor (EGFR), Akt and p38, but no significant suppression on EGF-induced phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2) and c-Jun N-terminal kinases (JNK) by SIP-SII treatment was observed. The involvement of EGFR/Akt/p38 pathway was confirmed by evidence that SIP-SII would enlarge the inhibitory effect of the specific signal pathway inhibitors. These results indicate that SIP-SII has the potential to be used as the inhibitor of tumor metastasis especially for cancers characterized by over-activation of EGF/EGFR signaling.
Collapse
|
15
|
Semisynthetic oleanane triterpenoids inhibit migration and invasion of human breast cancer cells through downregulated expression of the ITGB1/PTK2/PXN pathway. Chem Biol Interact 2017; 268:136-147. [PMID: 28322779 DOI: 10.1016/j.cbi.2017.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 01/13/2023]
Abstract
This paper reports a study on the role of two synthetic derivatives of oleanolic acid (OA), HIMOXOL and Br-HIMOLID, in the regulation of cell migration and invasion and the underlying molecular mechanisms of breast cancer cells. The effect of the compounds on four breast cancer cell lines (MCF7, MDA-MB-231, MDA-MB-468, and T-47D) and also on noncancerous breast cells, MCF-12A, was reported. The compounds had no effect on the migration of MCF-12A cells. However, both the derivatives revealed a higher cytotoxicity than the maternal compound OA, and in sub-cytotoxic concentrations, they decreased the migration of MCF7, MDA-MB-231, and MDA-MB-468 breast cancer cells and also the invasion of MCF7 and MDA-MB-231 cells; although, the derivatives had no effect on the migration and invasion of T-47D cells. Both the derivatives of OA inhibited the cell migratory and invasive abilities of breast cancer cells by downregulating the expressions of ITGB1, PTK2, and PXN genes and by decreasing the phosphorylation status and the level of its respective proteins (integrin β1, FAK, and paxillin, respectively). This study is the first to report the antimigratory and anti-invasive activities of HIMOXOL and Br-HIMOLID in breast cancer cells.
Collapse
|
16
|
Chellappan DR, Purushothaman AK, Brindha P. Gastroprotective potential of hydro-alcoholic extract of Pattanga (Caesalpinia sappan Linn.). JOURNAL OF ETHNOPHARMACOLOGY 2017; 197:294-305. [PMID: 27484929 DOI: 10.1016/j.jep.2016.07.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 07/27/2016] [Accepted: 07/30/2016] [Indexed: 06/06/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Pattanga is botanically equated as Caesalpinia sappan Linn. (Family: Caesalpiniaceae) and is used in Ayurveda system of medicine since ages. According to Ayurveda, useful part is Heartwood, which is bitter, astringent and acrid and is useful in vitiated conditions of vata and pitta, burning sensation, wounds, ulcers, leprosy, skin diseases, menorrhagia, leucorrhea, and diabetes. It is used as a major ingredient in Ayurvedic formulations and preparations like Patrangasava, Chandanadya Thalia, and Karpuradyarka. AIM OF THE STUDY The present study is planned to evaluate the gastroprotective activity of the selected Ayurvedic drug using three different in vivo gastric ulcer models, so as to provide scientific evidence for the Ayurvedic claims. MATERIALS AND METHODS For this study, Wistar albino rats fasted overnight were selected. The hydroalcoholic extract of Caesalpinia sappan heartwood at the dose level 250 and 500mg/kg body weight was selected and administered orally before necrotizing agents. Antioxidant and antiulcer parameters were evaluated and the stomach samples were subjected for histopathological studies. In addition, PGE2 estimation and protein expressions of COX-1, COX-2 and iNOS were analyzed by Western blot. The plant extract was subjected to LCMS/MS analysis. In addition, Cytoprotective effect in isolated gastric mucosal cells, TUNEL Assay, Acid neutralizing capacity assay, H+/K+ ATPase inhibitory assay were performed. RESULTS The ulcer protection was found to be 92%, 86% and 64% against ethanol, NSAID and pylorus ligation induced ulcer respectively. The hydro-alcoholic extract of C. sappan heartwood exhibited cytoprotective effect with 76.82% reduction against indomethacin-induced cytotoxicity at the concentration of 25µg/ml. C. sappan showed 63.91% inhibition in H+/K+ ATPase inhibitory assay at the concentration 500µg/ml. CONCLUSIONS Our results depict that Caesalpinia sappan heartwood possesses gastroprotective activity, possibly mediated through cytoprotection and antioxidant mechanisms. The data obtained in the present study provides scientific support for the traditional use of Caesalpinia sappan in the management of peptic ulcer.
