1
|
Huang Q, Wang J, Ning H, Liu W, Han X. Integrin β1 in breast cancer: mechanisms of progression and therapy. Breast Cancer 2024:10.1007/s12282-024-01635-w. [PMID: 39343856 DOI: 10.1007/s12282-024-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
The therapy for breast cancer (BC), to date, still needs improvement. Apart from traditional therapy methods, biological therapy being explored opens up a novel avenue for BC patients. Integrin β1 (ITGβ1), one of the largest subgroups in integrin family, is a key player in cancer evolution and therapy. Recent researches progress in the relationship of ITGβ1 level and BC, finding that ITGβ1 expression evidently concerns BC progression. In this chapter, we outline diverse ITGβ1-based mechanisms regarding to the promoted effect of ITGβ1 on BC cell structure rearrangement and malignant phenotype behaviors, the unfavorable patient prognosis conferred by ITGβ1, BC therapy tolerance induced by ITGβ1, and lastly novel inhibitors targeting ITGβ1 for BC therapy. As an effective biomarker, ITGβ1 undoubtedly emerges one of targeted-therapy opportunities of BC patients in future. It is a necessity focusing on scientific and large-scale clinical trials on the validation of targeted-ITGβ1 drugs for BC patients.
Collapse
Affiliation(s)
- Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Liu W, Huang X, Luo W, Liu X, Chen W. The Role of Paxillin Aberrant Expression in Cancer and Its Potential as a Target for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24098245. [PMID: 37175948 PMCID: PMC10179295 DOI: 10.3390/ijms24098245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
Paxillin is a multi-domain adaptor protein. As an important member of focal adhesion (FA) and a participant in regulating cell movement, paxillin plays an important role in physiological processes such as nervous system development, embryonic development, and vascular development. However, increasing evidence suggests that paxillin is aberrantly expressed in many cancers. Many scholars have also recognized that the abnormal expression of paxillin is related to the prognosis, metastases, invasion, survival, angiogenesis, and other aspects of malignant tumors, suggesting that paxillin may be a potential cancer therapeutic target. Therefore, the study of how aberrant paxillin expression affects the process of tumorigenesis and metastasis will help to develop more efficacious antitumor drugs. Herein, we review the structure of paxillin and its function and expression in tumors, paying special attention to the multifaceted effects of paxillin on tumors, the mechanism of tumorigenesis and progression, and its potential role in tumor therapy. We also hope to provide a reference for the clinical prognosis and development of new tumor therapeutic targets.
Collapse
Affiliation(s)
- Weixian Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinxian Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weizhao Luo
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| | - Weichun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Guangdong Medical University, Dongguan 523808, China
- Institute of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
3
|
Lisiak N, Dzikowska P, Wisniewska U, Kaczmarek M, Bednarczyk-Cwynar B, Zaprutko L, Rubis B. Biological Activity of Oleanolic Acid Derivatives HIMOXOL and Br-HIMOLID in Breast Cancer Cells Is Mediated by ER and EGFR. Int J Mol Sci 2023; 24:5099. [PMID: 36982173 PMCID: PMC10048893 DOI: 10.3390/ijms24065099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Breast cancer is one of the most frequently observed malignancies worldwide and represents a heterogeneous group of cancers. For this reason, it is crucial to properly diagnose every single case so a specific and efficient therapy can be adjusted. One of the most critical diagnostic parameters evaluated in cancer tissue is the status of the estrogen receptor (ER) and epidermal growth factor receptor (EGFR). Interestingly, the expression of the indicated receptors may be used in a personalized therapy approach. Importantly, the promising role of phytochemicals in the modulation of pathways controlled by ER and EGFR was also demonstrated in several types of cancer. One such biologically active compound is oleanolic acid, but due to poor water solubility and cell membrane permeability that limits its use, alternative derivative compounds were developed. These are HIMOXOL and Br-HIMOLID, which were demonstrated to be capable of inducing apoptosis and autophagy or diminishing the migratory and invasive potential of breast cancer cells in vitro. In our study, we revealed that proliferation, cell cycle, apoptosis, autophagy, and also the migratory potential of HIMOXOL and Br-HIMOLID in breast cancer cells are mediated by ER (MCF7) and EGFR (MDA-MB-231) receptors. These observations make the studied compounds interesting in the context of anticancer strategies.
