1
|
Esposito M, Amory JK, Kang Y. The pathogenic role of retinoid nuclear receptor signaling in cancer and metabolic syndromes. J Exp Med 2024; 221:e20240519. [PMID: 39133222 PMCID: PMC11318670 DOI: 10.1084/jem.20240519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/13/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024] Open
Abstract
The retinoid nuclear receptor pathway, activated by the vitamin A metabolite retinoic acid, has been extensively investigated for over a century. This study has resulted in conflicting hypotheses about how the pathway regulates health and how it should be pharmaceutically manipulated. These disagreements arise from a fundamental contradiction: retinoid agonists offer clear benefits to select patients with rare bone growth disorders, acute promyelocytic leukemia, and some dermatologic diseases, yet therapeutic retinoid pathway activation frequently causes more harm than good, both through acute metabolic dysregulation and a delayed cancer-promoting effect. In this review, we discuss controlled clinical, mechanistic, and genetic data to suggest several disease settings where inhibition of the retinoid pathway may be a compelling therapeutic strategy, such as solid cancers or metabolic syndromes, and also caution against continued testing of retinoid agonists in cancer patients. Considerable evidence suggests a central role for retinoid regulation of immunity and metabolism, with therapeutic opportunities to antagonize retinoid signaling proposed in cancer, diabetes, and obesity.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Kayothera, Inc , Seattle, WA, USA
| | | | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch , Princeton, NJ, USA
| |
Collapse
|
2
|
Kamiyama H, Miyano M, Ito D, Kimura T, Hagiwara K, Kogai H, Kaburagi Y, Kotake Y, Takase Y. Identification of a novel ALDH1A3-selective inhibitor by a chemical probe with unrelated bioactivity: An approach to affinity-based drug target discovery. Chem Biol Drug Des 2023; 101:727-739. [PMID: 36334047 DOI: 10.1111/cbdd.14176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
The identification of biologically active target compounds and their binding proteins is important in mechanism-of-action studies for drug development. Additionally, the newly discovered binding proteins provide unforeseen ideas for novel drug discovery and for subsequent structural transformation to improve target specificity. Based on the lead and final candidate compounds related to the type 5 phosphodiesterase (PDE5) inhibitor E4021, we designed chemical probes and identified their target proteins by the affinity chromatography approach. Aldehyde dehydrogenase family 1 member A3 (ALDH1A3), currently reported as a cancer stem cell target, was clearly isolated as a binding protein of the lead 'immature' inhibitor probe against PDE5. In the early derivatization to the closely related structure, Compound 5 (ER-001135935) was found to significantly inhibit ALDH1A3 activity. The discovery process of a novel ALDH1A3-selective inhibitor with affinity-based binder identification is described, and the impact of this identification method on novel drug discovery is discussed.
Collapse
Affiliation(s)
| | - Masayuki Miyano
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Daisuke Ito
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Takayuki Kimura
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Koji Hagiwara
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Hiroyuki Kogai
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | - Yosuke Kaburagi
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| | | | - Yasutaka Takase
- Tsukuba Research Laboratories, Eisai Co., Ltd., Ibaraki, Japan
| |
Collapse
|
3
|
The Role of Cancer Stem Cells and Their Extracellular Vesicles in the Modulation of the Antitumor Immunity. Int J Mol Sci 2022; 24:ijms24010395. [PMID: 36613838 PMCID: PMC9820747 DOI: 10.3390/ijms24010395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) are a population of tumor cells that share similar properties to normal stem cells. CSCs are able to promote tumor progression and recurrence due to their resistance to chemotherapy and ability to stimulate angiogenesis and differentiate into non-CSCs. Cancer stem cells can also create a significant immunosuppressive environment around themselves by suppressing the activity of effector immune cells and recruiting cells that support tumor escape from immune response. The immunosuppressive effect of CSCs can be mediated by receptors located on their surface, as well as by secreted molecules, which transfer immunosuppressive signals to the cells of tumor microenvironment. In this article, the ability of CSCs to regulate the antitumor immune response and a contribution of CSC-derived EVs into the avoidance of the immune response are discussed.
