1
|
Mao XD, Du TT, Gu Q, Yang L, Shi HL, Hong R, Chou GX. Synthesis and Bioactivity Evaluation of Nepetaefolin F and Its Analogues. ACS OMEGA 2023; 8:14830-14840. [PMID: 37125132 PMCID: PMC10134463 DOI: 10.1021/acsomega.3c01319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Nepetaefolin F (5), an abietane diterpenoid, showed significant inhibitory activity against human cancer cells in vitro with an IC50 value of 6.3 μM. The syntheses of nepetaefolin F and its analogues are presented herein. The cytotoxicity against various cancer cell lines was evaluated; notably, the cyclopropanecarboxylate ester 42 displayed significant antitumor activity against MGC 803 cells with an IC50 value of 20.9 μM. Further studies revealed that 42 could upregulate the expression of p62, microtubule-associated protein 1 light-chain 3 β (LC3 B-I), cleaved caspase-3, and cleaved caspase-9 and downregulate the expression of Beclin-1 and LC3B-II. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 42 could modulate multiple signaling pathways, especially for peroxisome proliferator-activated receptor (PPAR) and AMP-activated protein kinase (AMPK), which are closely related to autophagy. These results suggested that compound 42 is a promising lead by inhibiting cell proliferation and autophagy, as inducing cell apoptosis in MGC 803 cells.
Collapse
Affiliation(s)
- Xu-Dong Mao
- The
MOE Key Laboratory of Standardization of Chinese Medicines and SATCM
Key Laboratory of New Resources and Quality Evaluation of Chinese
Medicines, Institute of Chinese Materia Medica (ICMM), Shanghai University of Traditional Chinese Medicine
(SHUTCM), Shanghai 201203, P. R. China
- Shanghai
R&D Center for Standardization of Chinese Medicines, Shanghai 201203, P. R. China
| | - Ting-Ting Du
- The
MOE Key Laboratory of Standardization of Chinese Medicines and SATCM
Key Laboratory of New Resources and Quality Evaluation of Chinese
Medicines, Institute of Chinese Materia Medica (ICMM), Shanghai University of Traditional Chinese Medicine
(SHUTCM), Shanghai 201203, P. R. China
- Shanghai
R&D Center for Standardization of Chinese Medicines, Shanghai 201203, P. R. China
| | - Qi Gu
- CAS
Key Laboratory of Synthetic Chemistry of Natural Substances, Center
for Excellence in Molecular Synthesis, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Li Yang
- The
MOE Key Laboratory of Standardization of Chinese Medicines and SATCM
Key Laboratory of New Resources and Quality Evaluation of Chinese
Medicines, Institute of Chinese Materia Medica (ICMM), Shanghai University of Traditional Chinese Medicine
(SHUTCM), Shanghai 201203, P. R. China
| | - Hai-Lian Shi
- The
MOE Key Laboratory of Standardization of Chinese Medicines and SATCM
Key Laboratory of New Resources and Quality Evaluation of Chinese
Medicines, Institute of Chinese Materia Medica (ICMM), Shanghai University of Traditional Chinese Medicine
(SHUTCM), Shanghai 201203, P. R. China
| | - Ran Hong
- CAS
Key Laboratory of Synthetic Chemistry of Natural Substances, Center
for Excellence in Molecular Synthesis, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Gui-Xin Chou
- The
MOE Key Laboratory of Standardization of Chinese Medicines and SATCM
Key Laboratory of New Resources and Quality Evaluation of Chinese
Medicines, Institute of Chinese Materia Medica (ICMM), Shanghai University of Traditional Chinese Medicine
(SHUTCM), Shanghai 201203, P. R. China
- Shanghai
R&D Center for Standardization of Chinese Medicines, Shanghai 201203, P. R. China
| |
Collapse
|
2
|
Awada B, Chahine DA, Derbaj G, Khalek PA, Awad MK, Fayad AA. Antimicrobial Natural Products Derived from Microorganisms Inhabiting the MENA Region. Nat Prod Commun 2023. [DOI: 10.1177/1934578x231154989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Objective/Background Natural products (NPs) derived from microorganisms are the basis of a plethora of clinically utilized medications, namely, antimicrobial remedies. Although these secondary metabolites have been extensively explored all over the planet, they remain understudied in the Middle East and North Africa (MENA) region. Methods A literature search was conducted to first find NPs that were isolated from