Collapse
Affiliation(s)
- Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Patrycja Dzikowska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Urszula Wisniewska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Garbary 15 St., 61-866 Poznan, Poland
| | - Barbara Bednarczyk-Cwynar
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 St., 60-780 Poznan, Poland
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 St., 60-780 Poznan, Poland
| | - Blazej Rubis
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806 Poznan, Poland
| |
Collapse
|
4
|
Shen L, Niu M, Lu Y, Cao W, Gao X. Bone Marrow Mesenchymal Stem Cells (BMSC)-Upregulated miR-139 Inhibited the Migration and Invasion of Breast Cancer Cells In Vitro. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
microRNAs exert a crucial impact on tumor biology. However, the biological effect of miR-139 on breast cancer cells remains unclear yet. Here we intend to clarify the effect and mechanism of miR-139 derived from BMSCs on the biological behavior of gastric cancer cells. Breast cancer
cells were divided into BMSC group (mixed culture of BMSC and breast cancer cells 1:1), miR-139 mimics group, si-PXN group and control group followed by analysis of miR-139 level, cell activity by MTT assay and the targeted binding of miR-139 to PXN by luciferase reporter assay. In relative
to control, miR-139 level was significantly declined in gastric cancer cells, while PXN level was elevated and associated with the prognosis. miR-139 was up-regulated by BMSCs or miR-139 mimics, thereby regulating EMT process through targeted inhibition of PCN, and ultimately inhibiting the
activity of breast cancer cells. In conclusion, BMSC co-culture can inhibit PCN by up-regulating miR-139, thereby regulating EMT process and inhibiting breast cancer progression, implying that miR-139 and PXN could be used as therapeutic targets for metastatic breast cancer.
Collapse
Affiliation(s)
- Liandi Shen
- Department of Maternal and Child Health, Jiading Maternal and Child Health Hospital, Shanghai, 201800, China
| | - Mengdi Niu
- Department of Breast and Thyroid, Qingdao Women and Children’s Hospital, Qingdao, Shandong, 266000, China
| | - Yangyong Lu
- Department of Breast and Thyroid, Qingdao Women and Children’s Hospital, Qingdao, Shandong, 266000, China
| | - Weihong Cao
- Department of Breast Disease Clinic, Qingdao University Hospital, Qingdao, Shandong, 266000, China
| | - Xueqiang Gao
- Department of Breast Disease Clinic, Qingdao University Hospital, Qingdao, Shandong, 266000, China
| |
Collapse
|
5
|
Multivariate assessment of anticancer oleanane triterpenoids lipophilicity. J Chromatogr A 2021; 1656:462552. [PMID: 34571283 DOI: 10.1016/j.chroma.2021.462552] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022]
Abstract
Naturally occurring molecules are excellent sources of lead compounds. A series of oleanolic acid (OA) derivatives previously synthesized in our laboratory, which show promising antitumor activity, have been analyzed in terms of lipophilicity evaluation applying chromatographic and computational approaches. Retention data obtained on three reversed-phase liquid chromatography stationary phases (RP-HPLC) and immobilized artificial membrane chromatography (IAM-HPLC) were compared with computational methods using chemometric tools such as cluster analysis, principal component analysis and sum of ranking differences. To investigate the molecular mechanism of retention quantitive structure retention relationship analysis was performed, based on the genetic algorithm coupled with multiple linear regression (GA-MLR). The obtained results suggested that the ionization potential of studied molecules significantly affects their retention in classical RP-HPLC. In IAM-HPLC additionally, polarizability-related descriptors also play an essential role in that process. The lipophilicity indices comparison shows significant differences between the computational lipophilicity and chromatographically determined ones.