Collapse
|
4
|
Liao W, Li Y, Wang J, Zhao M, Chen N, Zheng Q, Wan L, Mou Y, Tang J, Wang Z. Natural Products-Based Nanoformulations: A New Approach Targeting CSCs to Cancer Therapy. Int J Nanomedicine 2022; 17:4163-4193. [PMID: 36134202 PMCID: PMC9482958 DOI: 10.2147/ijn.s380697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer stem cells (CSCs) lead to the occurrence and progression of cancer due to their strong tumorigenic, self-renewal, and multidirectional differentiation abilities. Existing cancer treatment methods cannot effectively kill or inhibit CSCs but instead enrich them and produce stronger proliferation, invasion, and metastasis capabilities, resulting in cancer recurrence and treatment resistance, which has become a difficult problem in clinical treatment. Therefore, targeting CSCs may be the most promising approach for comprehensive cancer therapy in the future. A variety of natural products (NP) have significant antitumor effects and have been identified to target and inhibit CSCs. However, pharmacokinetic defects and off-target effects have greatly hindered their clinical translation. NP-based nanoformulations (NPNs) have tremendous potential to overcome the disadvantages of NP against CSCs through site-specific delivery and by improving their pharmacokinetic parameters. In this review, we summarize the recent progress of NPNs targeting CSCs in cancer therapy, looking forward to transforming preclinical research results into clinical applications and bringing new prospects for cancer treatment.
Collapse
Affiliation(s)
- Wenhao Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Bishan Hospital of Traditional Chinese Medicine, Chongqing, People's Republic of China
| | - Maoyuan Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Nianzhi Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Qiao Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Lina Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Jianyuan Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Zhilei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.,TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Bailly C. Moving toward a new horizon for the aldose reductase inhibitor epalrestat to treat drug-resistant cancer. Eur J Pharmacol 2022; 931:175191. [PMID: 35964660 DOI: 10.1016/j.ejphar.2022.175191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 08/05/2022] [Indexed: 11/19/2022]
Abstract
Epalrestat (EPA) is a potent inhibitor of aldose reductases AKR1B1 and AKR1B10, used for decades in Japan for the treatment of diabetic peripheral neuropathy. This orally-active, brain-permeable small molecule, with a relatively rare and essential 2-thioxo-4-thiazolidinone motif, functions as a regulator intracellular carbonyl species. The repurposing of EPA for the treatment of pediatric rare diseases, brain disorders and cancer has been proposed. A detailed analysis of the mechanism of action, and the benefit of EPA to combat advanced malignancies is offered here. EPA has revealed marked anticancer activities, alone and in combination with cytotoxic chemotherapy and targeted therapeutics, in experimental models of liver, colon, and breast cancers. Through inhibition of AKR1B1 and/or AKR1B10 and blockade of the epithelial-mesenchymal transition, EPA largely enhances the sensitivity of cancer cells to drugs like doxorubicin and sorafenib. EPA has revealed a major anticancer effect in an experimental model of basal-like breast cancer and clinical trials have been developed in patients with triple-negative breast cancer. The repurposing of the drug to treat chemo-resistant solid tumors seems promising, but more studies are needed to define the best trajectory for the positioning of EPA in oncology.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, 59290, France.