environmental fungi and bacteria that inhabit the soils and seawater of the MENA region. Then, purified molecules with biological activity against pathogenic bacteria, biofilms, fungi, and parasites were described in terms of structure, function, and location. Moreover, the methods that could be used to ameliorate the discovery of novel NPs from this region were investigated. Results A multitude of antimicrobial molecules from various chemical classes were found to be derived from the environmental microbes of MENA. Although many were rediscovered, some represented novel structural scaffolds for novel families of antimicrobial agents. Additionally, the geographical distribution showed a high number of these NPs were unraveled in a restricted area leaving much of MENA untapped. Furthermore, as relatively traditional and low-efficiency methods were typically used in the discovery process, advanced high-throughput techniques were suggested to enhance this practice at the regional level. Conclusion MENA represents a fairly unexploited region where antimicrobial drug discovery could be performed comprehensively through the concomitant exploration of untouched geographical locations and advanced molecular techniques.
Collapse
Affiliation(s)
- Bassel Awada
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| | - Dany Abi Chahine
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
- Laboratory of Biodiversity and Functional Genomics, UR EGP, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Ghada Derbaj
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| | - Pascal Abdel Khalek
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| | - Mireille Kallassy Awad
- Laboratory of Biodiversity and Functional Genomics, UR EGP, Faculty of Science, Université Saint-Joseph de Beyrouth, Beirut, Lebanon
| | - Antoine Abou Fayad
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
3
|
Bahrami Y, Bouk S, Kakaei E, Taheri M. Natural Products from Actinobacteria as a Potential Source of New Therapies Against Colorectal Cancer: A Review. Front Pharmacol 2022; 13:929161. [PMID: 35899111 PMCID: PMC9310018 DOI: 10.3389/fphar.2022.929161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common, and deadly disease. Despite the improved knowledge on CRC heterogeneity and advances in the medical sciences, there is still an urgent need to cope with the challenges and side effects of common treatments for the disease. Natural products (NPs) have always been of interest for the development of new medicines. Actinobacteria are known to be prolific producers of a wide range of bioactive NPs, and scientific evidence highlights their important protective role against CRC. This review is a holistic picture on actinobacter-derived cytotoxic compounds against CRC that provides a good perspective for drug development and design in near future. This review also describes the chemical structure of 232 NPs presenting anti-CRC activity with the being majority of quinones, lactones, alkaloids, peptides, and glycosides. The study reveals that most of these NPs are derived from marine actinobacteria followed by terrestrial and endophytic actinobacteria, respectively. They are predominantly produced by Streptomyces, Micromonospors, Saliniospors and Actinomadura, respectively, in which Streptomyces, as the predominant contributor generating over 76% of compounds exclusively. Besides it provides a valuable snapshot of the chemical structure-activity relationship of compounds, highlighting the presence or absence of some specific atoms and chemical units in the structure of compounds can greatly influence their biological activities. To the best of our knowledge, this is the first comprehensive review on natural actinobacterial compounds affecting different types of CRC. Our study reveals that the high diversity of actinobacterial strains and their NPs derivatives, described here provides a new perspective and direction for the production of new anti-CRC drugs and paves the way to innovation for drugs discovery in the future. The knowledge obtain from this review can help us to understand the pivotal application of actinobacteria in future drugs development.
