1
|
Overexpression of Human Estrogen Biosynthetic Enzyme Hydroxysteroid (17beta) Dehydrogenase Type 1 Induces Adenomyosis-like Phenotype in Transgenic Mice. Int J Mol Sci 2022; 23:ijms23094815. [PMID: 35563206 PMCID: PMC9104619 DOI: 10.3390/ijms23094815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
Hydroxysteroid (17beta) dehydrogenase type 1 (HSD17B1) is an enzyme that converts estrone to estradiol, while adenomyosis is an estrogen-dependent disease with poorly understood pathophysiology. In the present study, we show that mice universally over-expressing human estrogen biosynthetic enzyme HSD17B1 (HSD17B1TG mice) present with adenomyosis phenotype, characterized by histological and molecular evaluation. The first adenomyotic changes with endometrial glands partially or fully infiltrated into the myometrium appeared at the age of 5.5 months in HSD17B1TG females and became more prominent with increasing age. Preceding the phenotype, increased myometrial smooth muscle actin positivity and increased amount of glandular myofibroblast cells were observed in HSD17B1TG uteri. This was accompanied by transcriptomic upregulation of inflammatory and estrogen signaling pathways. Further, the genes upregulated in the HSD17B1TG uterus were enriched with genes previously observed to be induced in the human adenomyotic uterus, including several genes of the NFKB pathway. A 6-week-long HSD17B1 inhibitor treatment reduced the occurrence of the adenomyotic changes by 5-fold, whereas no effect was observed in the vehicle-treated HSD17B1TG mice, suggesting that estrogen is the main upstream regulator of adenomyosis-induced uterine signaling pathways. HSD17B1 is considered as a promising drug target to inhibit estrogen-dependent growth of endometrial disorders. The present data indicate that HSD17B1 over-expression in TG mice results in adenomyotic changes reversed by HSD17B1 inhibitor treatment and HSD17B1 is, thus, a potential novel drug target for adenomyosis.
Collapse
|
2
|
Wang C, Zhao Y, Yuan Z, Wu Y, Zhao Z, Wu C, Hou J, Zhang M. Genome-Wide Identification of mRNAs, lncRNAs, and Proteins, and Their Relationship With Sheep Fecundity. Front Genet 2022; 12:750947. [PMID: 35211149 PMCID: PMC8861438 DOI: 10.3389/fgene.2021.750947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
The exploration of multiple birth-related genes has always been a significant focus in sheep breeding. This study aimed to find more genes and proteins related to the litter size in sheep. Ovarian specimens of Small Tail Han sheep (multiple births) and Xinji Fine Wool sheep (singleton) were collected during the natural estrus cycle. Transcriptome and proteome of ovarian specimens were analyzed. The transcriptome results showed that "steroid hormone biosynthesis" and "ovarian steroidogenesis" were significantly enriched, in which HSD17B1 played an important role. The proteome data also confirmed that the differentially expressed proteins (DEPs) were enriched in the ovarian steroidogenesis pathway, and the CYP17A1 was the candidate DEP. Furthermore, lncRNA MSTRG.28645 was highly expressed in Small Tailed Han sheep but lowly expressed in Xinji fine wool sheep. In addition, MSTRG.28645, a hub gene in the co-expression network between mRNAs and lncRNAs, was selected as one of the candidate genes for subsequent verification. Expectedly, the overexpression and interference of HSD17B1 and MSTRG.28645 showed a significant effect on hormone secretion in granulosa cells. Therefore, this study confirmed that HSD17B1 and MSTRG.28645 might be potential genes related to the fecundity of sheep. It was concluded that both HSD17B1 and MSTRG.28645 were critical regulators in the secretion of hormones that affect the fecundity of the sheep.
