1
|
Singh RP, Kaur T. HRMAS-NMR and simulation study of the self-assembly of surfactants on carbon nanotubes. Phys Chem Chem Phys 2023; 25:12900-12913. [PMID: 37165884 DOI: 10.1039/d2cp03762a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Polyethoxylated surfactants, such as those of the Tween and Pluronic series, are commonly used to disperse carbon nanotubes (CNTs) and other nanoparticles. However, the current understanding of the nature of interactions between these surfactants and CNTs is limited. The nature of the interactions between surfactants (Tween-80 [T80] and Pluronic F68 [PF68]) and CNTs was investigated using high-resolution magic angle spinning nuclear magnetic resonance (HRMAS-NMR) and coarse-grained molecular dynamics (MD) simulations. HRMAS-NMR revealed that T80 molecules interact with single-walled CNTs (SWCNTs) and multi-walled CNTs (MWCNTs) via the oleyl chain, whereas PF68 molecules interact with the surface of SWCNTs and MWCNTs via the polypropylene oxide residues. The polyethylene oxide chains were oriented towards the external aqueous environment. The HRMAS-NMR results were supported by MD simulations, and the latter provided further insights into the nature of the interactions.
Collapse
Affiliation(s)
- Raman Preet Singh
- Department of Pharmaceutical Sciences, Government Polytechnic College for Girls, Patiala, PB, 147 001, India.
| | - Taranpreet Kaur
- Department of Biotechnology, Government Mohindra College, Patiala, PB, 147 001, India
| |
Collapse
|
2
|
Kuperkar K, Patel D, Atanase LI, Bahadur P. Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles. Polymers (Basel) 2022; 14:4702. [PMID: 36365696 PMCID: PMC9657626 DOI: 10.3390/polym14214702] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 07/26/2023] Open
Abstract
Self-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic patterns proposed as a dominant tool for the 'bottom-up' fabrication of nanomaterials with different levels of ordering. The present review article focuses on the recent updates to the self-association of amphiphilic block copolymers in aqueous media into varied core-shell morphologies. We briefly describe the block copolymers, their types, microdomain formation in bulk and micellization in selective solvents. We also discuss the characteristic features of block copolymers nanoaggregates viz., polymer micelles (PMs) and polymersomes. Amphiphilic block copolymers (with a variety of hydrophobic blocks and hydrophilic blocks; often polyethylene oxide) self-assemble in water to micelles/niosomes similar to conventional nonionic surfactants with high drug loading capacity. Double hydrophilic block copolymers (DHBCs) made of neutral block-neutral block or neutral block-charged block can transform one block to become hydrophobic under the influence of a stimulus (physical/chemical/biological), and thus induced amphiphilicity and display self-assembly are discussed. Different kinds of polymer micelles (viz. shell and core-cross-linked, core-shell-corona, schizophrenic, crew cut, Janus) are presented in detail. Updates on polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are also provided. Polyion complexes (PICs) and polyion complex micelles (PICMs) are discussed. Applications of these block copolymeric micelles and polymersomes as nanocarriers in drug delivery systems are described.
Collapse
Affiliation(s)
- Ketan Kuperkar
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Dhruvi Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology (SVNIT), Ichchhanath, Surat 395 007, Gujarat, India
| | - Leonard Ionut Atanase
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University (VNSGU), Surat 395 007, Gujarat, India
| |
Collapse
|
3
|
Mondal J, An JM, Surwase SS, Chakraborty K, Sutradhar SC, Hwang J, Lee J, Lee YK. Carbon Nanotube and Its Derived Nanomaterials Based High Performance Biosensing Platform. BIOSENSORS 2022; 12:731. [PMID: 36140116 PMCID: PMC9496036 DOI: 10.3390/bios12090731] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022]
Abstract
After the COVID-19 pandemic, the development of an accurate diagnosis and monitoring of diseases became a more important issue. In order to fabricate high-performance and sensitive biosensors, many researchers and scientists have used many kinds of nanomaterials such as metal nanoparticles (NPs), metal oxide NPs, quantum dots (QDs), and carbon nanomaterials including graphene and carbon nanotubes (CNTs). Among them, CNTs have been considered important biosensing channel candidates due to their excellent physical properties such as high electrical conductivity, strong mechanical properties, plasmonic properties, and so on. Thus, in this review, CNT-based biosensing systems are introduced and various sensing approaches such as electrochemical, optical, and electrical methods are reported. Moreover, such biosensing platforms showed excellent sensitivity and high selectivity against not only viruses but also virus DNA structures. So, based on the amazing potential of CNTs-based biosensing systems, healthcare and public health can be significantly improved.