| |
Collapse
|
6
|
Castellví A, Pequerul R, Barracco V, Juanhuix J, Parés X, Farrés J. Structural and biochemical evidence that ATP inhibits the cancer biomarker human aldehyde dehydrogenase 1A3. Commun Biol 2022; 5:354. [PMID: 35418200 PMCID: PMC9007972 DOI: 10.1038/s42003-022-03311-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/24/2022] [Indexed: 11/15/2022] Open
Abstract
Human aldehyde dehydrogenase (ALDH) participates in the oxidative stress response and retinoid metabolism, being involved in several diseases, including cancer, diabetes and obesity. The ALDH1A3 isoform has recently elicited wide interest because of its potential use as a cancer stem cell biomarker and drug target. We report high-resolution three-dimensional ALDH1A3 structures for the apo-enzyme, the NAD+ complex and a binary complex with ATP. Each subunit of the ALDH1A3-ATP complex contains one ATP molecule bound to the adenosine-binding pocket of the cofactor-binding site. The ATP complex also shows a molecule, putatively identified as a polyethylene glycol aldehyde, covalently bound to the active-site cysteine. This mimics the thioacyl-enzyme catalytic intermediate, which is trapped in a dead enzyme lacking an active cofactor. At physiological concentrations, ATP inhibits the dehydrogenase activity of ALDH1A3 and other isoforms, with a Ki value of 0.48 mM for ALDH1A3, showing a mixed inhibition type against NAD+. ATP also inhibits esterase activity in a concentration-dependent manner. The current ALDH1A3 structures at higher resolution will facilitate the rational design of potent and selective inhibitors. ATP binding to ALDH1A3 enables activity modulation by the energy status of the cell and metabolic reprogramming, which may be relevant in several disease conditions.
Collapse
Affiliation(s)
- Albert Castellví
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
- Alba Synchrotron, carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Vito Barracco
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Judith Juanhuix
- Alba Synchrotron, carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Bellaterra, Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
7
|
Ibrahim AIM, Batlle E, Sneha S, Jiménez R, Pequerul R, Parés X, Rüngeler T, Jha V, Tuccinardi T, Sadiq M, Frame F, Maitland NJ, Farrés J, Pors K. Expansion of the 4-(Diethylamino)benzaldehyde Scaffold to Explore the Impact on Aldehyde Dehydrogenase Activity and Antiproliferative Activity in Prostate Cancer. J Med Chem 2022; 65:3833-3848. [PMID: 35212533 PMCID: PMC9007462 DOI: 10.1021/acs.jmedchem.1c01367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
Aldehyde dehydrogenases (ALDHs) are
overexpressed in various tumor
types including prostate cancer and considered a potential target
for therapeutic intervention. 4-(Diethylamino)benzaldehyde (DEAB)
has been extensively reported as a pan-inhibitor of ALDH isoforms,
and here, we report on the synthesis, ALDH isoform selectivity, and
cellular potencies in prostate cancer cells of 40 DEAB analogues;
three analogues (14, 15, and 16) showed potent inhibitory activity against ALDH1A3, and two analogues
(18 and 19) showed potent inhibitory activity
against ALDH3A1. Significantly, 16 analogues displayed increased cytotoxicity
(IC50 = 10–200 μM) compared with DEAB (>200
μM) against three different prostate cancer cell lines. Analogues 14 and 18 were more potent than DEAB against
patient-derived primary prostate tumor epithelial cells, as single
agents or in combination treatment with docetaxel. In conclusion,
our study supports the use of DEAB as an ALDH inhibitor but also reveals
closely related analogues with increased selectivity and potency.
