1
|
Zoroddu S, Lucariello A, De Luca A, Bagella L. Dysregulation of miRNAs in Soft Tissue Sarcomas. Cells 2024; 13:1853. [PMID: 39594601 PMCID: PMC11592554 DOI: 10.3390/cells13221853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
MicroRNAs (miRNAs) are pivotal regulators of gene expression, influencing key cellular processes such as proliferation, differentiation, apoptosis, and metastasis. In the realm of sarcomas-a diverse group of malignant tumors affecting soft tissues and bone sarcomas-miRNAs have emerged as crucial players in tumorigenesis and tumor progression. This review delves into the intricate roles of miRNAs across various soft tissue sarcoma subtypes, including rhabdomyosarcoma, liposarcoma, leiomyosarcoma, synovial sarcoma, fibrosarcoma, angiosarcoma, undifferentiated pleomorphic sarcoma (UPS), and malignant peripheral nerve sheath tumor (MPNST). We explore how dysregulated miRNAs function as oncogenes or tumor suppressors, modulating critical pathways that define the aggressive nature of these cancers. Furthermore, we discuss the diagnostic and prognostic potential of specific miRNAs and highlight their promise as therapeutic targets. By understanding the miRNA-mediated regulatory networks, this review aims to provide a comprehensive overview of current research while pointing towards future directions for miRNA-based therapies. Our findings underscore the potential of miRNAs to transform the landscape of sarcoma treatment, offering hope for more precise, personalized, and effective therapeutic strategies.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples “Parthenope”, 80100 Naples, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania “Luigi Vanvitelli”, Via Costantinopoli 16, 80138 Naples, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
2
|
Han J, Zhang J, Zhang X, Luo W, Liu L, Zhu Y, Liu Q, Zhang XA. Emerging role and function of Hippo-YAP/TAZ signaling pathway in musculoskeletal disorders. Stem Cell Res Ther 2024; 15:386. [PMID: 39468616 PMCID: PMC11520482 DOI: 10.1186/s13287-024-04011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Hippo pathway is an evolutionarily conservative key pathway that regulates organ size and tissue regeneration by regulating cell proliferation, differentiation and apoptosis. Yes-associated protein 1 (YAP)/ WW domain-containing transcription regulator 1 (TAZ) serves as a pivotal transcription factor within the Hippo signaling pathway, which undergoes negative regulation by the Hippo pathway. The expression of YAP/TAZ affects various biological processes, including differentiation of osteoblasts (OB) and osteoclasts (OC), cartilage homeostasis, skeletal muscle development, regeneration and quality maintenance. At the same time, the dysregulation of the Hippo pathway can concurrently contribute to the development of various musculoskeletal disorders, including bone tumors, osteoporosis (OP), osteoarthritis (OA), intervertebral disc degeneration (IDD), muscular dystrophy, and rhabdomyosarcoma (RMS). Therefore, targeting the Hippo pathway has emerged as a promising therapeutic strategy for the treatment of musculoskeletal disorders. The focus of this review is to elucidate the mechanisms by which the Hippo pathway maintains homeostasis in bone, cartilage, and skeletal muscle, while also providing a comprehensive summary of the pivotal role played by core components of this pathway in musculoskeletal diseases. The efficacy and feasibility of Hippo pathway-related drugs for targeted therapy of musculoskeletal diseases are also discussed in our study. These endeavors offer novel insights into the application of Hippo signaling in musculoskeletal disorders, providing effective therapeutic targets and potential drug candidates for treating such conditions.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xiaoyi Zhang
- College of Second Clinical Medical, China Medical University, Shenyang, 110122, China
| | - Wenxin Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Lifei Liu
- Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Qingfeng Liu
- Department of General Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, 110016, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China.