Collapse
Affiliation(s)
- Jagannath Mondal
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jeong Man An
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, Korea
| | - Sachin S. Surwase
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Kushal Chakraborty
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju 27469, Korea
| | - Sabuj Chandra Sutradhar
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Joon Hwang
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Aeronautical & Mechanical Design Engineering, Korea National University of Transportation, Chungju 27469, Korea
| | - Jaewook Lee
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
| | - Yong-Kyu Lee
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea
- 4D Convergence Technology Institute, Korea National University of Transportation, Jungpyeong 27909, Korea
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea
| |
Collapse
|
4
|
Duskey JT, Rinaldi A, Ottonelli I, Caraffi R, De Benedictis CA, Sauer AK, Tosi G, Vandelli MA, Ruozi B, Grabrucker AM. Glioblastoma Multiforme Selective Nanomedicines for Improved Anti-Cancer Treatments. Pharmaceutics 2022; 14:1450. [PMID: 35890345 PMCID: PMC9325049 DOI: 10.3390/pharmaceutics14071450] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is a devastating disease with a low survival rate and few efficacious treatment options. The fast growth, late diagnostics, and off-target toxicity of currently used drugs represent major barriers that need to be overcome to provide a viable cure. Nanomedicines (NMeds) offer a way to overcome these pitfalls by protecting and loading drugs, increasing blood half-life, and being targetable with specific ligands on their surface. In this study, the FDA-approved polymer poly (lactic-co-glycolic) acid was used to optimise NMeds that were surface modified with a series of potential GBM-specific ligands. The NMeds were fully characterised for their physical and chemical properties, and then in vitro testing was performed to evaluate cell uptake and GBM cell specificity. While all targeted NMeds showed improved uptake, only those decorated with the-cell surface vimentin antibody M08 showed specificity for GBM over healthy cells. Finally, the most promising targeted NMed candidate was loaded with the well-known chemotherapeutic, paclitaxel, to confirm targeting and therapeutic effects in C6 GBM cells. These results demonstrate the importance of using well-optimised NMeds targeted with novel ligands to advance delivery and pharmaceutical effects against diseased cells while minimising the risk for nearby healthy cells.
Collapse
Affiliation(s)
- Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Arianna Rinaldi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Caraffi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | | | - Ann Katrin Sauer
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.A.D.B.); (A.K.S.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Andreas Martin Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.A.D.B.); (A.K.S.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
5
|
Oliveira ER, Fayer L, Zanette RSS, Ladeira LO, de Oliveira LFC, Maranduba CMC, Brandão HM, Munk M. Cytocompatibility of carboxylated multi-wall carbon nanotubes in stem cells from human exfoliated deciduous teeth. NANOTECHNOLOGY 2021; 33:065101. [PMID: 34700304 DOI: 10.1088/1361-6528/ac335b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Carboxylated multi-wall carbon nanotube (MWCNT-COOH) presents unique properties due to nanoscale dimensions and permits a broad range of applications in different fields, such as bone tissue engineering and regenerative medicine. However, the cytocompatibility of MWCNT-COOH with human stem cells is poorly understood. Thus, studies elucidating how MWCNT-COOH affects human stem cell viability are essential to a safer application of nanotechnologies. Using stem cells from the human exfoliated deciduous teeth model, we have evaluated the effects of MWCNT-COOH on cell viability, oxidative cell stress, and DNA integrity. Results demonstrated that despite the decreased metabolism of mitochondria, MWCNT-COOH had no toxicity against stem cells. Cells maintained viability after MWCNT-COOH exposure. MWCNT-COOH did not alter the superoxide dismutase activity and did not cause genotoxic effects. The present findings are relevant to the potential application of MWCNT-COOH in the tissue engineering and regenerative medicine fields.