Collapse
Affiliation(s)
- Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Biotechnology, School of Medicine, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- *Correspondence: Yadollah Bahrami, ; Mohammad Taheri,
| | - Sasan Bouk
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Kakaei
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Yadollah Bahrami, ; Mohammad Taheri,
| |
Collapse
|
4
|
Li Z, Liu Y, Zhang L. Role of the microbiome in oral cancer occurrence, progression and therapy. Microb Pathog 2022; 169:105638. [PMID: 35718272 DOI: 10.1016/j.micpath.2022.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
The oral cavity, like other digestive or mucosal sites, contains a site-specific microbiome that plays a significant role in maintaining health and homeostasis. Strictly speaking, the gastrointestinal tract starts from the oral cavity, with special attention paid to the specific flora of the oral cavity. In healthy people, the microbiome of the oral microenvironment is governed by beneficial bacteria, that benefit the host by symbiosis. When a microecological imbalance occurs, changes in immune and metabolic signals affect the characteristics of cancer, as well as chronic inflammation, disruption of the epithelial barrier, changes in cell proliferation and cell apoptosis, genomic instability, angiogenesis, and epithelial barrier destruction and metabolic regulation. These pathophysiological changes could result in oral cancer. Rising evidence suggests that oral dysbacteriosis and particular microbes may play a positive role in the evolution, development, progression, and metastasis of oral cancer, for instance, oral squamous cell carcinoma (OSCC) through direct or indirect action.
Collapse
Affiliation(s)
- Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Yuan Liu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| | - Ling Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China.
| |
Collapse
|
5
|
Natural Marine Products: Anti-Colorectal Cancer In Vitro and In Vivo. Mar Drugs 2022; 20:md20060349. [PMID: 35736152 PMCID: PMC9229715 DOI: 10.3390/md20060349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer, a malignant tumor with high mortality, has a poor prognosis due to drug resistance and toxicity in clinical surgery and chemotherapy. Thus, finding safer and more efficient drugs for clinical trials is vital and urgent. Natural marine compounds, with rich resources and original chemical structures, are applied widely in anticancer treatments. We provide a systematic overview of recently reported marine compounds such as alkaloids, peptides, terpenoids, polysaccharides, and carotenoids from in vitro, in vivo, and clinical studies. The in vitro studies summarized the marine origins and pharmacological mechanisms, including anti-proliferation, anti-angiogenesis, anti-migration, anti-invasion, the acceleration of cycle arrest, and the promotion of tumor apoptosis, of various compounds. The in vivo studies outlined the antitumor effects of marine compounds on colorectal cancer model mice and evaluated their efficacy in terms of tumor inhibition, hepatotoxicity, and nephrotoxicity. The clinical studies summarized the major chemical classifications and targets of action of the clinical drugs that have entered clinical approval and completed approval for marine anticancer. In summary, we present the current situation regarding the application of natural anti-colorectal cancer marine compounds and prospects for their clinical application.
Collapse
|
6
|
Dembitsky VM. Natural Polyether Ionophores and Their Pharmacological Profile. Mar Drugs 2022; 20:292. [PMID: 35621943 PMCID: PMC9144361 DOI: 10.3390/md20050292] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
This review is devoted to the study of the biological activity of polyether ionophores produced by bacteria, unicellular marine algae, red seaweeds, marine sponges, and coelenterates. Biological activities have been studied experimentally in various laboratories, as well as data obtained using QSAR (Quantitative Structure-Activity Relationships) algorithms. According to the data obtained, it was shown that polyether toxins exhibit strong antibacterial, antimicrobial, antifungal, antitumor, and other activities. Along with this, it was found that natural polyether ionophores exhibit such properties as antiparasitic, antiprotozoal, cytostatic, anti-mycoplasmal, and antieczema activities. In addition, polyethers have been found to be potential regulators of lipid metabolism or inhibitors of DNA synthesis. Further study of the mechanisms of action and the search for new polyether ionophores and their derivatives may provide more effective therapeutic natural polyether ionophores for the treatment of cancer and other diseases. For some polyether ionophores, 3D graphs are presented, which demonstrate the predicted and calculated activities. The data presented in this review will be of interest to pharmacologists, chemists, practical medicine, and the pharmaceutical industry.