Collapse
Affiliation(s)
- David Raj Chellappan
- Centre for Advanced Research in Indian System of Medicine (CARISM), SASTRA University, Thanjavur, India
| | - Arun K Purushothaman
- Centre for Advanced Research in Indian System of Medicine (CARISM), SASTRA University, Thanjavur, India
| | - Pemiah Brindha
- Centre for Advanced Research in Indian System of Medicine (CARISM), SASTRA University, Thanjavur, India.
| |
Collapse
|
17
|
Interferon β improves the efficacy of low dose cisplatin by inhibiting NF-κB/p-Akt signaling on HeLa cells. Biomed Pharmacother 2016; 82:124-32. [PMID: 27470347 DOI: 10.1016/j.biopha.2016.04.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/26/2016] [Accepted: 04/26/2016] [Indexed: 01/23/2023] Open
Abstract
The purpose of this study was to evaluate the anticancer efficacy of interferon β in combination with low dose of cisplatin on human cervical cancer progression, as well as its principal action mechanism. The combination treatment synergistically potentiated the effect of interferon β on cell growth inhibition and DNA damage on HeLa cells by repressing NF-κB/p-Akt signaling. Synergistic targeting of these pathways has a therapeutic potential. Further, the combination treatment ameliorated the expression of pro-apoptotic Bax, and decreased the expression of anti-apoptotic protein Bcl-2. Additionally, the expression of active PARP was significantly increased and MMP-9 level was decreased in combination group as compared to the expression seen for the treatment with interferon β or cisplatin alone. Results demonstrate that the synergistic inhibitory effects of interferon β and low dose of cisplatin on human cervical cancer cells and also suggest that the inhibition of NF-κB/p-Akt signaling pathway plays a critical role in the anticancer effects of combination treatment along with the induction of PARP. Therefore, the combination of interferon β and cisplatin may be a useful treatment for human cervical cancer, with a greater effectiveness than other treatments.
Collapse
|
18
|
Mahar R, Dixit S, Joshi T, Kanojiya S, Mishra DK, Konwar R, Shukla SK. Bioactivity guided isolation of oxypregnane-oligoglycosides (calotroposides) from the root bark of Calotropis gigantea as potent anticancer agents. RSC Adv 2016. [DOI: 10.1039/c6ra23600f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bioactivity guided isolation of oxypregnane-oligoglycosides (calotroposides) from the ethanolic extract of root bark of Calotropis gigantea (L.) Dryand. with purple flowers has been performed and isolated pure compounds has been evaluated for anticancer activity.
Collapse
Affiliation(s)
- Rohit Mahar
- SAIF Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Shivani Dixit
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Trapti Joshi
- SAIF Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Sanjeev Kanojiya
- SAIF Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Dipak K. Mishra
- Botany Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Rituraj Konwar
- Endocrinology Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| | - Sanjeev K. Shukla
- SAIF Division
- CSIR-Central Drug Research Institute
- Lucknow 226031
- India
| |
Collapse
|
19
|
Brazilein Suppresses Inflammation through Inactivation of IRAK4-NF-κB Pathway in LPS-Induced Raw264.7 Macrophage Cells. Int J Mol Sci 2015; 16:27589-98. [PMID: 26593910 PMCID: PMC4661906 DOI: 10.3390/ijms161126048] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/31/2022] Open
Abstract
The medicinal herbal plant has been commonly used for prevention and intervention of disease and health promotions worldwide. Brazilein is a bioactive compound extracted from Caesalpinia sappan Linn. Several studies have showed that brazilein exhibited the immune suppressive effect and anti-oxidative function. However, the molecular targets of brazilein for inflammation prevention have remained elusive. Here, we investigated the mechanism underlying the inhibitory effect of brazilein on LPS-induced inflammatory response in Raw264.7 macrophage cells. We demonstrated that brazilein decreased the expression of IRAK4 protein led to the suppression of MAPK signaling and IKKβ, and subsequent inactivation of NF-κB and COX2 thus promoting the expression of the downstream target pro-inflammatory cytokines such as IL-1β, MCP-1, MIP-2, and IL-6 in LPS-induced Raw264.7 macrophage cells. Moreover, we observed that brazilein reduced the production of nitrite compared to the control in LPS-induced Raw264.7. Thus, we suggest that brazilein might be a useful bioactive compound for the prevention of IRAK-NF-κB pathway associated chronic diseases.