Collapse
Affiliation(s)
- Ali I M Ibrahim
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K.,Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Elisabet Batlle
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K.,Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Smarakan Sneha
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K
| | - Rafael Jiménez
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Raquel Pequerul
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Xavier Parés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Till Rüngeler
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Vibhu Jha
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Tiziano Tuccinardi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Maria Sadiq
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K.,Cancer Research Unit, Department of Biology, University of York, Heslington, Yorkshire YO10 5DD, U.K
| | - Fiona Frame
- Cancer Research Unit, Department of Biology, University of York, Heslington, Yorkshire YO10 5DD, U.K
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, Heslington, Yorkshire YO10 5DD, U.K
| | - Jaume Farrés
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona E-08193, Spain
| | - Klaus Pors
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Yorkshire BD7 1DP, U.K
| |
Collapse
|
8
|
Xia D, Liu H, Cheng X, Maraswami M, Chen Y, Lv X. Recent Developments of Coumarin-based Hybrids in Drug Discovery. Curr Top Med Chem 2022; 22:269-283. [PMID: 34986774 DOI: 10.2174/1568026622666220105105450] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/23/2021] [Accepted: 12/05/2021] [Indexed: 11/22/2022]
Abstract
Coumarin scaffold is a highly significant O-heterocycle, namely benzopyran-2-ones, form an elite class of naturally occurring compounds that possess promising therapeutic perspectives. Based on its broad spectrum of biological activities, the privileged coumarin scaffold is applied to medicinal and pharmacological treatments by several rational design strategies and approaches. Structure-activity relationships of the coumarin-based hybrids with various bioactivity fragments revealed significant information toward the further development of highly potent and selective disorder therapeutic agents. The molecular docking studies between coumarins and critical therapeutic enzymes demonstrated mode of action by forming noncovalent interactions with more than one receptor, further rationally confirm information about structure-activity relationships. This review summarizes recent developments relating to coumarin-based hybrids with other pharmacophores aiming to numerous feasible therapeutic enzymatic targets to combat various therapeutic fields, including anticancer, antimicrobic, anti-Alzheimer, anti-inflammatory activities.
Collapse
Affiliation(s)
- Dongguo Xia
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Hao Liu
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Xiang Cheng
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Yiting Chen
- Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, Minjiang University, 350108, Fuzhou, China
| | - Xianhai Lv
- School of Science, Anhui Agricultural University, 230036, Hefei, China
| |
Collapse
|
9
|
Horvat M, Weilch V, Rädisch R, Hecko S, Schiefer A, Rudroff F, Wilding B, Klempier N, Pátek M, Martínková L, Winkler M. Chemoenzymatic one-pot reaction from carboxylic acid to nitrile via oxime. Catal Sci Technol 2022; 12:62-66. [PMID: 35126993 PMCID: PMC8725990 DOI: 10.1039/d1cy01694f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022]
Abstract
We report a new chemoenzymatic cascade starting with aldehyde synthesis by carboxylic acid reductase (CAR) followed by chemical in situ oxime formation. The final step to the nitrile is catalyzed by aldoxime dehydratase (Oxd). Full conversions of phenylacetic acid and hexanoic acid were achieved in a two-phase mode. We report a new chemoenzymatic cascade starting with aldehyde synthesis by carboxylic acid reductase (CAR) followed by chemical in situ oxime formation and enzymatic dehydration by aldoxime dehydratase (Oxd).![]()
Collapse
Affiliation(s)
- Melissa Horvat
- Institute of Molecular Biotechnology, Graz University of Technology Petersgasse 14 A-8010 Graz Austria
| | - Victoria Weilch