Collapse
Affiliation(s)
- Chunxin Wang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yunhui Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - ZhiYu Yuan
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yujin Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhuo Zhao
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Cuiling Wu
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jian Hou
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, China
| | - Mingxin Zhang
- Institute of Animal Sciences, Jilin Academy of Agricultural Sciences, Changchun, China
| |
Collapse
|
3
|
Sirait B, Wiweko B, Jusuf AA, Iftitah D, Muharam R. Oocyte Competence Biomarkers Associated With Oocyte Maturation: A Review. Front Cell Dev Biol 2021; 9:710292. [PMID: 34527670 PMCID: PMC8435600 DOI: 10.3389/fcell.2021.710292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023] Open
Abstract
Oocyte developmental competence is one of the determining factors that influence the outcomes of an IVF cycle regarding the ability of a female gamete to reach maturation, be fertilized, and uphold an embryonic development up until the blastocyst stage. The current approach of assessing the competency of an oocyte is confined to an ambiguous and subjective oocyte morphological evaluation. Over the years, a myriad of biomarkers in the cumulus-oocyte-complex has been identified that could potentially function as molecular predictors for IVF program prognosis. This review aims to describe the predictive significance of several cumulus-oocyte complex (COC) biomarkers in evaluating oocyte developmental competence. A total of eight acclaimed cumulus biomarkers are examined in the study. RT-PCR and microarray analysis were extensively used to assess the significance of these biomarkers in foreseeing oocyte developmental competence. Notably, these biomarkers regulate vital processes associated with oocyte maturation and were found to be differentially expressed in COC encapsulating oocytes of different maturity. The biomarkers were reviewed according to the respective oocyte maturation events namely: nuclear maturation, apoptosis, and extracellular matrix remodeling, and steroid metabolism. Although substantial in vitro evidence was presented to justify the potential use of cumulus biomarkers in predicting oocyte competency and IVF outcomes, the feasibility of assessing these biomarkers as an add-on prognostic procedure in IVF is still restricted due to study challenges.
Collapse
Affiliation(s)
- Batara Sirait
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia.,Morula IVF Jakarta Clinic, Jakarta, Indonesia
| | - Budi Wiweko
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia.,Human Reproductive, Infertility, and Family Planning Research Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Ahmad Aulia Jusuf
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Dein Iftitah
- Human Reproductive, Infertility, and Family Planning Research Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - R Muharam
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Yasmin IVF Clinic, Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia.,Human Reproductive, Infertility, and Family Planning Research Cluster, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
4
|
Yuan X, Zhou X, Qiao X, Wu Q, Yao Z, Jiang Y, Zhang H, Zhang Z, Wang X, Li J. FoxA2 and p53 regulate the transcription of HSD17B1 in ovarian granulosa cells of pigs. Reprod Domest Anim 2020; 56:74-82. [PMID: 33111336 DOI: 10.1111/rda.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/10/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
The oestrogens have been highly implicated in the fertility of female animals. It is widely known that the oestrogens are primarily synthetized by the ovarian granulosa cells (GCs), and the final and essential step of this process is to catalyse the oestrone to the more active oestradiol by the protein coded by hydroxysteroid 17-beta dehydrogenase 1 (HSD17B1) gene. However, the molecular mechanism regarding the transcription of HSD17B1 remains to be fully elucidated in ovarian GCs. In this study, the 5'-deletion, luciferase assay and chromatin immunoprecipitation (ChIP) were utilized to explore the molecular regulation of transcription of HSD17B1 with the porcine ovarian GCs as the cellular model. After the deletions with -2105 to -1754 bp, -1753 to -1429 bp, -1430 to -1081 bp and -1082 to -730 bp, the relative luciferase activity of HSD17B1 promoter did not change significantly, but the deletion of -731 to -332 bp significantly increased the relative luciferase activity of HSD17B1 promoter, and an insertion (GTTT) that might raise the transcription of HSD17B1 was identified at -401 bp of HSD17B1. These findings suggested the region from -731 to +38 bp was the core promoter of HSD17B1, and the region between -731 to -332 bp might be a silence element for HSD17B1. Furthermore, the forkhead box A2 (FoxA2) directly bound at -412 to -401 bp to negatively but p53 bound at -383 to -374 bp to positively regulate the transcription and translation of HSD17B1 in ovarian GCs. These findings will improve our understanding on HSD17B1-mediated oestrogens and provide useful information for further investigations into fertility of females.