Collapse
Affiliation(s)
- Eduarda R Oliveira
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Brazil
| | - Leonara Fayer
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Brazil
| | - Rafaella S S Zanette
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Brazil
| | - Luiz O Ladeira
- Nanomaterials Laboratory, Department of Physics, Federal University of Minas Gerais, Brazil
| | - Luiz F C de Oliveira
- Nucleus of Spectroscopy and Molecular Structure, Department of Chemistry, Federal University of Juiz de Fora, Brazil
| | - Carlos M C Maranduba
- Laboratory of Human Genetics and Cell Therapy, Department of Biology, Federal University of Juiz de Fora, Brazil
| | - Humberto M Brandão
- Laboratory of Nanotechnology, Brazilian Agricultural Research Corporation- Embrapa Dairy Cattle, Brazil
| | - Michele Munk
- Laboratory of Nanobiotechnology and Nanotoxicology, Department of Biology, Federal University of Juiz de Fora, Brazil
| |
Collapse
|
6
|
Lee SJ, Zhu W, Nowicki M, Lee G, Heo DN, Kim J, Zuo YY, Zhang LG. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. J Neural Eng 2019; 15:016018. [PMID: 29064377 DOI: 10.1088/1741-2552/aa95a5] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Nanomaterials, such as carbon nanotubes (CNTs), have been introduced to modify the surface properties of scaffolds, thus enhancing the interaction between the neural cells and biomaterials. In addition to superior electrical conductivity, CNTs can provide nanoscale structures similar to those present in the natural neural environment. The primary objective of this study is to investigate the proliferative capability and differential potential of neural stem cells (NSCs) seeded on a CNT incorporated scaffold. APPROACH Amine functionalized multi-walled carbon nanotubes (MWCNTs) were incorporated with a PEGDA polymer to provide enhanced electrical properties as well as nanofeatures on the surface of the scaffold. A stereolithography 3D printer was employed to fabricate a well-dispersed MWCNT-hydrogel composite neural scaffold with a tunable porous structure. 3D printing allows easy fabrication of complex 3D scaffolds with extremely intricate microarchitectures and controlled porosity. MAIN RESULTS Our results showed that MWCNT-incorporated scaffolds promoted neural stem cell proliferation and early neuronal differentiation when compared to those scaffolds without the MWCNTs. Furthermore, biphasic pulse stimulation with 500 µA current promoted neuronal maturity quantified through protein expression analysis by quantitative polymerase chain reaction. SIGNIFICANCE Results of this study demonstrated that an electroconductive MWCNT scaffold, coupled with electrical stimulation, may have a synergistic effect on promoting neurite outgrowth for therapeutic application in nerve regeneration.
Collapse
Affiliation(s)
- Se-Jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang Y, Yang L, Yan L, Wang G, Liu A. Recent advances in the synthesis of spherical and nanoMOF-derived multifunctional porous carbon for nanomedicine applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Porzionato A, Barbon S, Stocco E, Dalzoppo D, Contran M, De Rose E, Parnigotto PP, Macchi V, Grandi C, De Caro R. Development of Oxidized Polyvinyl Alcohol-Based Nerve Conduits Coupled with the Ciliary Neurotrophic Factor. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1996. [PMID: 31234386 PMCID: PMC6631399 DOI: 10.3390/ma12121996] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/09/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022]
Abstract
Functionalized synthetic conduits represent a promising strategy to enhance peripheral nerve regeneration by guiding axon growth while delivering therapeutic neurotrophic factors. In this work, hollow nerve conduits made of polyvinyl alcohol partially oxidized with bromine (OxPVA_Br2) and potassium permanganate (OxPVA_KMnO4) were investigated for their structural/biological properties and ability to absorb/release the ciliary neurotrophic factor (CNTF). Chemical oxidation enhanced water uptake capacity of the polymer, with maximum swelling index of 60.5% ± 2.5%, 71.3% ± 3.6% and 19.5% ± 4.0% for OxPVA_Br2, OxPVA_KMnO4 and PVA, respectively. Accordingly, hydrogel porosity increased from 15.27% ± 1.16% (PVA) to 62.71% ± 8.63% (OxPVA_Br2) or 77.50% ± 3.39% (OxPVA_KMnO4) after oxidation. Besides proving that oxidized PVA conduits exhibited mechanical resistance and a suture holding ability, they did not exert a cytotoxic effect on SH-SY5Y and Schwann cells and biodegraded over time when subjected to enzymatic digestion, functionalization with CNTF was performed. Interestingly, higher amounts of neurotrophic factor were detected in the lumen of OxPVA_Br2 (0.22 ± 0.029 µg) and OxPVA_KMnO4 (0.29 ± 0.033 µg) guides rather than PVA (0.11 ± 0.021 µg) tubular scaffolds. In conclusion, we defined a promising technology to obtain drug delivery conduits based on functionalizable oxidized PVA hydrogels.