- Institute of Molecular Biotechnology, Graz University of Technology Petersgasse 14 A-8010 Graz Austria
| | - Robert Rädisch
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ-142 20 Prague Czech Republic .,Department of Genetics and Microbiology, Faculty of Science, Charles University Viničná 5 CZ-12844 Prague 2 Czech Republic
| | - Sebastian Hecko
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/OC-163 A-1060 Vienna Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/OC-163 A-1060 Vienna Austria
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, TU Wien Getreidemarkt 9/OC-163 A-1060 Vienna Austria
| | - Birgit Wilding
- Acib GmbH Krenngasse 37 A-8010 Graz Austria.,Institute of Organic Chemistry, Graz University of Technology Stremayrgasse 9 A-8010 Graz Austria
| | - Norbert Klempier
- Institute of Organic Chemistry, Graz University of Technology Stremayrgasse 9 A-8010 Graz Austria
| | - Miroslav Pátek
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ-142 20 Prague Czech Republic
| | - Ludmila Martínková
- Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 CZ-142 20 Prague Czech Republic
| | - Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology Petersgasse 14 A-8010 Graz Austria .,Acib GmbH Krenngasse 37 A-8010 Graz Austria
| |
Collapse
|
10
|
Li J, Garavaglia S, Ye Z, Moretti A, Belyaeva OV, Beiser A, Ibrahim M, Wilk A, McClellan S, Klyuyeva AV, Goggans KR, Kedishvili NY, Salter EA, Wierzbicki A, Migaud ME, Mullett SJ, Yates NA, Camacho CJ, Rizzi M, Sobol RW. A specific inhibitor of ALDH1A3 regulates retinoic acid biosynthesis in glioma stem cells. Commun Biol 2021; 4:1420. [PMID: 34934174 PMCID: PMC8692581 DOI: 10.1038/s42003-021-02949-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/07/2021] [Indexed: 01/31/2023] Open
Abstract
Elevated aldehyde dehydrogenase (ALDH) activity correlates with poor outcome for many solid tumors as ALDHs may regulate cell proliferation and chemoresistance of cancer stem cells (CSCs). Accordingly, potent, and selective inhibitors of key ALDH enzymes may represent a novel CSC-directed treatment paradigm for ALDH+ cancer types. Of the many ALDH isoforms, we and others have implicated the elevated expression of ALDH1A3 in mesenchymal glioma stem cells (MES GSCs) as a target for the development of novel therapeutics. To this end, our structure of human ALDH1A3 combined with in silico modeling identifies a selective, active-site inhibitor of ALDH1A3. The lead compound, MCI-INI-3, is a selective competitive inhibitor of human ALDH1A3 and shows poor inhibitory effect on the structurally related isoform ALDH1A1. Mass spectrometry-based cellular thermal shift analysis reveals that ALDH1A3 is the primary binding protein for MCI-INI-3 in MES GSC lysates. The inhibitory effect of MCI-INI-3 on retinoic acid biosynthesis is comparable with that of ALDH1A3 knockout, suggesting that effective inhibition of ALDH1A3 is achieved with MCI-INI-3. Further development is warranted to characterize the role of ALDH1A3 and retinoic acid biosynthesis in glioma stem cell growth and differentiation.
Collapse
Affiliation(s)
- Jianfeng Li
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Silvia Garavaglia
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Zhaofeng Ye
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- School of Medicine, Tsinghua University, Beijing, China
| | - Andrea Moretti
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Alison Beiser
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Md Ibrahim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Anna Wilk
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Steve McClellan
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Schools of Medicine and Dentistry, 720 20th Street South, Kaul 440B, Birmingham, AL, 35294, USA
| | - E Alan Salter
- Department of Chemistry, University of South Alabama, 6040 USA South Drive, Mobile, AL, 36688, USA
| | - Andrzej Wierzbicki
- Department of Chemistry, University of South Alabama, 6040 USA South Drive, Mobile, AL, 36688, USA
| | - Marie E Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA
| | - Steven J Mullett
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Nathan A Yates
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy.
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA.
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL, 36604, USA.