| |
Collapse
|
3
|
Zoroddu S, Sanna L, Bordoni V, Lyu W, Murineddu G, Pinna GA, Forcales SV, Sala A, Kelvin DJ, Bagella L. RNAseq Analysis of Novel 1,3,4-Oxadiazole Chalcogen Analogues Reveals Anti-Tubulin Properties on Cancer Cell Lines. Int J Mol Sci 2023; 24:11263. [PMID: 37511023 PMCID: PMC10379353 DOI: 10.3390/ijms241411263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
1,3,4-Oxadiazole derivatives are among the most studied anticancer drugs. Previous studies have analyzed the action of different 1,3,4-oxadiazole derivatives and their effects on cancer cells. This study investigated the characterization of two new compounds named 6 and 14 on HeLa and PC-3 cancer cell lines. Based on the previously obtained IC50, cell cycle effects were monitored by flow cytometry. RNA sequencing (RNAseq) was performed to identify differentially expressed genes, followed by functional annotation using gene ontology (GO), KEGG signaling pathway enrichment, and protein-protein interaction (PPI) network analyses. The tubulin polymerization assay was used to analyze the interaction of both compounds with tubulin. The results showed that 6 and 14 strongly inhibited the proliferation of cancer cells by arresting them in the G2/M phase of the cell cycle. Transcriptome analysis showed that exposure of HeLa and PC-3 cells to the compounds caused a marked reprograming of gene expression. Functional enrichment analysis indicated that differentially expressed genes were significantly enriched throughout the cell cycle and cancer-related biological processes. Furthermore, PPI network, hub gene, and CMap analyses revealed that compounds 14 and 6 shared target genes with established microtubule inhibitors, indicating points of similarity between the two molecules and microtubule inhibitors in terms of the mechanism of action. They were also able to influence the polymerization process of tubulin, suggesting the potential of these new compounds to be used as efficient chemotherapeutic agents.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
| | - Weidong Lyu
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou 515031, China
| | - Gabriele Murineddu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Gerard A Pinna
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Sonia Vanina Forcales
- Department of Pathology and Experimental Therapeutics, School of Medicine, Health Science Campus of Bellvitge, University of Barcelona, Carrer de la Feixa Llarga, s/n, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Arturo Sala
- Centre for Inflammation Research and Translational Medicine (CIRTM), Department of Life Sciences, Brunel University, London UB8 3PH, UK
| | - David J Kelvin
- Division of Immunology, International Institute of Infection and Immunity, Shantou University Medical College, Shantou 515031, China
- Department of Microbiology and Immunology, Dalhousie University, 6299 South St, Halifax, NS B3H 4R2, Canada
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
4
|
Zhu Z, Yu S, Niu K, Wang P. LGR5 promotes invasion and migration by regulating YAP activity in hypopharyngeal squamous cell carcinoma cells under inflammatory condition. PLoS One 2022; 17:e0275679. [PMID: 36288272 PMCID: PMC9604011 DOI: 10.1371/journal.pone.0275679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
High leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) expression caused by an inflammatory condition was reported to promote tumor proliferation and the epithelial-mesenchymal transition (EMT) in various malignant tumors, but those effects have not been studied in hypopharyngeal squamous cell carcinoma (HSCC) and the molecular mechanism remains unclear. This study was aimed to determine whether YAP/TAZ is involved in the regulation of LGR5 expression in the inflammatory condition. Human hypopharyngeal carcinoma FaDu cells were stimulated with inflammatory medium. The cell invasion ability were evaluated through wound healing assay and transwell invasion assay. The expression levels of EMT-related proteins, LGR5, and p-YAP were detected by real time PCR, western blotting, and immunofluorescence. The results showed that LGR5 expression and the EMT process were significantly enhanced under inflammatory condition. The expression of EMT-related proteins was up-regulated, while that of p-YAP was decreased. After inhibiting the high LGR5 expression with short interfering RNA, the expression of EMT-related proteins was also down-regulated, while that of p-YAP was significantly increased. The use of verteporfin (VP), an inhibitor of YAP activity that promotes YAP phosphorylation, did not affect LGR5 expression. In conclusion, we suggest that the inflammatory condition leads to high LGR5 expression, which up-regulating the expression of EMT-related proteins by inhibiting the YAP phosphorylation.
Collapse
Affiliation(s)
- Zijia Zhu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
- Department of Breast Surgery, Jilin University, Changchun, Jilin, China
| | - Shuyuan Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Kai Niu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
5
|
Novel 1,3,4-oxadiazole chalcogen analogues: Synthesis and cytotoxic activity. Eur J Med Chem 2022; 238:114440. [DOI: 10.1016/j.ejmech.2022.114440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/31/2022]
|
6
|
Unraveling the IGF System Interactome in Sarcomas Exploits Novel Therapeutic Options. Cells 2021; 10:cells10082075. [PMID: 34440844 PMCID: PMC8392407 DOI: 10.3390/cells10082075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Aberrant bioactivity of the insulin-like growth factor (IGF) system results in the development and progression of several pathologic conditions including cancer. Preclinical studies have shown promising anti-cancer therapeutic potentials for anti-IGF targeted therapies. However, a clear but limited clinical benefit was observed only in a minority of patients with sarcomas. The molecular complexity of the IGF system, which comprises multiple regulators and interactions with other cancer-related pathways, poses a major limitation in the use of anti-IGF agents and supports the need of combinatorial therapeutic strategies to better tackle this axis. In this review, we will initially highlight multiple mechanisms underlying IGF dysregulation in cancer and then focus on the impact of the IGF system and its complexity in sarcoma development and progression as well as response to anti-IGF therapies. We will also discuss the role of Ephrin receptors, Hippo pathway, BET proteins and CXCR4 signaling, as mediators of sarcoma malignancy and relevant interactors with the IGF system in tumor cells. A deeper understanding of these molecular interactions might provide the rationale for novel and more effective therapeutic combinations to treat sarcomas.