Collapse
|
6
|
Oleanolic Acid's Semisynthetic Derivatives HIMOXOL and Br-HIMOLID Show Proautophagic Potential and Inhibit Migration of HER2-Positive Breast Cancer Cells In Vitro. Int J Mol Sci 2021; 22:ijms222011273. [PMID: 34681931 PMCID: PMC8538366 DOI: 10.3390/ijms222011273] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/23/2023] Open
Abstract
Approximately 20–30% of the diagnosed breast cancers overexpress the human epidermal growth factor receptor 2 (HER2). This type of cancer is associated with a more aggressive phenotype; thus, there is a need for the discovery of new compounds that would improve the survival in HER2-positive breast cancer patients. It seems that one of the most promising therapeutic cancer strategies could be based on the biological activity of pentacyclic triterpenes’ derivatives and the best-known representative of this group, oleanolic acid (OA). The biological activity of oleanolic acid and its two semisynthetic derivatives, methyl 3-hydroxyimino-11-oxoolean-12-en-28-oate (HIMOXOL) and 12α-bromo-3-hydroxyimonoolean-28→13-olide (Br-HIMOLID), was assessed in SK-BR-3 breast cancer cells (HER2-positive). Viability tests, cell cycle assessment, evaluation of apoptosis, autophagy, and adhesion/migration processes were performed using MTT, clonogenic, cytofluorometry, Western blot, and qPCR. Both derivatives revealed higher cytotoxicity in studied breast cancer cells than the maternal compound, OA. They also decreased cell viability, induced autophagy, and (when applied in sub-cytotoxic concentrations) decreased the migration of SK-BR-3 cells.This study is the first to report the cytostatic, proautophagic (mTOR/LC3/SQSTM/BECN1 pathway), and anti-migratory (integrin β1/FAK/paxillin pathway) activities of HIMOXOL and Br-HIMOLID in HER2-positive breast cancer cells.
Collapse
|
7
|
Romaniuk-Drapała A, Totoń E, Konieczna N, Machnik M, Barczak W, Kowal D, Kopczyński P, Kaczmarek M, Rubiś B. hTERT Downregulation Attenuates Resistance to DOX, Impairs FAK-Mediated Adhesion, and Leads to Autophagy Induction in Breast Cancer Cells. Cells 2021; 10:cells10040867. [PMID: 33920284 PMCID: PMC8068966 DOI: 10.3390/cells10040867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Telomerase is known to contribute to telomere maintenance and to provide cancer cell immortality. However, numerous reports are showing that the function of the enzyme goes far beyond chromosome ends. The study aimed to explore how telomerase downregulation in MCF7 and MDA-MB-231 breast cancer cells affects their ability to survive. Consequently, sensitivity to drug resistance, proliferation, and adhesion were assessed. The lentiviral-mediated human telomerase reverse transcriptase (hTERT) downregulation efficiency was performed at gene expression and protein level using qPCR and Western blot, respectively. Telomerase activity was evaluated using the Telomeric Repeat Amplification Protocol (TRAP) assay. The study revealed that hTERT downregulation led to an increased sensitivity of breast cancer cells to doxorubicin which was demonstrated in MTT and clonogenic assays. During a long-term doubling time assessment, a decreased population doubling level was observed. Interestingly, it did not dramatically affect cell cycle distribution. hTERT downregulation was accompanied by an alteration in β1-integrin- and by focal adhesion kinase (FAK)-driven pathways together with the reduction of target proteins phosphorylation, i.e., paxillin and c-Src. Additionally, autophagy activation was observed in MDA-MB-231 cells manifested by alternations in Atg5, Beclin 1, LC3II/I ratio, and p62. These results provide new evidence supporting the possible therapeutic potential of telomerase downregulation leading to induction of autophagy and cancer cells elimination.
Collapse
Affiliation(s)
- Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
| | - Ewa Totoń
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
| | - Natalia Konieczna
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
| | - Marta Machnik
- Department of Cancer Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland;
| | - Wojciech Barczak
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, 61-866 Poznan, Poland;
| | - Dagmar Kowal
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Mariusz Kaczmarek
- Department of Immunology, Chair of Clinical Immunology, Poznań University of Medical Sciences, 5D Rokietnicka St., 60-806 Poznań, Poland;
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznań, Poland; (A.R.-D.); (E.T.); (N.K.); (D.K.)