| |
Collapse
|
11
|
ALDH1 and SALL4 Expression in Cell Block Samples from Patients with Lung Adenocarcinoma and Malignant Pleural Effusion. Diagnostics (Basel) 2021; 11:diagnostics11081463. [PMID: 34441397 PMCID: PMC8394086 DOI: 10.3390/diagnostics11081463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural effusion (MPE) can accompany advanced lung adenocarcinoma. Recent studies suggest that MPE could contain a heterogeneous subpopulation of cells with stem-like properties, such as tumorigenicity and self-renewal, indicating that they could be the source of metastasis. Although previous studies analyzed the correlation between cancer stem cell (CSC) marker expression and clinical outcomes using lung cancer tissues, investigations regarding the association of MPE with CSC marker expression are limited. We performed immunohistochemistry to examine the expression of aldehyde dehydrogenase 1 (ALDH1) and Sal-like 4 (SALL4) in 46 cell block samples of MPE from patients with lung adenocarcinoma. ALDH1-positive and SALL4-positive cancer cells in MPE were detected in 30 (65.2%) and 21 samples (45.7%), respectively. Cluster formation was detected in 26 samples (56.5%). The number of clusters was significantly higher in ALDH1-positive/SALL4-negative samples. SALL4 expression was inversely correlated with the cluster ratio (r = −0.356) and positively associated with the Ki-67 index (r = 0.326), suggesting that MPE cells with high SALL4 expression comprised the proliferative subpopulation. In conclusion, we demonstrated that MPE contains an ALDH1-positive/SALL4-negative subpopulation exhibiting cluster formation and a SALL4-positive proliferative subpopulation.
Collapse
|
12
|
Evaluation of spice and herb as phyto-derived selective modulators of human retinaldehyde dehydrogenases using a simple in vitro method. Biosci Rep 2021; 41:228584. [PMID: 33950219 PMCID: PMC8493444 DOI: 10.1042/bsr20210491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/19/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
Selective modulation of retinaldehyde dehydrogenases (RALDHs)-the main aldehyde dehydrogenase (ALDH) enzymes converting retinal into retinoic acid (RA), is very important not only in the RA signaling pathway but also for the potential regulatory effects on RALDH isozyme-specific processes and RALDH-related cancers. However, very few selective modulators for RALDHs have been identified, partly due to variable overexpression protocols of RALDHs and insensitive activity assay that needs to be addressed. In the present study, deletion of the N-terminal disordered regions is found to enable simple preparation of all RALDHs and their closest paralog ALDH2 using a single protocol. Fluorescence-based activity assay was employed for enzymatic activity investigation and screening for RALDH-specific modulators from extracts of various spices and herbs that are well-known for containing many phyto-derived anti-cancer constituents. Under the established conditions, spice and herb extracts exhibited differential regulatory effects on RALDHs/ALDH2 with several extracts showing potential selective inhibition of the activity of RALDHs. In addition, the presence of magnesium ions was shown to significantly increase the activity for the natural substrate retinal of RALDH3 but not the others, while His-tag cleavage considerably increased the activity of ALDH2 for the non-specific substrate retinal. Altogether we propose a readily reproducible workflow to find selective modulators for RALDHs and suggest potential sources of selective modulators from spices and herbs.
Collapse
|
13
|
Abstract
The association of leishmaniasis and malignancies in human and animal models has been highlighted in recent years. The misdiagnosis of coexistence of leishmaniasis and cancer and the use of common drugs in the treatment of such diseases prompt us to further survey the molecular biology of Leishmania parasites and cancer cells. The information regarding common expressed proteins, as possible therapeutic targets, in Leishmania parasites and cancer cells is scarce. Therefore, the current study reviews proteins, and investigates the regulation and functions of several key proteins in Leishmania parasites and cancer cells. The up- and down-regulations of such proteins were mostly related to survival, development, pathogenicity, metabolic pathways and vital signalling in Leishmania parasites and cancer cells. The presence of common expressed proteins in Leishmania parasites and cancer cells reveals valuable information regarding the possible shared mechanisms of pathogenicity and opportunities for therapeutic targeting in leishmaniasis and cancers in the future.
