1
|
Mabrouk MM, Hamed NA, Mansour FR. Physicochemical and electrochemical methods for determination of critical micelle concentrations of surfactants: a comprehensive review. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02891-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Germani R, Orlandini M, Tiecco M, Del Giacco T. Novel low viscous, green and amphiphilic N -oxides/phenylacetic acid based Deep Eutectic Solvents. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.05.084] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
3
|
Tiecco M, Roscini L, Corte L, Colabella C, Germani R, Cardinali G. Ionic Conductivity as a Tool To Study Biocidal Activity of Sulfobetaine Micelles against Saccharomyces cerevisiae Model Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1101-1110. [PMID: 26752694 DOI: 10.1021/acs.langmuir.5b04077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Zwitterionic sulfobetaine surfactants are used in pharmaceutical or biomedical applications for the solubilization and delivery of hydrophobic molecules in aqueous medium or in biological environments. In a screening on the biocidal activity of synthetic surfactants on microbial cells, remarkable results have emerged with sulfobetaine amphiphiles. The interaction between eight zwitterionic sulfobetaine amphiphiles and Saccharomyces cerevisiae model cells was therefore analyzed. S. cerevisiae yeast cells were chosen, as they are a widely used unicellular eukaryotic model organism in cell biology. Conductivity measurements were used to investigate the interaction between surfactant solution and cells. Viable counts measurements were performed, and the mortality data correlated with the conductivity profiles very well, in terms of the inflection points (IPs) observed in the curves and in terms of supramolecular properties of the aggregates. A Fourier transform infrared (FTIR)-based bioassay was then performed to determine the metabolomic stress-response of the cells subjected to the action of zwitterionic surfactants. The surfactants showed nodal concentration (IPs) with all the techniques in their activities, corresponding to the critical micellar concentrations of the amphiphiles. This is due to the pseudocationic behavior of sulfobetaine micelles, because of their charge distribution and charge densities. This behavior permits the interaction of the micellar aggregates with the cells, and the structure of the surfactant monomers has impact on the mortality and the metabolomic response data observed. On the other hand, the concentrations that are necessary to provoke a biocidal activity do not promote these amphiphiles as potential antimicrobial agents. In fact, they are much higher than the ones of cationic surfactants.
Collapse
Affiliation(s)
- Matteo Tiecco
- Department of Pharmaceutical Sciences-Microbiology, University of Perugia , Borgo XX Giugno 74, I-06121 Perugia, Italy
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials, Department of Chemistry, Biology and Biotechnology, University of Perugia , via Elce di Sotto 8, I-06123 Perugia, Italy
| | - Luca Roscini
- Department of Pharmaceutical Sciences-Microbiology, University of Perugia , Borgo XX Giugno 74, I-06121 Perugia, Italy
| | - Laura Corte
- Department of Pharmaceutical Sciences-Microbiology, University of Perugia , Borgo XX Giugno 74, I-06121 Perugia, Italy
| | - Claudia Colabella
- Department of Pharmaceutical Sciences-Microbiology, University of Perugia , Borgo XX Giugno 74, I-06121 Perugia, Italy
| | - Raimondo Germani
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials, Department of Chemistry, Biology and Biotechnology, University of Perugia , via Elce di Sotto 8, I-06123 Perugia, Italy
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences-Microbiology, University of Perugia , Borgo XX Giugno 74, I-06121 Perugia, Italy
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials, Department of Chemistry, Biology and Biotechnology, University of Perugia , via Elce di Sotto 8, I-06123 Perugia, Italy
| |
Collapse
|
4
|
Corte L, Tiecco M, Roscini L, De Vincenzi S, Colabella C, Germani R, Tascini C, Cardinali G. FTIR metabolomic fingerprint reveals different modes of action exerted by structural variants of N-alkyltropinium bromide surfactants on Escherichia coli and Listeria innocua cells. PLoS One 2015; 10:e0115275. [PMID: 25588017 PMCID: PMC4294686 DOI: 10.1371/journal.pone.0115275] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/23/2014] [Indexed: 12/05/2022] Open
Abstract
Surfactants are extremely important agents to clean and sanitize various environments. Their biocidal activity is a key factor determined by the interactions between amphiphile structure and the target microbial cells. The object of this study was to analyze the interactions between four structural variants of N-alkyltropinium bromide surfactants with the Gram negative Escherichia coli and the Gram positive Listeria innocua bacteria. Microbiological and conductometric methods with a previously described FTIR bioassay were used to assess the metabolomic damage exerted by these compounds. All surfactants tested showed more biocidal activity in L. innocua than in E. coli. N-tetradecyltropinium bromide was the most effective compound against both species, while all the other variants had a reduced efficacy as biocides, mainly against E. coli cells. In general, the most prominent metabolomic response was observed for the constituents of the cell envelope in the fatty acids (W1) and amides (W2) regions and at the wavenumbers referred to peptidoglycan (W2 and W3 regions). This response was particularly strong and negative in L. innocua, when cells were challenged by N-tetradecyltropinium bromide, and by the variant with a smaller head and a 12C tail (N-dodecylquinuclidinium bromide). Tail length was critical for microbial inhibition especially when acting against E. coli, maybe due the complex nature of Gram negative cell envelope. Statistical analysis allowed us to correlate the induced mortality with the metabolomic cell response, highlighting two different modes of action. In general, gaining insights in the interactions between fine structural properties of surfactants and the microbial diversity can allow tailoring these compounds for the various operative conditions.