- Correspondence: ; Tel.: +48-61-869-14-27
| |
Collapse
|
8
|
Xie J, Guo T, Zhong Z, Wang N, Liang Y, Zeng W, Liu S, Chen Q, Tang X, Wu H, Zhang S, Ma K, Wang B, Ou Y, Gu W, Chen H, Qiu Y, Duan Y. ITGB1 Drives Hepatocellular Carcinoma Progression by Modulating Cell Cycle Process Through PXN/YWHAZ/AKT Pathways. Front Cell Dev Biol 2021; 9:711149. [PMID: 34977001 PMCID: PMC8718767 DOI: 10.3389/fcell.2021.711149] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Integrin β1 (ITGB1), which acts as an extracellular matrix (ECM) receptor, has gained increasing attention as a therapeutic target for the treatment of hepatocellular carcinoma (HCC). However, the underpinning mechanism of how ITGB1 drives HCC progression remains elusive. In this study, we first found that ITGB1 expression was significantly higher in HCC tissues than in normal controls by bioinformatics analysis. Furthermore, bioinformatics analysis revealed that paxillin (PXN) and 14-3-3 protein zeta (YWHAZ) are the molecules participating in ITGB1-regulated HCC tumor cell cycle progression. Indeed, immunohistochemistry (IHC) revealed that ITGB1, paxillin, and YWHAZ were strongly upregulated in paired HCC tissue compared with adjacent normal tissues. Notably, the inhibition of ITGB1 expression by small interfering RNA (siRNA) resulted in the downregulated expression of PXN and YWHAZ in primary HCC cells, as assessed by western blot and immunostaining. In addition, ITGB1 knockdown markedly impaired the aggressive behavior of HCC tumor cells and delayed cell cycle progression as determined by cell migration assay, drug-resistance analysis, colony formation assay, quantitative real-time polymerase chain reaction (qRT-PCR), and cell cycle analysis as well as cell viability measurements. More importantly, we proved that xenograft ITGB1high tumors grew more rapidly than ITGB1low tumors. Altogether, our study showed that the ITGB1/PXN/YWHAZ/protein kinase B (AKT) axis enhances HCC progression by accelerating the cell cycle process, which offers a promising approach to halt HCC tumor growth.
Collapse
Affiliation(s)
- Jinghe Xie
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Tingting Guo
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiyong Zhong
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Ning Wang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Yan Liang
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Weiping Zeng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shoupei Liu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Qicong Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Xianglian Tang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, China
| | - Haibin Wu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Shuai Zhang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Keqiang Ma
- Department of Hepatobiliary Pancreatic Surgery, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Bailin Wang
- Department of General Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yimeng Ou
- Department of General Surgery, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Weili Gu
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Yuyou Duan, ; Yaqi Qiu, ; Honglin Chen, ; Weili Gu,
| | - Honglin Chen
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education of China, South China University of Technology, Guangzhou, China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- *Correspondence: Yuyou Duan, ; Yaqi Qiu, ; Honglin Chen, ; Weili Gu,
| | - Yaqi Qiu
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
- *Correspondence: Yuyou Duan, ; Yaqi Qiu, ; Honglin Chen, ; Weili Gu,
| | - Yuyou Duan
- Laboratory of Stem Cells and Translational Medicine, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education of China, South China University of Technology, Guangzhou, China
- Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, China
- *Correspondence: Yuyou Duan, ; Yaqi Qiu, ; Honglin Chen, ; Weili Gu,
| |
Collapse
|
9
|
Pawełczyk A, Olender D, Sowa-Kasprzak K, Zaprutko L. Linked drug-drug conjugates based on triterpene and phenol structures. Rational synthesis, molecular properties, toxicity and bioactivity prediction. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Yang WJ, Yan JB, Zhang L, Zhao F, Mei ZM, Yang YN, Xiang Y, Xing YQ. Paxillin promotes the migration and angiogenesis of HUVECs and affects angiogenesis in the mouse cornea. Exp Ther Med 2020; 20:901-909. [PMID: 32742332 PMCID: PMC7388276 DOI: 10.3892/etm.2020.8751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 08/07/2019] [Indexed: 12/20/2022] Open