Collapse
Affiliation(s)
- Valery M Dembitsky
- Centre for Applied Research, Innovation and Entrepreneurship, Lethbridge College, 3000 College Drive South, Lethbridge, AB T1K 1L6, Canada
| |
Collapse
|
7
|
Gezer E, Üner G, Küçüksolak M, Kurt MÜ, Doğan G, Kırmızıbayrak PB, Bedir E. Undescribed polyether ionophores from Streptomyces cacaoi and their antibacterial and antiproliferative activities. PHYTOCHEMISTRY 2022; 195:113038. [PMID: 34902703 DOI: 10.1016/j.phytochem.2021.113038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Polyether ionophores represent a large group of naturally occurring compounds mainly produced by Streptomyces species. With previously proven varieties of bioactivity including antibacterial, antifungal, antiparasitic, antiviral and anti-tumor effects, the discovery of undescribed polyethers leading to development of efficient therapeutics has become important. As part of our research on polyether-rich Streptomyces cacaoi, we previously performed modification studies on fermentation conditions to induce synthesis of specialized metabolites. Here, we report four undescribed and nine known polyether compounds from S. cacaoi grown in optimized conditions. Antimicrobial activity assays revealed that four compounds, including the undescribed (6), showed strong inhibitory effects over both Bacillus subtilis and methicillin-resistant Staphylococcus aureus (MRSA) growth. Additionally, K41-A and its C15-demethoxy derivative exhibited significant cytotoxicity. These results signified that selectivity of C15-demethoxy K41-A towards cancer cells was higher than K41-A, which prompted us to conduct mechanistic experiments. These studies showed that this uninvestigated compound acts as a multitarget compound by inhibiting autophagic flux, inducing reactive oxygen species formation, abolishing proteasome activity, and stimulating ER stress. Consequently, the optimized fermentation conditions of S. cacaoi led to the isolation of undescribed and known polyethers displaying promising activities.
Collapse
Affiliation(s)
- Emre Gezer
- Department of Biotechnology and Bioengineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Göklem Üner
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Melis Küçüksolak
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Mustafa Ünver Kurt
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Gamze Doğan
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | | | - Erdal Bedir
- Department of Bioengineering, Faculty of Engineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| |
Collapse
|
8
|
Secondary Metabolites from Marine-Derived Fungi and Actinobacteria as Potential Sources of Novel Colorectal Cancer Drugs. Mar Drugs 2022; 20:md20010067. [PMID: 35049922 PMCID: PMC8777761 DOI: 10.3390/md20010067] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer is one of the most common cancers diagnosed in the world. Chemotheraphy is one of the most common methods used for the pharmacological treatment of this cancer patients. Nevertheless, the adverse effect of chemotherapy is not optimized for improving the quality of life of people who are older, who are the most vulnerable subpopulation. This review presents recent updates regarding secondary metabolites derived from marine fungi and actinobacteria as novel alternatives for cytotoxic agents against colorectal cancer cell lines HCT116, HT29, HCT15, RKO, Caco-2, and SW480. The observed marine-derived fungi were from the species Aspergillus sp., Penicillium sp., Neosartorya sp., Dichotomomyces sp., Paradendryphiella sp., and Westerdykella sp. Additionally, Streptomyces sp. and Nocardiopsis sp. are actinobacteria discussed in this study. Seventy one compounds reviewed in this study were grouped on the basis of their chemical structures. Indole alkaloids and diketopiperazines made up most compounds with higher potencies when compared with other groups. The potency of indole alkaloids and diketopiperazines was most probably due to halogen-based functional groups and sulfide groups, respectively.