Collapse
|
14
|
Li B, Yang K, Liang D, Jiang C, Ma Z. Discovery and development of selective aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors. Eur J Med Chem 2020; 209:112940. [PMID: 33328099 DOI: 10.1016/j.ejmech.2020.112940] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022]
Abstract
ALDH1A1, one important member of 19 ALDHs, can metabolize reactive aldehydes to their corresponding carboxylic acid derivatives and play important physiological and toxicological roles in many areas, including CNS, metabolic disorders, and cancers. Overexpression of ALDH1A1 correlates with poor prognosis and tumor aggressiveness, is associated with drug resistance in traditional chemotherapy for cancer treatment and contributes to obesity, diabetes, and inflammation. So, inhibition of ALDH1A1 may offer new therapeutic options for patients with cancer, obesity, diabetes, and inflammation. Up to now, many ALDH1A1 inhibitors with different scaffolds have been identified and developed as useful chemical tools for better understanding of the functions of ALDH1A1 in physiologic and pathophysiologic conditions. In this review, the advances in the discovery and development of selective ALDH1A1 inhibitors are summarized, and opportunities and challenges associated with this field are also discussed.
Collapse
Affiliation(s)
- Bingyan Li
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Kang Yang
- Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Dailin Liang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China
| | - Cheng Jiang
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China.
| | - Zonghui Ma
- Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China; Department of Medicinal Chemistry, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, China.
| |
Collapse
|
15
|
Hu MN, Hu SH, Zhang XW, Xiong SM, Deng H. Overview on new progress of hereditary diffuse gastric cancer with CDH1 variants. TUMORI JOURNAL 2020; 106:346-355. [PMID: 32811340 DOI: 10.1177/0300891620949668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hereditary diffuse gastric cancer (HDGC), comprising 1%-3% of gastric malignances, has been associated with CDH1 variants. Accumulating evidence has demonstrated more than 100 germline CDH1 variant types. E-cadherin encoded by the CDH1 gene serves as a tumor suppressor protein. CDH1 promoter hypermethylation and other molecular mechanisms resulting in E-cadherin dysfunction are involved in the tumorigenesis of HDGC. Histopathology exhibits characteristic signet ring cells, and immunohistochemical staining may show negativity for E-cadherin and other signaling proteins. Early HDGC is difficult to detect by endoscopy due to the development of lesions beneath the mucosa. Prophylactic gastrectomy is the most recommended treatment for pathogenic CDH1 variant carriers. Recent studies have promoted the progression of promising molecular-targeted therapies and management strategies. This review summarizes recent advances in CDH1 variant types, tumorigenesis mechanisms, diagnosis, and therapy, as well as clinical implications for future gene therapies.
Collapse
Affiliation(s)
- Mu-Ni Hu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shu-Hui Hu
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Xing-Wei Zhang
- Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Shu-Min Xiong
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Huan Deng
- Molecular Medicine and Genetics Center, the Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.,Renmin Institute of Forensic Medicine in Jiangxi, Nanchang, Jiangxi Province, China
| |
Collapse
|
16
|
Targets and pathways involved in the antitumor activity of citral and its stereo-isomers. Eur J Pharmacol 2020; 871:172945. [PMID: 31981590 DOI: 10.1016/j.ejphar.2020.172945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 02/06/2023]
Abstract
This review provides a comprehensive analysis of the anticancer potential of the natural product citral (CIT) found in many plants and essential oils, and extensively used in the food and cosmetic industry. CIT is composed of two stereoisomers, the trans-isomer geranial being a more potent anticancer compound than the cis-isomer neral. CIT inhibits cancer cell proliferation and induces cancer cell apoptosis. Its pluri-factorial mechanism of anticancer activity is essentially based on three pillars: (i) a drug-induced accumulation of reactive oxygen species in cancer cells leading to an oxidative burst and DNA damages, (ii) a colchicine-like inhibition of tubulin polymerization and promotion of microtubule depolymerization, associated with an inhibition of the microtubule affinity-regulating kinase MARK4, and (iii) a potent inhibition of the aldehyde dehydrogenase isoform ALDH1A3 which is associated with cancer stem cell proliferation and chemoresistance. This unique combination of targets and pathways confers a significant anticancer potential. However, the intrinsic potency of CIT is limited, mainly because the drug is not very stable and has a low bioavailability and it does not present a high selectivity for cancer cells versus non-tumor cells. Stable formulations of CIT, using cyclodextrins, biodegradable polymers, or various nano-structured particles have been designed to enhance the bioavailability, to increase the effective doses window and to promote the anticancer activity. The lack of tumor cell selectivity is more problematic and limits the use of the drug in cancer therapy. Nevertheless, CIT offers interesting perspectives to design more potent analogues and drug combinations with a reinforced antitumor potential.