Collapse
Affiliation(s)
- Xiaolong Yuan
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Xiaofeng Zhou
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiwu Qiao
- Guangzhou Customs Technology Center, Guangzhou, Guangdong, China
| | - Qi Wu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhixiang Yao
- Guangdong Dexing Food Co., Ltd, Guangzhou, China
| | - Yao Jiang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hao Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhe Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xilong Wang
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Jiaqi Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Transcriptomics of cumulus cells - a window into oocyte maturation in humans. J Ovarian Res 2020; 13:93. [PMID: 32787963 PMCID: PMC7425158 DOI: 10.1186/s13048-020-00696-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Background Cumulus cells (CC) encapsulate growing oocytes and support their growth and development. Transcriptomic signatures of CC have the potential to serve as valuable non-invasive biomarkers for oocyte competency and potential. The present sibling cumulus-oocyte-complex (COC) cohort study aimed at defining functional variations between oocytes of different maturity exposed to the same stimulation conditions, by assessing the transcriptomic signatures of their corresponding CC. CC were collected from 18 patients with both germinal vesicle and metaphase II oocytes from the same cycle to keep the biological variability between samples to a minimum. RNA sequencing, differential expression, pathway analysis, and leading-edge were performed to highlight functional differences between CC encapsulating oocytes of different maturity. Results Transcriptomic signatures representing CC encapsulating oocytes of different maturity clustered separately on principal component analysis with 1818 genes differentially expressed. CCs encapsulating mature oocytes were more transcriptionally synchronized when compared with CCs encapsulating immature oocytes. Moreover, the transcriptional activity was lower, albeit not absent, in CC encapsulating mature oocytes, with 2407 fewer transcripts detected than in CC encapsulating immature (germinal vesicle - GV) oocytes. Hallmark pathways and ovarian processes that were affected by oocyte maturity included cell cycle regulation, steroid metabolism, apoptosis, extracellular matrix remodeling, and inflammation. Conclusions Herein we review our findings and discuss how they align with previous literature addressing transcriptomic signatures of oocyte maturation. Our findings support the available literature and enhance it with several genes and pathways, which have not been previously implicated in promoting human oocyte maturation. This study lays the ground for future functional studies that can enhance our understanding of human oocyte maturation.
Collapse
|
6
|
Cheng C, Shen F, Ding G, Liu A, Chu S, Ma Y, Hou X, Hao E, Wang X, Hou Y, Bai G. Lepidiline A Improves the Balance of Endogenous Sex Hormones and Increases Fecundity by Targeting HSD17B1. Mol Nutr Food Res 2020; 64:e1900706. [DOI: 10.1002/mnfr.201900706] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/11/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Fukui Shen
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Guoyu Ding
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Aina Liu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Simeng Chu
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Yuejiao Ma
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Xiaotao Hou
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural ResiduesGuangxi Key Laboratory of Efficacy Study on Chinese Materia MedicaGuangxi University of Chinese Medicine Nanning 530200 China
| | - Erwei Hao