Collapse
Affiliation(s)
- Laura Corte
- Department of Pharmaceutical Sciences—Microbiology, University of Perugia, Borgo XX Giugno 74, I-06121 Perugia, Italy
- * E-mail:
| | - Matteo Tiecco
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials, Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, I-06123 Perugia, Italy
| | - Luca Roscini
- Department of Pharmaceutical Sciences—Microbiology, University of Perugia, Borgo XX Giugno 74, I-06121 Perugia, Italy
| | - Sergio De Vincenzi
- Department of Pharmaceutical Sciences—Microbiology, University of Perugia, Borgo XX Giugno 74, I-06121 Perugia, Italy
| | - Claudia Colabella
- Department of Pharmaceutical Sciences—Microbiology, University of Perugia, Borgo XX Giugno 74, I-06121 Perugia, Italy
| | - Raimondo Germani
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials, Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, I-06123 Perugia, Italy
| | - Carlo Tascini
- U.O. Malattie Infettive, Azienda Ospedaliera Universitaria Pisana, Via Paradisa 2, Cisanello, 56100 Pisa, Italy
| | - Gianluigi Cardinali
- Department of Pharmaceutical Sciences—Microbiology, University of Perugia, Borgo XX Giugno 74, I-06121 Perugia, Italy
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials, Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, I-06123 Perugia, Italy
| |
Collapse
|
5
|
Cardellini F, Germani R, Cardinali G, Corte L, Roscini L, Spreti N, Tiecco M. Room temperature deep eutectic solvents of (1S)-(+)-10-camphorsulfonic acid and sulfobetaines: hydrogen bond-based mixtures with low ionicity and structure-dependent toxicity. RSC Adv 2015. [DOI: 10.1039/c5ra03932k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Preparation, properties and toxicity of room temperature deep eutectic solvents formed by (1S)-(+)-10-camphorsulfonic acid and aromatic, aliphatic and amphiphilic sulfobetaines.
Collapse
Affiliation(s)
- Fabio Cardellini
- CEMIN
- Centre of Excellence on Nanostructured Innovative Materials
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
| | - Raimondo Germani
- CEMIN
- Centre of Excellence on Nanostructured Innovative Materials
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
| | - Gianluigi Cardinali
- CEMIN
- Centre of Excellence on Nanostructured Innovative Materials
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
| | - Laura Corte
- Department of Pharmaceutical Sciences – Microbiology
- University of Perugia
- Perugia
- Italy
| | - Luca Roscini
- Department of Pharmaceutical Sciences – Microbiology
- University of Perugia
- Perugia
- Italy
| | - Nicoletta Spreti
- Department of Physical and Chemical Sciences
- University of L'Aquila
- L'Aquila
- Italy
| | - Matteo Tiecco
- CEMIN
- Centre of Excellence on Nanostructured Innovative Materials
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
| |
Collapse
|
6
|
Novel mechanisms of surfactants against Candida albicans growth and morphogenesis. Chem Biol Interact 2014; 227:1-6. [PMID: 25523088 DOI: 10.1016/j.cbi.2014.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 11/25/2014] [Accepted: 12/05/2014] [Indexed: 11/23/2022]
Abstract
Candida albicans is a common opportunistic fungal pathogen, causing not only superficial mucosal infections but also life-threatening systemic candidiasis in immune-compromised individuals. Surfactants are a kind of amphiphilic compounds implemented in a wide range of applications. Although their antimicrobial activity has been characterized, their effect on C. albicans physiology remains to be elucidated. In this study, we investigated the inhibitory effect of two representative surfactants, cetyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS), on C. albicans growth and morphogenesis. Both surfactants exhibited inhibitory effect on C. albicans growth. This effect was not attributed to plasma membrane (PM) damage, but was associated with mitochondrial dysfunction. Excitingly, the surfactants, especially CTAB, showed strong inhibitory effect on hyphal development (IC50=0.183 ppm for CTAB and 6.312 ppm for SDS) and biofilms (0.888 ppm for CTAB and 76.092 ppm for SDS). Actin staining and Hwp1-GFP localization further revealed that this inhibition is related to abnormal organization of actin skeleton and subsequent defect in polarized transport of hyphae-related factors. This study sheds a novel light on the antimicrobial mechanisms of surfactants, and suggests these agents as potential drugs against C. albicans hyphae-related infections in clinical practice.
Collapse
|