1
|
Luo D, Lin Y, Chen J, Huang X, Xie Y, Liu Y, Ni S, Su Z, Li Y, Zhang Z. Stereoisomers of octahydrocurcumin, the hydrogenated metabolites of curcumin, display stereoselective activity on the CYP2E1 enzyme in L-02 cells. Food Funct 2023; 14:2822-2835. [PMID: 36866793 DOI: 10.1039/d2fo03892g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
As the final hydrogenated metabolite of curcumin, octahydrocurcumin (OHC) exhibits increased powerful bioactivities. The chiral and symmetric chemical structure indicated that there were two OHC stereoisomers, (3R,5S)-octahydrocurcumin (Meso-OHC) and (3S,5S)-octahydrocurcumin ((3S,5S)-OHC), which may induce different effects on metabolic enzymes and bioactivities. Thus, we detected OHC stereoisomers from rat metabolites (blood, liver, urine and feces) after oral administration of curcumin. In addition, OHC stereoisomers were prepared and then their different influences on cytochrome P450 enzymes (CYPs) and UDP-glucuronyltransferases (UGTs) in L-02 cells were tested to explore the potential interaction and different bioactivities. Our results proved that curcumin could be metabolised into OHC stereoisomers first. In addition, Meso-OHC and (3S,5S)-OHC exhibited slight induction or inhibition effects on CYP1A2, CYP2A6, CYP2C8, CYP2C9, CYP3A4 and UGTs. Furthermore, Meso-OHC exhibited more intensive inhibition toward CYP2E1 expression than (3S,5S)-OHC, ascribed to the different mode of binding to the enzyme protein (P < 0.05), which finally induced more effective liver protection effects in acetaminophen-induced L-02 cell injury.
Collapse
Affiliation(s)
- Dandan Luo
- Department of clinical pharmacy, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, P.R. China
| | - Yinsi Lin
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Xiaoqi Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Youliang Xie
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Suiqin Ni
- Department of clinical pharmacy, Guangzhou First People's Hospital, South China University of Technology, Guangzhou 510180, P.R. China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P.R. China
| | - Zhenbiao Zhang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Tea Resources Innovation & Utilization, Guangzhou 510640, China
| |
Collapse
|
2
|
Verma SK, Biswas A, Kumar M, Mishra A, Choudhury AD, Agrawal S, Sanap SN, Bisen AC, Sharma AK, Panda G, Bhatta RS. Preclinical pharmacokinetics, CYP phenotyping, and tissue distribution study of novel anti-breast cancer candidate S-011-1559. Xenobiotica 2022; 52:476-487. [PMID: 35819259 DOI: 10.1080/00498254.2022.2101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
S-011-1559 is a tyrosine-derived novel benzoxazine CDRI molecule targeted to the estrogen-related receptor (ER-α/β) modulator in breast cancer. To explore the pharmacokinetics of S-011-1559, a selective and sensitive bioanalytical method using LC-MS/MS was established and validated in different biological matrices of female rats.Blood-to-plasma ratio and plasma protein binding (PPB) of S-011-1559 was found to be <1 and >97% in both rats and humans respectively. The human serum albumin (HSA) and alpha-1-acid glycoprotein (AAG) binding was found in the range of >68 to 45% and >14% respectively. Half-life and intrinsic clearance by microsomal stability study were found to be 28.83 min and 0.05 mL/min/mg in rats, 78.35 min and 0.036 mL/min/mg in humans respectively. The IC50 value of S-011-1559 against CYP isoforms was revealed to moderately inhibit CYP2D6 by a reversible noncompetitive mechanism.Tissue distribution of S-011-1559 on single intravenous injection at 2mg/kg was found in the order of C lungs > C mammary gland > C spleen > C heart > C kidney > C liver > C brain.The data from the present study provides crucial information about S-011-1559 for further development as a novel potential drug candidate in modulating ER-α/β receptors of lung and breast neoplasia.