- Collaborative Innovation Center of Research on Functional Ingredients from Agricultural ResiduesGuangxi Key Laboratory of Efficacy Study on Chinese Materia MedicaGuangxi University of Chinese Medicine Nanning 530200 China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese MedicineTianjin University of Traditional Chinese Medicine Tianjin 300193 China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical BiologyCollege of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai University Tianjin 300353 China
| |
Collapse
|
7
|
Xiao L, Guo Y, Wang D, Zhao M, Hou X, Li S, Lin H, Zhang Y. Beta-Hydroxysteroid Dehydrogenase Genes in Orange-Spotted Grouper ( Epinephelus coioides): Genome-Wide Identification and Expression Analysis During Sex Reversal. Front Genet 2020; 11:161. [PMID: 32194632 PMCID: PMC7064643 DOI: 10.3389/fgene.2020.00161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/11/2020] [Indexed: 12/12/2022] Open
Abstract
Beta-hydroxysteroid dehydrogenases (β-HSDs) are a group of steroidogenic enzymes that are involved in steroid biosynthesis and metabolism, and play a crucial role in mammalian physiology and development, including sex determination and differentiation. In the present study, a genome-wide analysis identified the numbers of β-hsd genes in orange-spotted grouper (Epinephelus coioides) (19), human (Homo sapiens) (22), mouse (Mus musculus) (24), chicken (Gallus gallus) (16), xenopus (Xenopus tropicalis) (24), coelacanth (Latimeria chalumnae) (17), spotted gar (Lepisosteus oculatus) (14), zebrafish (Danio rerio) (19), fugu (Takifugu rubripes) (19), tilapia (Oreochromis niloticus) (19), medaka (Oryzias latipes) (19), stickleback (Gasterosteus aculeatus) (17) and common carp (Cyprinus carpio) (27) samples. A comparative analysis revealed that the number of β-hsd genes in teleost fish was no greater than in tetrapods due to gene loss followed by a teleost-specific whole-genome duplication event. Based on transcriptome data from grouper brain and gonad samples during sex reversal, six β-hsd genes had relatively high expression levels in the brain, indicating that these genes may be required for neurogenesis or the maintenance of specific biological processes in the brain. In the gonad, two and eight β-hsd genes were up- and downregulated, respectively, indicating their important roles in sex reversal. Our results demonstrated that β-hsd genes may be involved in the sex reversal of grouper by regulating the synthesis and metabolism of sex steroid hormones.
Collapse
Affiliation(s)
- Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yin Guo
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dengdong Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xin Hou
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Marine Fisheries Development Center of Guangdong Province, Huizhou, China
| |
Collapse
|
8
|
Heinosalo T, Saarinen N, Poutanen M. Role of hydroxysteroid (17beta) dehydrogenase type 1 in reproductive tissues and hormone-dependent diseases. Mol Cell Endocrinol 2019; 489:9-31. [PMID: 30149044 DOI: 10.1016/j.mce.2018.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/14/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022]
Abstract
Abnormal synthesis and metabolism of sex steroids is involved in the pathogenesis of various human diseases, such as endometriosis and cancers arising from the breast and uterus. Steroid biosynthesis is a multistep enzymatic process proceeding from cholesterol to highly active sex steroids via different intermediates. Human Hydroxysteroid (17beta) dehydrogenase 1 (HSD17B1) enzyme shows a high capacity to produce the highly active estrogen, estradiol, from a precursor hormone, estrone. However, the enzyme may also play a role in other steps of the steroid biosynthesis pathway. In this article, we have reviewed the literature on HSD17B1, and summarize the role of the enzyme in hormone-dependent diseases in women as evidenced by preclinical studies.