Collapse
Affiliation(s)
- Andrea Porzionato
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy.
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy.
| | - Silvia Barbon
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy.
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy.
| | - Elena Stocco
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy.
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy.
| | - Daniele Dalzoppo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35128 Padova, Italy.
| | - Martina Contran
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy.
| | - Enrico De Rose
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy.
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling (T.E.S.) Onlus, 35030 Padua, Italy.
| | - Veronica Macchi
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy.
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy.
| | - Claudio Grandi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35128 Padova, Italy.
| | - Raffaele De Caro
- Department of Neurosciences, Section of Human Anatomy, University of Padova, Via A. Gabelli 65, 35121 Padova, Italy.
- L.i.f.e.L.a.b. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, Via N. Giustiniani 2, 35128 Padova, Italy.
| |
Collapse
|
9
|
Song G, Guo X, Zong X, DU L, Zhao J, Lai C, Jin X. Toxicity of functionalized multi-walled carbon nanotubes on bone mesenchymal stem cell in rats. Dent Mater J 2018; 38:127-135. [PMID: 30449827 DOI: 10.4012/dmj.2017-313] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Carbon nanotubes (CNTs) are promising biomaterials in the medical field, especially in tissue engineering of bone. However, the use of CNTs is largely confined by its unfavorable solubility and toxicity. To improve solubility and biocompatibility of CNTs, functionalization has been proven to be an effective strategy. Although various functionalized CNTs have been extensively studied, only few CNTs have the desired qualities. We compared the toxicity of several promising functionalized multi-walled carbon nanotubes (MWCNTs) on rat bone-marrow derived stem cells (BMSCs). Cell experiments showed that while acid oxidation (AO)-MWCNTs and Raw-MWCNTs exhibited significant toxicity on BMSCs, polyethylene glycols (PEG)-MWCNTs and hydroxyapatit (HA)-MWCNTs had favorable biocompatibility and a trivial effect on BMSCs. Possible mechanisms for the cytotoxicity on BMSCs included mitochondrisome and deoxyribonucleic acid damage, increased oxidative stress and damaging of cellular membranes. Our data indicated that PEG-MWCNTs and HA-MWCNTs may be promising materials for bio-related applications.
Collapse
Affiliation(s)
- Guodong Song
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xiaoshuang Guo
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xianlei Zong
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Le DU
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Jingyi Zhao
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Chenzhi Lai
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| | - Xiaolei Jin
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
| |
Collapse
|
10
|
Chen M, Zhou S, Zhu Y, Sun Y, Zeng G, Yang C, Xu P, Yan M, Liu Z, Zhang W. Toxicity of carbon nanomaterials to plants, animals and microbes: Recent progress from 2015-present. CHEMOSPHERE 2018; 206:255-264. [PMID: 29753288 DOI: 10.1016/j.chemosphere.2018.05.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Nanotechnology has gained significant development over the past decades, which led to the revolution in the fields of information, medicine, industry, food security and aerospace aviation. Nanotechnology has become a new research hot spot in the world. However, we cannot only pay attention to its benefit to the society and economy, because its wide use has been bringing potential environmental and health effects that should be noticed. This paper reviews the recent progress from 2015-present in the toxicity of various carbon nanomaterials to plants, animals and microbes, and lays the foundation for further study on the environmental and ecological risks of carbon nanomaterials.
Collapse
Affiliation(s)
- Ming Chen
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Shuang Zhou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Yingzhu Sun
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ming Yan
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|