Collapse
Affiliation(s)
- Sarvesh Kumar Verma
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Jawaharlal Nehru University, New Delhi, 110067, India
| | - Arpon Biswas
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Jawaharlal Nehru University, New Delhi, 110067, India
| | - Mukesh Kumar
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anjali Mishra
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhijit Deb Choudhury
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sristi Agrawal
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sachin Nashik Sanap
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Amol Chhatrapati Bisen
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ashok Kumar Sharma
- Division of medicinal and process chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Gautam Panda
- Division of medicinal and process chemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Rabi Sankar Bhatta
- Pharmaceutics and Pharmacokinetic Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| |
Collapse
|
3
|
de Albuquerque NCP, Carrão DB, Habenschus MD, Fonseca FS, Moreira da Silva R, Lopes NP, Rocha BA, Barbosa Júnior F, de Oliveira ARM. Risk assessment of the chiral pesticide fenamiphos in a human model: Cytochrome P450 phenotyping and inhibition studies. Food Chem Toxicol 2020; 146:111826. [PMID: 33127494 DOI: 10.1016/j.fct.2020.111826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022]
Abstract
Fenamiphos (FS) is a chiral organophosphate pesticide that is used to control nematodes in several crops. Enantioselective differences may be observed in FS activity, bioaccumulation, metabolism, and toxicity. Humans may be exposed to FS through occupational and chronic (food, water, and environmental) exposure. FS may cause undesirable CYP450 pesticide-drug interactions, which may impact human health. Here, the CYP450 isoforms involved in enantioselective FS metabolism were identified, and CYP450 inhibition by rac-FS, (+)-FS, and (-)-FS was evaluated to obtain reliable information on enantioselective FS risk assessment in humans. CYP3A4 and CYP2E1 metabolized FS enantiomers, and CYP2B6 may participate in rac-FS metabolism. In addition, rac-FS, (+)-FS, and (-)-FS were reversible competitive CYP1A2, CYP2C19, and CYP3A4/5 inhibitors. High stereoselective inhibition potential was verified; rac-FS and (-)-FS strongly inhibited and (+)-FS moderately inhibited CYP1A2. Stereoselective differences were also detected for CYP2C19 and CYP3A4/5, which were strongly inhibited by rac-FS, (+)-FS, and (-)-FS. Our results indicated a high potential for CYP450 drug-pesticide interactions, which may affect human health. The lack of stereoselective research on the effect of chiral pesticides on the activity of CYP450 isoforms highlights the importance of assessing the risks of such pesticides in humans.
Collapse
Affiliation(s)
- Nayara Cristina Perez de Albuquerque
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Daniel Blascke Carrão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Maísa Daniela Habenschus
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Franciele Saraiva Fonseca
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Moreira da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Bruno Alves Rocha
- Departamento de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, 09972-270, Campus Diadema, SP, Brazil
| | - Fernando Barbosa Júnior
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Ribeirão Preto, SP, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
4
|
Sharma A, Gour A, Bhatt S, Rath SK, Malik TA, Dogra A, Sangwan PL, Koul S, Abdullah ST, Singh G, Nandi U. Effect of IS01957, a para-coumaric acid derivative on pharmacokinetic modulation of diclofenac through oral route for augmented efficacy. Drug Dev Res 2019; 80:948-957. [PMID: 31318064 DOI: 10.1002/ddr.21574] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/13/2019] [Accepted: 06/29/2019] [Indexed: 01/13/2023]
Abstract
Diclofenac is one of the world's largest selling nonsteroidal anti-inflammatory drugs. The major concerns related to oral diclofenac therapy are gastrointestinal and cardiovascular side effects for which explicitly emphasis has been given to use it at lowest effective dose for the shortest duration. On the other hand, IS01957 has been designed under the purview of anti-inflammatory drug and bioavailability enhancer. IS01957 have dual action on inflammation and nociception with acceptable safety profile. In the quest for a suitable combination with improved therapeutic efficacy and better tolerability, pharmacodynamic and pharmacokinetic interaction studies were performed for diclofenac with or without IS01957 in mice model. Results showed that IS01957 enhanced both anti-inflammatory effect and plasma concentration of diclofenac upon concomitant oral administration. These interesting results steered to enumerate the possible role of IS01957 towards diclofenac pharmacokinetics through a panel of mechanistic investigations: (a) BCRP dependent ATPase activity was markedly interfered by IS01957; (b) IS01957 increased the intestinal permeability of diclofenac in the single pass in-situ perfusion model; (c) IS01957 inhibited the CYP2C9 catalyzed diclofenac 4-hydroxylation in human liver microsomes. Immunoblotting results suggest that diclofenac action was improved significantly in the presence of IS01957 involving MAPK pathways. Finally acute gastric damage study showed that IS01957 in combination with diclofenac was better to improve the desired PGE2 level as compare to alone. In nutshell, IS01957 have potential to augment the efficacy of diclofenac through pharmacokinetic modulation. Further investigations are required for dose reduction of diclofenac to combat its liabilities before going into clinical setting.