Collapse
|
9
|
Mbaoji FN, Nweze JA, Yang L, Huang Y, Huang S, Onwuka AM, Peter IE, Mbaoji CC, Jiang M, Zhang Y, Pan L, Yang D. Novel Marine Secondary Metabolites Worthy of Development as Anticancer Agents: A Review. Molecules 2021; 26:molecules26195769. [PMID: 34641312 PMCID: PMC8510081 DOI: 10.3390/molecules26195769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Secondary metabolites from marine sources have a wide range of biological activity. Marine natural products are promising candidates for lead pharmacological compounds to treat diseases that plague humans, including cancer. Cancer is a life-threatening disorder that has been difficult to overcome. It is a long-term illness that affects both young and old people. In recent years, significant attempts have been made to identify new anticancer drugs, as the existing drugs have been useless due to resistance of the malignant cells. Natural products derived from marine sources have been tested for their anticancer activity using a variety of cancer cell lines derived from humans and other sources, some of which have already been approved for clinical use, while some others are still being tested. These compounds can assault cancer cells via a variety of mechanisms, but certain cancer cells are resistant to them. As a result, the goal of this review was to look into the anticancer potential of marine natural products or their derivatives that were isolated from January 2019 to March 2020, in cancer cell lines, with a focus on the class and type of isolated compounds, source and location of isolation, cancer cell line type, and potency (IC50 values) of the isolated compounds that could be a guide for drug development.
Collapse
Affiliation(s)
- Florence Nwakaego Mbaoji
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
- College of Life Science and Technology of Guangxi University, Nanning 530004, China
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Justus Amuche Nweze
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
- Department of Science Laboratory Technology, Faculty of Physical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia in Ceske Budejovice, 37005 Ceske Budejovice, Czech Republic
- Soil and Water Research Infrastructure, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Liyan Yang
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China;
| | - Yangbin Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
| | - Shushi Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
| | - Akachukwu Marytheresa Onwuka
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Ikechukwu Emmanuel Peter
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Cynthia Chioma Mbaoji
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka 410001, Enugu State, Nigeria; (A.M.O.); (I.E.P.); (C.C.M.)
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning 530008, China;
| | - Yunkai Zhang
- College of Life Science and Technology of Guangxi University, Nanning 530004, China
- Correspondence: (Y.Z.); (L.P.); (D.Y.); Tel.: +86-771-2503980 (L.P.); +86-771-2536109 (D.Y.)
| | - Lixia Pan
- Guangxi Biomass Industrialization Engineering Institute, National Engineering Research Center of Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass, Guangxi Academy of Sciences, Nanning 530007, China;
- Correspondence: (Y.Z.); (L.P.); (D.Y.); Tel.: +86-771-2503980 (L.P.); +86-771-2536109 (D.Y.)
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China; (F.N.M.); (J.A.N.); (Y.H.); (S.H.)
- Correspondence: (Y.Z.); (L.P.); (D.Y.); Tel.: +86-771-2503980 (L.P.); +86-771-2536109 (D.Y.)
| |
Collapse
|
10
|
Al-Bari MAA, Ito Y, Ahmed S, Radwan N, Ahmed HS, Eid N. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer. Int J Mol Sci 2021; 22:9807. [PMID: 34575981 PMCID: PMC8467030 DOI: 10.3390/ijms22189807] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
Macro-autophagy (autophagy) is a highly conserved eukaryotic intracellular process of self-digestion caused by lysosomes on demand, which is upregulated as a survival strategy upon exposure to various stressors, such as metabolic insults, cytotoxic drugs, and alcohol abuse. Paradoxically, autophagy dysfunction also contributes to cancer and aging. It is well known that regulating autophagy by targeting specific regulatory molecules in its machinery can modulate multiple disease processes. Therefore, autophagy represents a significant pharmacological target for drug development and therapeutic interventions in various diseases, including cancers. According to the framework of autophagy, the suppression or induction of autophagy can exert therapeutic properties through the promotion of cell death or cell survival, which are the two main events targeted by cancer therapies. Remarkably, natural products have attracted attention in the anticancer drug discovery field, because they are biologically friendly and have potential therapeutic effects. In this review, we summarize the up-to-date knowledge regarding natural products that can modulate autophagy in various cancers. These findings will provide a new position to exploit more natural compounds as potential novel anticancer drugs and will lead to a better understanding of molecular pathways by targeting the various autophagy stages of upcoming cancer therapeutics.