Collapse
Affiliation(s)
- Taija Heinosalo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| | - Niina Saarinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, Turku Center for Disease Modeling, University of Turku, Turku, Finland; Institute of Medicine, The Sahlgrenska Academy, Gothenburg University, 413 45, Gothenburg, Sweden
| |
Collapse
|
9
|
Konings G, Brentjens L, Delvoux B, Linnanen T, Cornel K, Koskimies P, Bongers M, Kruitwagen R, Xanthoulea S, Romano A. Intracrine Regulation of Estrogen and Other Sex Steroid Levels in Endometrium and Non-gynecological Tissues; Pathology, Physiology, and Drug Discovery. Front Pharmacol 2018; 9:940. [PMID: 30283331 PMCID: PMC6157328 DOI: 10.3389/fphar.2018.00940] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022] Open
Abstract
Our understanding of the intracrine (or local) regulation of estrogen and other steroid synthesis and degradation expanded in the last decades, also thanks to recent technological advances in chromatography mass-spectrometry. Estrogen responsive tissues and organs are not passive receivers of the pool of steroids present in the blood but they can actively modify the intra-tissue steroid concentrations. This allows fine-tuning the exposure of responsive tissues and organs to estrogens and other steroids in order to best respond to the physiological needs of each specific organ. Deviations in such intracrine control can lead to unbalanced steroid hormone exposure and disturbances. Through a systematic bibliographic search on the expression of the intracrine enzymes in various tissues, this review gives an up-to-date view of the intracrine estrogen metabolisms, and to a lesser extent that of progestogens and androgens, in the lower female genital tract, including the physiological control of endometrial functions, receptivity, menopausal status and related pathological conditions. An overview of the intracrine regulation in extra gynecological tissues such as the lungs, gastrointestinal tract, brain, colon and bone is given. Current therapeutic approaches aimed at interfering with these metabolisms and future perspectives are discussed.
Collapse
Affiliation(s)
- Gonda Konings
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Linda Brentjens
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Bert Delvoux
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Karlijn Cornel
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | | | - Marlies Bongers
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Roy Kruitwagen
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Sofia Xanthoulea
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Andrea Romano
- GROW–School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
10
|
Järvensivu P, Heinosalo T, Hakkarainen J, Kronqvist P, Saarinen N, Poutanen M. HSD17B1 expression induces inflammation-aided rupture of mammary gland myoepithelium. Endocr Relat Cancer 2018; 25:393-406. [PMID: 29371331 DOI: 10.1530/erc-17-0476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 01/11/2023]
Abstract
Hydroxysteroid (17-beta) dehydrogenase type 1 (HSD17B1) converts low-active estrogen estrone to highly active estradiol. Estradiol is necessary for normal postpubertal mammary gland development; however, elevated estradiol levels increase mammary tumorigenesis. To investigate the significance of the human HSD17B1 enzyme in the mammary gland, transgenic mice universally overexpressing human HSD17B1 were used (HSD17B1TG mice). Mammary glands obtained from HSD17B1TG females at different ages were investigated for morphology and histology, and HSD17B1 activity and estrogen receptor activation in mammary gland tissue were assessed. To study the significance of HSD17B1 enzyme expression locally in mammary gland tissue, HSD17B1-expressing mammary epithelium was transplanted into cleared mammary fat pads of wild-type females, and the effects on mammary gland estradiol production, epithelial cells and the myoepithelium were investigated. HSD17B1TG females showed increased estrone to estradiol conversion and estrogen-response element-driven estrogen receptor signaling in mammary gland tissue, and they showed extensive lobuloalveolar development that was further enhanced by age along with an increase in serum prolactin concentrations. At old age, HSD17B1TG females developed mammary cancers. Mammary-restricted HSD17B1 expression induced lesions at the sites of ducts and alveoli, accompanied by peri- and intraductal inflammation and disruption of the myoepithelial cell layer. The lesions were shown to be estrogen dependent, as treatment with an antiestrogen, ICI 182,780, starting when lesions were already established reversed the phenotype. These data elucidate the ability of human HSD17B1 to enhance estrogen action in the mammary gland in vivo and indicate that HSD17B1 is a factor inducing phenotypic alterations associated with mammary tumorigenesis.
Collapse
Affiliation(s)
- Päivi Järvensivu
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Taija Heinosalo
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Janne Hakkarainen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Pauliina Kronqvist
- Institute of Biomedicine, Research Center for Cancer, Infections and Immunity, University of Turku and Department of Pathology, Turku University Hospital, Turku, Finland
| | - Niina Saarinen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| |
Collapse
|