Abstract
Neonatal vascular ophthalmopathy is a refractory ophthalmologic disease, and is a major cause of blindness. Occurrence of neonatal vascular ophthalmopathy may be associated with Paxillin, a cellular adhesion molecule which promotes the migration of endothelial cells and angiogenesis. To explore the role of PXN in corneal angiogenesis, human umbilical vein endothelial cells were divided into five groups: i) Control group; ii) Empty vector-transfected control group; iii) PXN knockdown group (shPXN group); iv) PXN-negative control (NC) group; and v) PXN over-expressed group (overExp group). PXN protein levels, migration and tube formation were assessed in the different experimental groups. Mice were divided into four groups: i) Control; ii) Model; iii) shPXN; and iv) overExp groups. Tube formation was significantly increased in the overExp group compared with the empty vector-transfected control group (P<0.01). Tube formation was significantly decreased in the shPXN group compared with the PXN-NC group (P<0.01). In mice, blood corpuscles were significantly decreased in the shPXN group. PXN promoted the migration of endothelial cells and corneal angiogenesis. The results of the present study suggest a role for PXN in corneal angiogenesis and provide a theoretical basis and potential target for the treatment of corneal angiogenesis.
Collapse
Affiliation(s)
- Wan-Ju Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China.,Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Jiang-Bo Yan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Zhang
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Fang Zhao
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Zhong-Ming Mei
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Yan-Ning Yang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yi Xiang
- Department of Ophthalmology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Yi-Qiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
11
|
Zbakh H, Zubía E, De Los Reyes C, Calderón-Montaño JM, Motilva V. Anticancer Activities of Meroterpenoids Isolated from the Brown Alga Cystoseira usneoides against the Human Colon Cancer Cells HT-29. Foods 2020; 9:foods9030300. [PMID: 32155797 PMCID: PMC7143549 DOI: 10.3390/foods9030300] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 12/03/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common types of cancers and a leading cause of cancer death worldwide. The current treatment for CRC mainly involves surgery, radiotherapy, and chemotherapy. However, due to the side effects and the emergence of drug resistance, the search for new anticancer agents, pharmacologically safe and effective, is needed. In the present study, we have investigated the anticancer effects of eight algal meroterpenoids (AMTs, 1-8) isolated from the brown seaweed Cystoseira usneoides and their underlying mechanisms of action using HT-29, a highly metastatic human colon cancer cell line. All the tested meroterpenoids inhibited the growth of HT-29 malignant cells and were less toxic towards non-cancer colon cells, with the AMTs 1 and 5 exhibiting selectivity indexes of 5.26 and 5.23, respectively. Treatment of HT-29 cells with the AMTs 1, 2, 3, 4, 5, and 7 induced cell cycle arrest in G2/M phase and, in some instances, apoptosis (compounds 2, 3, and 5). Compounds 1-8 also exhibited significant inhibitory effects on the migration and/or invasion of colon cancer cells. Mechanistic analysis demonstrated that the AMTs 1, 2, 5, 6, 7, and 8 reduced phosphorylation levels of extracellular signal-regulated kinase (ERK) and the AMTs 2, 3, 4, 5, 7, and 8 decreased phosphorylation of c-JUN N-terminal kinase (JNK). Moreover, the AMTs 1, 2, 3, 4, 7, and 8 inhibited phosphorylation levels of protein kinase B (AKT) in colon carcinoma cells. These results provide new insights into the mechanisms and functions of the meroterpenoids of C. usneoides, which exhibit an anticancer effect on HT-29 colon cancer cells by inducing cell cycle arrest and apoptosis via the downregulation of ERK/JNK/AKT signaling pathways.