Collapse
Affiliation(s)
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, 2–7 Daigaku-machi, Takatsuki 569-8686, Osaka, Japan;
| | - Samrein Ahmed
- Department of Biosciences and Chemistry, College of Health and Wellbeing and Life Sciences, Sheffield Hallam University, City Campus, Howard Street, Sheffield S1 1WB, UK;
| | - Nada Radwan
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Hend S. Ahmed
- Department of Hematology and Blood Transfusion, Faculty of Medical Laboratory Science, Omdurman Ahlia University, Khartoum 786, Sudan;
| | - Nabil Eid
- Department of Anatomy, College of Medicine & Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| |
Collapse
|
11
|
Sabido EM, Tenebro CP, Trono DJVL, Vicera CVB, Leonida SFL, Maybay JJWB, Reyes-Salarda R, Amago DS, Aguadera AMV, Octaviano MC, Saludes JP, Dalisay DS. Insights into the Variation in Bioactivities of Closely Related Streptomyces Strains from Marine Sediments of the Visayan Sea against ESKAPE and Ovarian Cancer. Mar Drugs 2021; 19:md19080441. [PMID: 34436280 PMCID: PMC8399204 DOI: 10.3390/md19080441] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/25/2022] Open
Abstract
Marine sediments host diverse actinomycetes that serve as a source of new natural products to combat infectious diseases and cancer. Here, we report the biodiversity, bioactivities against ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) and ovarian cancer, and metabolites variation among culturable actinomycetes isolated from the marine sediments of Visayan Sea, Philippines. We identified 15 Streptomyces species based on a 16S rRNA gene sequence analysis. The crude extracts of 10 Streptomyces species have inhibited the growth of ESKAPE pathogens with minimum inhibitory concentration (MIC) values ranging from 0.312 mg/mL to 20 mg/mL depending on the strain and pathogens targeted. Additionally, ten crude extracts have antiproliferative activity against A2780 human ovarian carcinoma at 2 mg/mL. To highlight, we observed that four phylogenetically identical Streptomyces albogriseolus strains demonstrated variation in antibiotic and anticancer activities. These strains harbored type I and II polyketide synthase (PKS) and non-ribosomal synthetase (NRPS) genes in their genomes, implying that their bioactivity is independent of the polymerase chain reaction (PCR)-detected bio-synthetic gene clusters (BGCs) in this study. Metabolite profiling revealed that the taxonomically identical strains produced core and strain-specific metabolites. Thus, the chemical diversity among these strains influences the variation observed in their biological activities. This study expanded our knowledge on the potential of marine-derived Streptomyces residing from the unexplored regions of the Visayan Sea as a source of small molecules against ESKAPE pathogens and cancer. It also highlights that Streptomyces species strains produce unique strain-specific secondary metabolites; thus, offering new chemical space for natural product discovery.
Collapse
Affiliation(s)
- Edna M. Sabido
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Chuckcris P. Tenebro
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
| | - Dana Joanne Von L. Trono
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
| | - Carmela Vannette B. Vicera
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
| | - Sheeny Fane L. Leonida
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Jose Jeffrey Wayne B. Maybay
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Rikka Reyes-Salarda
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
| | - Diana S. Amago
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Angelica Marie V. Aguadera
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - May C. Octaviano
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
| | - Jonel P. Saludes
- Center for Natural Drug Discovery and Development (CND3), University of San Agustin, Iloilo City 5000, Philippines; (E.M.S.); (S.F.L.L.); (J.J.W.B.M.); (D.S.A.); (A.M.V.A.); (M.C.O.)