Collapse
|
20
|
Hridya H, Amrita A, Sankari M, George Priya Doss C, Gopalakrishnan M, Gopalakrishnan C, Siva R. Inhibitory effect of brazilein on tyrosinase and melanin synthesis: Kinetics and in silico approach. Int J Biol Macromol 2015; 81:228-34. [DOI: 10.1016/j.ijbiomac.2015.07.064] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 01/12/2023]
|
21
|
Mazzini G, Carpignano F, Surdo S, Aredia F, Panini N, Torchio M, Erba E, Danova M, Scovassi AI, Barillaro G, Merlo S. 3D Silicon Microstructures: A New Tool for Evaluating Biological Aggressiveness of Tumor Cells. IEEE Trans Nanobioscience 2015; 14:797-805. [PMID: 26353377 DOI: 10.1109/tnb.2015.2476351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this work, silicon micromachined structures (SMS), consisting of arrays of 3- μ m-thick silicon walls separated by 50- μm-deep, 5- μ m-wide gaps, were applied to investigate the behavior of eight tumor cell lines, with different origins and biological aggressiveness, in a three-dimensional (3D) microenvironment. Several cell culture experiments were performed on 3D-SMS and cells grown on silicon were stained for fluorescence microscopy analyses. Most of the tumor cell lines recognized in the literature as highly aggressive (OVCAR-5, A375, MDA-MB-231, and RPMI-7951) exhibited a great ability to enter and colonize the narrow deep gaps of the SMS, whereas less aggressive cell lines (OVCAR-3, Capan-1, MCF7, and NCI-H2126) demonstrated less penetration capability and tended to remain on top of the SMS. Quantitative image analyses of several fluorescence microscopy fields of silicon samples were performed for automatic cell recognition and count, in order to quantify the fraction of cells inside the gaps, with respect to the total number of cells in the examined field. Our results show that higher fractions of cells in the gaps are obtained with more aggressive cell lines, thus supporting in a quantitative way the observation that the behavior of tumor cells on the 3D-SMS depends on their aggressiveness level.
Collapse
|
22
|
Du Y, Feng J, Wang R, Zhang H, Liu J. Effects of Flavonoids from Potamogeton crispus L. on Proliferation, Migration, and Invasion of Human Ovarian Cancer Cells. PLoS One 2015; 10:e0130685. [PMID: 26098839 PMCID: PMC4476667 DOI: 10.1371/journal.pone.0130685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/24/2015] [Indexed: 12/20/2022] Open
Abstract
In order to explore the efficient utilization of plant resources from constructed wetlands, the potential anti-metastatic effects of flavonoids from Potamogeton crispus L. were investigated in human ovarian cancer cells (ES-2). Two major flavonoids, luteolin-3'-O-β-D-glucopyranoside and flavone-6-C-β-D-glucopyranoside, were isolated from P. crispus and identified. The effects of these flavonoids on cell proliferation, cell morphology, cell cycle, apoptosis, and cell migration and invasion were then investigated. Furthermore, reverse transcriptase polymerase chain reaction assays and western blotting analysis were conducted to examine the expression level of mRNA and protein. Results indicated that Luteolin-3'-O-β-D-glucopyranoside inhibited ES-2 cell migration and invasion and suppressed the expression of two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, and Flavone-6-C-β-D-glucopyranoside had no significant inhibitory effects on ES-2 cells. Thus, this study demonstrated the potential anti-metastatic properties of a P. crispus flavonoid, and provided a scientific approach for the screening of promising natural resources from constructed wetlands to identify useful products for use in the pharmaceutical and healthcare industries.