Collapse
Affiliation(s)
- Hanaa Zbakh
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (H.Z.); (J.M.C.-M.)
- Department of Biology, Faculty of Sciences, University of Abdelmalek Essaâdi, Tetouan 93000, Morocco
| | - Eva Zubía
- Department of Organic Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real (Cádiz), Spain; (E.Z.); (C.D.L.R.)
| | - Carolina De Los Reyes
- Department of Organic Chemistry, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real (Cádiz), Spain; (E.Z.); (C.D.L.R.)
| | - José M. Calderón-Montaño
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (H.Z.); (J.M.C.-M.)
| | - Virginia Motilva
- Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain; (H.Z.); (J.M.C.-M.)
- Correspondence:
| |
Collapse
|
12
|
Toton E, Romaniuk A, Konieczna N, Hofmann J, Barciszewski J, Rybczynska M. Impact of PKCε downregulation on autophagy in glioblastoma cells. BMC Cancer 2018; 18:185. [PMID: 29439667 PMCID: PMC5811983 DOI: 10.1186/s12885-018-4095-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/05/2018] [Indexed: 12/14/2022] Open
Abstract
Background Several efforts have been focused on identification of pathways involved in malignancy, progression, and response to treatment in Glioblastoma (GB). Overexpression of PKCε was detected in histological samples from GB, anaplastic astrocytoma, and gliosarcoma and is considered an important marker of negative disease outcome. In multiple studies on GB, autophagy has been shown as a survival mechanism during cellular stress, contributing to resistance against anti-cancer agents. The main object of this research was to determine the influence of PKCε downregulation on the expression of genes involved in autophagy pathways in glioblastoma cell lines U-138 MG and U-118 MG with high PKCε level. Methods We conducted siRNA-mediated knockdown of PKCε in glioblastoma cell lines and studied the effects of autophagy pathway. The expression of autophagy-related genes was analyzed using qPCR and Western blot analysis was carried out to assess protein levels. Immunostaining was used to detect functional autophagic maturation process. Results We found that these cell lines exhibited a high basal expression of autophagy-related genes. Our results suggest that the loss of PKCε contributes to the downregulation of genes involved in autophagy pathways. Moreover, most of the changes we observed in Western blot analysis and endogenous immunofluorescence experiments confirmed dysfunction of autophagy programs. We found that knockdown of PKCε induced a decrease in the expression of Beclin1, Atg5, PI3K, whereas the expression of other autophagy-related proteins mTOR and Bcl2 was increased. Treatment of control siRNA glioma cells with rapamycin-induced autophagosome formation and increase in LC3-II level and caused a decrease in the expression of p62. Additionally, PKCε siRNA caused a diminution in the Akt phosphorylation at Ser473 and in the protein level in both cell lines. Moreover, we observed reduction in the adhesion of glioblastoma cells, accompanied by the decrease in total FAK protein level and phosphorylation. Conclusions Effects of down-regulation of PKCε in glioma cells raised the possibility that the expression of PKCε is essential for the autophagic signal transduction pathways in these cells. Thus, our results identify an important role of PKCε in autophagy and may, more importantly, identifyit as a novel therapeutic target.
Collapse
Affiliation(s)
- Ewa Toton
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355, Poznan, Poland.
| | - Aleksandra Romaniuk
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355, Poznan, Poland
| | - Natalia Konieczna
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355, Poznan, Poland
| | - Johann Hofmann
- Biocenter, Division of Medical Biochemistry, Innsbruck Medical University, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Jan Barciszewski
- NanoBioMedical Center, Adam Mickiewicz University in Poznan, Poznan, Poland.,Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Maria Rybczynska
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, Przybyszewskiego 49 St., 60-355, Poznan, Poland
| |
Collapse
|
13
|
Salvador JA, Leal AS, Valdeira AS, Gonçalves BM, Alho DP, Figueiredo SA, Silvestre SM, Mendes VI. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur J Med Chem 2017; 142:95-130. [DOI: 10.1016/j.ejmech.2017.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
|