- Department of Chemistry, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
- Tuklas Lunas Development Center, University of San Agustin, Iloilo City 5000, Philippines
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (PCHRD), Bicutan, Taguig City 1631, Philippines
- Correspondence: (J.P.S.); (D.S.D.); Tel.: +63-33-503-6887 (J.P.S.); +63-33-501-0350 (D.S.D.)
| | - Doralyn S. Dalisay
- Center for Chemical Biology and Biotechnology (C2B2), University of San Agustin, Iloilo City 5000, Philippines; (C.P.T.); (D.J.V.L.T.); (C.V.B.V.); (R.R.-S.)
- Department of Biology, College of Liberal Arts, Sciences, and Education, University of San Agustin, Iloilo City 5000, Philippines
- Tuklas Lunas Development Center, University of San Agustin, Iloilo City 5000, Philippines
- Balik Scientist Program, Department of Science and Technology, Philippine Council for Health Research and Development (PCHRD), Bicutan, Taguig City 1631, Philippines
- Correspondence: (J.P.S.); (D.S.D.); Tel.: +63-33-503-6887 (J.P.S.); +63-33-501-0350 (D.S.D.)
| |
Collapse
|
12
|
Vyhnalova T, Danek Z, Gachova D, Linhartova PB. The Role of the Oral Microbiota in the Etiopathogenesis of Oral Squamous Cell Carcinoma. Microorganisms 2021; 9:microorganisms9081549. [PMID: 34442627 PMCID: PMC8400438 DOI: 10.3390/microorganisms9081549] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Dysbiosis in the oral environment may play a role in the etiopathogenesis of oral squamous cell carcinoma (OSCC). This review aims to summarize the current knowledge about the association of oral microbiota with OSCC and to describe possible etiopathogenetic mechanisms involved in processes of OSCC development and progression. Association studies included in this review were designed as case–control/case studies, analyzing the bacteriome, mycobiome, and virome from saliva, oral rinses, oral mucosal swabs, or oral mucosal tissue samples (deep and superficial) and comparing the results in healthy individuals to those with OSCC and/or with premalignant lesions. Changes in relative abundances of specific bacteria (e.g., Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus sp.) and fungi (especially Candida sp.) were associated with OSCC. Viruses can also play a role; while the results of studies investigating the role of human papillomavirus in OSCC development are controversial, Epstein–Barr virus was positively correlated with OSCC. The oral microbiota has been linked to tumorigenesis through a variety of mechanisms, including the stimulation of cell proliferation, tumor invasiveness, angiogenesis, inhibition of cell apoptosis, induction of chronic inflammation, or production of oncometabolites. We also advocate for the necessity of performing a complex analysis of the microbiome in further studies and of standardizing the sampling procedures by establishing guidelines to support future meta-analyses.
Collapse
Affiliation(s)
- Tereza Vyhnalova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
| | - Zdenek Danek
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
- Department of Maxillofacial Surgery, University Hospital Brno, Jihlavská 20, 62500 Brno, Czech Republic
- Correspondence: ; Tel.: +420-777-550-596
| | - Daniela Gachova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
| | - Petra Borilova Linhartova
- Environmental Genomics Research Group, RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; (T.V.); (D.G.); (P.B.L.)