Collapse
Affiliation(s)
- Yuanda Du
- Institute of Environmental Research, Shandong University, Jinan, 250100, China
| | - Jinhong Feng
- Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, 250014, China
| | - Renqing Wang
- Institute of Environmental Research, Shandong University, Jinan, 250100, China
- School of Life Sciences, Shandong University, Jinan, 250100, China
- Shandong Provincial Engineering and Technology Research Center for Vegetation Ecology, Shandong University, Jinan, 250100, China
| | - Haijie Zhang
- Institute of Environmental Research, Shandong University, Jinan, 250100, China
| | - Jian Liu
- Institute of Environmental Research, Shandong University, Jinan, 250100, China
| |
Collapse
|
23
|
Safdari Y, Khalili M, Ebrahimzadeh MA, Yazdani Y, Farajnia S. Natural inhibitors of PI3K/AKT signaling in breast cancer: emphasis on newly-discovered molecular mechanisms of action. Pharmacol Res 2014; 93:1-10. [PMID: 25533812 DOI: 10.1016/j.phrs.2014.12.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 01/08/2023]
Abstract
Epidermal growth factor receptor (EGFR) plays a critical role in the initiation and progression of a variety of human cancers, including breast cancer. An important signaling pathway downstream of EGFR is the PI3K/AKt pathway, which regulates cellular processes as diverse as cell growth, survival, proliferation and migration. Deregulated activity of this pathway may lead to uncontrolled cell growth, survival, migration and invasion, contributing to tumor formation. In this review, we evaluate natural compounds that, in vitro (breast cancer cell lines) and/or in vivo (animal model, clinical) studies, suppress breast cancer cells or tumors mainly by suppressing the PI3K/AKT signaling pathway. The effect of these compounds on cell cycle arrest, inhibition of cell migration and invasion, tumor angiogenesis and metastasis in breast cancer are discussed.
Collapse
Affiliation(s)
- Yaghoub Safdari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran.
| | - Masoumeh Khalili
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, School of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Ali Ebrahimzadeh
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yaghoub Yazdani
- Infectious Diseases Research Center and Laboratory Science Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Zhao S, Wang XP, Jiang JF, Chai YS, Tian Y, Feng TS, Ding Y, Huang J, Lei F, Xing DM, Du LJ. Transport and metabolism behavior of brazilein during its entrance into neural cells. PLoS One 2014; 9:e108000. [PMID: 25275506 PMCID: PMC4183444 DOI: 10.1371/journal.pone.0108000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 08/21/2014] [Indexed: 01/07/2023] Open
Abstract
Brazilein, a natural small molecule, shows a variety of pharmacological activities, especially on nervous system and immune system. As a potential multifunctional drug, we studied the distribution and the transport behavior and metabolic behavior of brazilein in vivo and in vitro. Brazilein was found to be able to distribute in the mouse brain and transport into neural cells. A metabolite was found in the brain and in the cells. Positive and negative mode-MS/MS and Q-TOF were used to identify the metabolite. MS/MS fragmentation mechanisms showed the methylation occurred at the 10-hydroxyl of brazilein (10-O-methylbrazilein). Further, catechol-O- methyltransferase (COMT) was confirmed as a crucial enzyme correlated with the methylated metabolite generation by molecular docking and pharmacological experiment.
Collapse
Affiliation(s)
- Shuang Zhao
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Xin-Pei Wang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Jing-Fei Jiang
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yu-Shuang Chai
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yu Tian
- Drug Discovery Facility, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tian-Shi Feng
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Yi Ding
- Drug Discovery Facility, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Huang
- Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Fan Lei
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Dong-Ming Xing
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Li-Jun Du
- MOE Key Laboratory of Protein Sciences, Laboratory of Molecular Pharmacology and Pharmaceutical Sciences, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
25
|
Tsai JP, Hsiao PC, Yang SF, Hsieh SC, Bau DT, Ling CL, Pai CL, Hsieh YH. Licochalcone A suppresses migration and invasion of human hepatocellular carcinoma cells through downregulation of MKK4/JNK via NF-κB mediated urokinase plasminogen activator expression. PLoS One 2014; 9:e86537. [PMID: 24466137 PMCID: PMC3899273 DOI: 10.1371/journal.pone.0086537] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 12/14/2013] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular cell carcinoma (HCC) is one of the most commonly diagnosed cancers worldwide and in Taiwan. Chemoprevention of cancer with dietary bioactive compounds could potentially reverse, suppress, or prevent cancer progression. Licochalcone A (LicA) is a characteristic chalcone of licorice, which is the root of Glycyrrhiza inflate. It had been reported that LicA has anti-inflammatory, anti-microbial, and anti-tumor properties. However, the effects of LicA on the migration and invasion of human HCC cells have not yet been reported. In the present study, it was found that LicA inhibits the migratory and invasion ability of SK-Hep-1 and HA22T/VGH cells in a dose-dependent manner, as assessed by the cell migration and Matrigel cell invasion assay. Using casein zymography, Western blotting, reverse transcriptase polymerase chain reaction, and an immunofluorescence assay, it was found that LicA induces a dose-dependent inhibition of uPA activity and expression, as well as reduces mRNA levels in SK-Hep-1 and HA22T/VGH cells. LicA was also found to inhibit the expression of phosphor-JNK and phosphor-MKK4 in SK-Hep-1 cells. Furthermore, LicA significantly decreased uPA levels in SP600125-treated or si-MKK4-transfected cells alongside a marked reduction in cell migration and invasion, which supports the notion that an inhibition of MKK4/JNK results in anti-metastatic effects. Moreover, LicA inhibited the expression of nuclear NF-κB, as well as the binding ability of NF-κB to the uPA promoter. These findings further our understanding of the role of LicA in suppressing tumor metastasis and its underlying molecular mechanisms, as well as suggest that LicA may be a promising anti-metastatic agent.