Collapse
|
17
|
Attia YM, El-Kersh DM, Ammar RA, Adel A, Khalil A, Walid H, Eskander K, Hamdy M, Reda N, Mohsen NE, Al-Toukhy GM, Mansour MT, Elmazar MM. Inhibition of aldehyde dehydrogenase-1 and p-glycoprotein-mediated multidrug resistance by curcumin and vitamin D3 increases sensitivity to paclitaxel in breast cancer. Chem Biol Interact 2019; 315:108865. [PMID: 31628941 DOI: 10.1016/j.cbi.2019.108865] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/19/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
Treatment of breast cancer by paclitaxel (PAX) often encounters therapeutic failure most likely caused by innate/acquired resistance. Cancer stem cells (CSCs) and multidrug resistance complex (MDR-1 or P-glycoprotein) overexpression are main mechanisms implicated in chemoresistance. Increased aldehyde dehrogenase-1 (ALDH-1) was previously correlated with the stemness features of CSCs and hence is used as a marker for identification and CSCs targeting. The present study, therefore, aimed at investigating the effect of both curcumin (CUR) and vitamin D3 (D3) on MDR-1 and ALDH-1 expression and consequently the resistance to PAX both in vitro and in vivo. CUR was isolated from Turmeric rhizomes and identified using UPLC-ESI-MS/MS. For in vitro studies, the antiproliferative effect of PAX, CUR, 1,25(OH)2D3 (the active form of D3, also known as calcitriol) was determined, each alone and combined (PAX+CUR, PAX+1,25(OH)2D3, and PAX+CUR+1,25(OH)2D3) on MCF-7 breast cancer cells. Ehrlich ascites carcinoma solid tumor animal model was also used for in vivo studies. Combining CUR and/or 1,25(OH)2D3 to PAX showed synergistic cytotoxic interaction on MCF-7 cells. The apoptotic potential was also enhanced, as evidenced by a significant increase in caspase-7 and -9 as well as the pro-apoptotic Bax whereas a decrease in Bcl-2 levels was reported. Combining CUR and 1,25(OH)2D3 to PAX caused a downregulation in both MDR-1 and ALDH-1 gene expression in MCF-7 besides a decrease in their protein levels. In vivo, the triple therapy group (PAX+CUR+D3) showed the least tumor size. It also showed the lowest levels of MDR-1 and ALDH-1. PAX alone, however, showed increased levels of MDR-1 and ALDH-1 compared to control. Overall, the present study showed that PAX, as a monotherapy, demonstrated acquired resistance possibly by increasing MDR-1 expression and enriching CSCs population, as evidenced by increased ALDH-1. However, using CUR and D3 enhanced tumor response to PAX.
Collapse
Affiliation(s)
- Yasmeen M Attia
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
| | - Dina M El-Kersh
- Pharmacognosy Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Reham A Ammar
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Aliaa Adel
- Senior Students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Aya Khalil
- Senior Students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Hoda Walid
- Senior Students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Kirullos Eskander
- Senior Students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Mohamed Hamdy
- Senior Students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Nada Reda
- Senior Students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Nour Elhoda Mohsen
- Senior Students, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Ghada M Al-Toukhy
- Virology and Immunology Department, Children's Cancer Hospital, 57357, Cairo, Egypt
| | - Mohamed Tarek Mansour
- Virology and Immunology Department, Children's Cancer Hospital, 57357, Cairo, Egypt; Virology and Immunology Department, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Mohamed M Elmazar
- Pharmacology Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt; The Center for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|