Collapse
Affiliation(s)
- Anjna Sharma
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Abhishek Gour
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Shipra Bhatt
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Santosh K Rath
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Tanveer A Malik
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Ashish Dogra
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Payare L Sangwan
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Surrinder Koul
- Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Sheikh Tasduq Abdullah
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Gurdarshan Singh
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| | - Utpal Nandi
- PK-PD, Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, India
| |
Collapse
|
5
|
Carrão DB, Habenchus MD, de Albuquerque NCP, da Silva RM, Lopes NP, de Oliveira ARM. In vitro inhibition of human CYP2D6 by the chiral pesticide fipronil and its metabolite fipronil sulfone: Prediction of pesticide-drug interactions. Toxicol Lett 2019; 313:196-204. [PMID: 31278966 DOI: 10.1016/j.toxlet.2019.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
Abstract
Fipronil is a chiral insecticide employed worldwide in crops, control of public hygiene and control of veterinary pests. Humans can be exposed to fipronil through occupational, food, and environmental contamination. Therefore, the risk assessment of fipronil in humans is important to protect human health. Fipronil sulfone is the major metabolite formed during fipronil metabolism by humans. Since the CYP450 enzymes are the main ones involved in drug metabolism, the evaluation of their inhibition by fipronil and its main metabolite is important to predict drug-pesticide interactions. The aim of this work was to investigate the inhibition effects of rac-fipronil, S-fipronil, R-fipronil and fipronil sulfone on the main human CYP450 isoforms. The results showed that CYP2D6 is the only CYP450 isoform inhibited by these xenobiotics. In addition, no enantioselective differences were observed in the inhibition of CYP450 isoforms by fipronil and its individuals' enantiomers. Rac-fipronil, S-fipronil and R-fipronil are moderate CYP2D6 inhibitors showing a competitive inhibition profile. On the other hand, the metabolite fipronil sulfone showed to be a strong inhibitor of CYP2D6 also by competitive inhibition. These results highlight the importance of metabolite evaluation on pesticide safety since the metabolism of fipronil into fipronil sulfone increases the risk of pesticide-drug interactions for drugs metabolized by CYP2D6.