Collapse
Affiliation(s)
- Jen-Pi Tsai
- Department of Nephrology, Buddhist Dalin Tzu Chi General Hospital, Chiayi, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pei-Ching Hsiao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shu-Ching Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Da-Tian Bau
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chu-Liang Ling
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Li Pai
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsien Hsieh
- Institute of Biochemistry and Biotechnology, College of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
26
|
Lisiak N, Paszel-Jaworska A, Bednarczyk-Cwynar B, Zaprutko L, Kaczmarek M, Rybczyńska M. Methyl 3-hydroxyimino-11-oxoolean-12-en-28-oate (HIMOXOL), a synthetic oleanolic acid derivative, induces both apoptosis and autophagy in MDA-MB-231 breast cancer cells. Chem Biol Interact 2013; 208:47-57. [PMID: 24291674 DOI: 10.1016/j.cbi.2013.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 12/31/2022]
Abstract
HIMOXOL (methyl 3-hydroxyimino-11-oxoolean-12-en-28-oate) is a synthetic derivative of oleanolic acid (OA). HIMOXOL revealed the highest cytotoxic effect among tested synthetic OA analogs. In this study we focused on elucidating the cytotoxic mechanism of HIMOXOL in MDA-MB-231 breast cancer cells. HIMOXOL reduced MDA-MB-231 cell viability with an IC50 value of 21.08±0.24μM. In contrast to OA, the tested compound induced cell death by activating apoptosis and the autophagy pathways. More specifically, we found that HIMOXOL was able to activate the extrinsic apoptotic pathway, which was proven by observation of caspase-8, caspase-3 and PARP-1 protein activation in Western blot analysis. An increase in the ratio of Bax/Bcl-2 protein levels was also detected. Moreover, HIMOXOL triggered microtubule-associated protein LC3-II expression and upregulated beclin 1. This observed compound activity was modulated by mitogen-activated protein kinases and NFκB/p53 signaling pathways. Together, these data suggest that HIMOXOL, a synthetic oleanolic acid derivative which activates dual cell death machineries, could be a potential and novel chemotherapeutic agent.
Collapse
Affiliation(s)
- Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355 Poznan, Poland.
| | - Anna Paszel-Jaworska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 St., 60-780 Poznan, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 St., 60-780 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Clinical Immunology, Poznan University of Medical Sciences, Rokietnicka 5D St., 60-806 Poznan, Poland
| | - Maria Rybczyńska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| |
Collapse
|
27
|
Total synthesis of (±)-brazilin and formal synthesis of (±)-brazilein, (±)-brazilide A using m-CPBA. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.08.081] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
JIN MEILING, PARK SUNYOUNG, KIM YOUNGHUN, PARK GEUNTAE, LEE SANGJOON. Halofuginone induces the apoptosis of breast cancer cells and inhibits migration via downregulation of matrix metalloproteinase-9. Int J Oncol 2013; 44:309-18. [DOI: 10.3892/ijo.2013.2157] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/14/2013] [Indexed: 11/06/2022] Open
|