- Department of Maxillofacial Surgery, Faculty of Medicine, Masaryk University, Jihlavská 20, 62500 Brno, Czech Republic
- Institute of Medical Genetics and Genomics, Faculty of Medicine, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| |
Collapse
|
13
|
Carroll AR, Copp BR, Davis RA, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2021; 38:362-413. [PMID: 33570537 DOI: 10.1039/d0np00089b] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review covers the literature published in 2019 for marine natural products (MNPs), with 719 citations (701 for the period January to December 2019) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 440 papers for 2019), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Methods used to study marine fungi and their chemical diversity have also been discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
14
|
The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome-Treatment Axis. Int J Mol Sci 2020; 21:ijms21218061. [PMID: 33137960 PMCID: PMC7662318 DOI: 10.3390/ijms21218061] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the leading presentations of head and neck cancer (HNC). The first part of this review will describe the highlights of the oral microbiome in health and normal development while demonstrating how both the oral and gut microbiome can map OSCC development, progression, treatment and the potential side effects associated with its management. We then scope the dynamics of the various microorganisms of the oral cavity, including bacteria, mycoplasma, fungi, archaea and viruses, and describe the characteristic roles they may play in OSCC development. We also highlight how the human immunodeficiency viruses (HIV) may impinge on the host microbiome and increase the burden of oral premalignant lesions and OSCC in patients with HIV. Finally, we summarise current insights into the microbiome–treatment axis pertaining to OSCC, and show how the microbiome is affected by radiotherapy, chemotherapy, immunotherapy and also how these therapies are affected by the state of the microbiome, potentially determining the success or failure of some of these treatments.
Collapse
|
15
|
Dyshlovoy SA. Blue-Print Autophagy in 2020: A Critical Review. Mar Drugs 2020; 18:md18090482. [PMID: 32967369 PMCID: PMC7551687 DOI: 10.3390/md18090482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an elegant and complex biological process that has recently attracted much attention from the scientific community. The compounds which are capable of control and modulation of this process have a promising potential as therapeutics for a number of pathological conditions, including cancer and neurodegenerative disorders. At the same time, due to the relatively young age of the field, there are still some pitfalls in the autophagy monitoring assays and interpretation of the experimental data. This critical review provides an overview of the marine natural compounds, which have been reported to affect autophagy. The time period from the beginning of 2016 to the middle of 2020 is covered. Additionally, the published data and conclusions based on the experimental results are re-analyzed with regard to the guidelines developed by Klionsky and colleagues (Autophagy. 2016; 12(1): 1–222), which are widely accepted by the autophagy research community. Remarkably and surprisingly, more than half of the compounds reported to be autophagy activators or inhibitors could not ultimately be assigned to either category. The experimental data reported for those substances could indicate both autophagy activation and inhibition, requiring further investigation. Thus, the reviewed molecules were divided into two groups: having validated and non-validated autophagy modulatory effects. This review gives an analysis of the recent updates in the field and raises an important problem of standardization in the experimental design and data interpretation.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
16
|
Chen J, Gui C, Wei Q, Liu J, Ye L, Tian X, Gu YC, Li Q, Ju J. Characterization of Tailoring Methyltransferases Involved in K-41A Biosynthesis: Modulating Methylation to Improve K-41A Anti-infective Activity. Org Lett 2020; 22:4627-4632. [PMID: 32511927 DOI: 10.1021/acs.orglett.0c01347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The biosynthetic gene cluster (BGC) for polyether antibiotic K-41A was identified from marine-derived Streptomyces sp. SCSIO 01680 and subjected to combinatorial biosynthetic study. Bioinformatics analyses, gene disruption, and metabolomics analyses afforded eight new derivatives and one known polyether, showcasing five region-specific methyltransferases Pak13, Pak15, Pak20, Pak31, and Pak38 and their respective modification loci. Moreover, bioassays revealed that two disaccharide-bearing polyethers, K-41B and K-41Bm, display enhanced anti-HIV and potent antibacterial activities.
Collapse
Affiliation(s)
- Jiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Chun Gui
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Qiuyu Wei
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jie Liu
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Li Ye
- Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Qinglian Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou, 510301, China.,College of Oceanology, University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| |
Collapse
|
17
|
Zeng B, Ge C, Li R, Zhang Z, Fu Q, Li Z, Lin Z, Liu L, Xue Y, Xu Y, He J, Guo H, Li C, Huang W, Song X, Huang Y. Knockdown of microsomal glutathione S-transferase 1 inhibits lung adenocarcinoma cell proliferation and induces apoptosis. Biomed Pharmacother 2020; 121:109562. [DOI: 10.1016/j.biopha.2019.109562] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/04/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022] Open
|