Collapse
Affiliation(s)
- Daniel Blascke Carrão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Maísa Daniela Habenchus
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Nayara Cristina Perez de Albuquerque
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Moreira da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
6
|
Subterminal hydroxyeicosatetraenoic acids: Crucial lipid mediators in normal physiology and disease states. Chem Biol Interact 2018; 299:140-150. [PMID: 30543782 DOI: 10.1016/j.cbi.2018.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (P450) enzymes are superfamily of monooxygenases that hold the utmost diversity of substrate structures and catalytic reaction forms amongst all other enzymes. P450 enzymes metabolize arachidonic acid (AA) to a wide array of biologically active lipid mediators. P450-mediated AA metabolites have a significant role in normal physiological and pathophysiological conditions, hence they could be promising therapeutic targets in different disease states. P450 monooxygenases mediate the (ω-n)-hydroxylation reactions, which involve the introduction of a hydroxyl group to the carbon skeleton of AA, forming subterminal hydroxyeicosatetraenoic acids (HETEs). In the current review, we specified different P450 isozymes implicated in the formation of subterminal HETEs in varied tissues. In addition, we focused on the role of subterminal HETEs namely 19-HETE, 16-HETE, 17-HETE and 18-HETE in different organs, importantly the kidneys, heart, liver and brain. Furthermore, we highlighted their role in hypertension, acute coronary syndrome, diabetic retinopathy, non-alcoholic fatty liver disease, ischemic stroke as well as inflammatory diseases. Since each member of subterminal HETEs exist as R and S enantiomer, we addressed the issue of stereoselectivity related to the formation and differential effects of these enantiomers. In conclusion, elucidation of different roles of subterminal HETEs in normal and disease states leads to identification of novel therapeutic targets and development of new therapeutic modalities in different disease states.
Collapse
|
7
|
Shoieb SM, El-Sherbeni AA, El-Kadi AOS. Identification of 19-(S/R)Hydroxyeicosatetraenoic Acid as the First Endogenous Noncompetitive Inhibitor of Cytochrome P450 1B1 with Enantioselective Activity. Drug Metab Dispos 2018; 47:67-70. [DOI: 10.1124/dmd.118.084657] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/08/2018] [Indexed: 11/22/2022] Open
|
8
|
Bhateria M, Rachumallu R, Yerrabelli S, Saxena AK, Bhatta RS. Insight into stereoselective disposition of enantiomers of a potent antithrombotic agent, S002-333 following administration of the racemic compound to mice. Eur J Pharm Sci 2017; 101:107-114. [DOI: 10.1016/j.ejps.2017.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 11/30/2022]
|
9
|
Tan S, Dong Z, Zhang J, Efferth T, Fu Y, Hua X. Cytochrome P450 reaction phenotyping and inhibition and induction studies of pinostrobin in human liver microsomes and hepatocytes. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Shengnan Tan
- Key Laboratory of Forest Plant Ecology, Ministry of Education; Northeast Forestry University; 150040 Harbin PR China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education; Northeast Forestry University; 150040 Harbin PR China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education; Northeast Forestry University; Harbin PR China
| | - Zhimin Dong
- Tianjin Animal Science and Veterinary Research Institute; Tianjin PR China
- Veteria Veterinary Research Institute; Tianjin PR China
| | - Jiashuo Zhang
- College of Life Science; Northeast Forestry University; Harbin PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology; Institute of Pharmacy, University of Mainz; Mainz Germany
| | - Yujie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education; Northeast Forestry University; 150040 Harbin PR China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education; Northeast Forestry University; 150040 Harbin PR China
| | - Xin Hua
- Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology; Harbin Veterinary Research Institute,Chinese Academy of Agricultural Sciences; Harbin PR China
| |
Collapse
|
10
|
Bhunia SS, Misra A, Khan IA, Gaur S, Jain M, Singh S, Saxena A, Hohlfield T, Dikshit M, Saxena AK. Novel Glycoprotein VI Antagonists as Antithrombotics: Synthesis, Biological Evaluation, and Molecular Modeling Studies on 2,3-Disubstituted Tetrahydropyrido(3,4-b)indoles. J Med Chem 2016; 60:322-337. [DOI: 10.1021/acs.jmedchem.6b01360] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shome S. Bhunia
- Academy of Scientific and Innovative Research, New Delhi 110 025, India
| | | | | | | | | | | | - Aaruni Saxena
- Institut
für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Thomas Hohlfield
- Institut
für Pharmakologie und Klinische Pharmakologie, Heinrich-Heine-Universität Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | | | - Anil K. Saxena
- Academy of Scientific and Innovative Research, New Delhi 110 025, India
| |
Collapse
|