Collapse
|
7
|
Zoroddu S, Marchesi I, Bagella L. PRC2: an epigenetic multiprotein complex with a key role in the development of rhabdomyosarcoma carcinogenesis. Clin Epigenetics 2021; 13:156. [PMID: 34372908 PMCID: PMC8351429 DOI: 10.1186/s13148-021-01147-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/02/2021] [Indexed: 02/02/2023] Open
Abstract
Skeletal muscle formation represents a complex of highly organized and specialized systems that are still not fully understood. Epigenetic systems underline embryonic development, maintenance of stemness, and progression of differentiation. Polycomb group proteins play the role of gene silencing of stemness markers that regulate muscle differentiation. Enhancer of Zeste EZH2 is the catalytic subunit of the complex that is able to trimethylate lysine 27 of histone H3 and induce silencing of the involved genes. In embryonal Rhabdomyosarcoma and several other tumors, EZH2 is often deregulated and, in some cases, is associated with tumor malignancy. This review explores the molecular processes underlying the failure of muscle differentiation with a focus on the PRC2 complex. These considerations could open new studies aimed at the development of new cutting-edge therapeutic strategies in the onset of Rhabdomyosarcoma.
Collapse
Affiliation(s)
- Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Irene Marchesi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
- Kitos Biotech Srls, Tramariglio, Alghero, SS, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Riu F, Sanna L, Ibba R, Piras S, Bordoni V, Scorciapino MA, Lai M, Sestito S, Bagella L, Carta A. A comprehensive assessment of a new series of 5',6'-difluorobenzotriazole-acrylonitrile derivatives as microtubule targeting agents (MTAs). Eur J Med Chem 2021; 222:113590. [PMID: 34139625 DOI: 10.1016/j.ejmech.2021.113590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/21/2021] [Accepted: 05/27/2021] [Indexed: 02/09/2023]
Abstract
Microtubules (MTs) are the principal target for drugs acting against mitosis. These compounds, called microtubule targeting agents (MTAs), cause a mitotic arrest during G2/M phase, subsequently inducing cell apoptosis. MTAs could be classified in two groups: microtubule stabilising agents (MSAs) and microtubule destabilising agents (MDAs). In this paper we present a new series of (E) (Z)-2-(5,6-difluoro-(1H)2H-benzo[d] [1,2,3]triazol-1(2)-yl)-3-(R)acrylonitrile (9a-j, 10e, 11a,b) and (E)-2-(1H-benzo[d] [1,2,3]triazol-1-yl)-3-(R)acrylonitrile derivatives (13d,j), which were recognised to act as MTAs agents. They were rationally designed, synthesised, characterised and subjected to different biological assessments. Computational docking was carried out in order to investigate the potential binding to the colchicine-binding site on tubulin. From this first prediction, the di-fluoro substitution seemed to be beneficial for the binding affinity with tubulin. The new fluorine derivatives, here presented, showed an improved antiproliferative activity when compared to the previously reported compounds. The biological evaluation included a preliminary antiproliferative screening on NCI60 cancer cells panel (1-10 μM). Compound 9a was selected as lead compound of the new series of derivatives. The in vitro XTT assay, flow cytometry analysis and immunostaining performed on HeLa cells treated with 9a showed a considerable antiproliferative effect, (IC50 = 3.2 μM), an increased number of cells in G2/M-phase, followed by an enhancement in cell division defects. Moreover, β-tubulin staining confirmed 9a as a MDA triggering tubulin disassembly, whereas colchicine-9a competition assay suggested that compound 9a compete with colchicine for the binding site on tubulin. Then, the co-administration of compound 9a and an extrusion pump inhibitor (EPI) was investigated: the association resulted beneficial for the antiproliferative activity and compound 9a showed to be client of extrusion pumps. Finally, structural superimposition of different colchicine binding site inhibitors (CBIs) in clinical trial and our MDA, provided an additional confirmation of the targeting to the predicted binding site. Physicochemical, pharmacokinetic and druglikeness predictions were also conducted and all the newly synthesised derivatives showed to be drug-like molecules.
Collapse
Affiliation(s)
- Federico Riu
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - Roberta Ibba
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| | - Sandra Piras
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - M Andrea Scorciapino
- Department of Chemical and Geological Sciences, University of Cagliari, S.P. 8 Km 0.700, 09042, Monserrato (CA), Italy
| | - Michele Lai
- Retrovirus Centre, Department of Translational Medicine and New Technologies in Medicine and Surgery, University of Pisa, Strada Statale Del Brennero, 2, Pisa, Italy; CISUP - Centre for Instrumentation Sharing - University of Pisa, Lungarno Pacinotti 43, Pisa, Italy
| | - Simona Sestito
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA.
| | - Antonio Carta
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
9
|
Weidong L, Sanna L, Bordoni V, Tiansheng Z, Chengxun L, Murineddu G, Pinna GA, Kelvin DJ, Bagella L. Target identification of a novel unsymmetrical 1,3,4-oxadiazole derivative with antiproliferative properties. J Cell Physiol 2021; 236:3789-3799. [PMID: 33089499 DOI: 10.1002/jcp.30120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/22/2020] [Accepted: 10/10/2020] [Indexed: 02/05/2023]
Abstract
1,3,4-Oxadiazole derivatives are widely used in research on antineoplastic drugs. Recently, we discovered a novel unsymmetrical 1,3,4-oxadiazole compound with antiproliferative properties called 2j. To further investigate its possible targets and molecular mechanisms, RNA-seq was performed and the differentially expressed genes (DEGs) were obtained after treatment. Data were analyzed using functional (Gene Ontology term) and pathway (Kyoto Encyclopedia of Genes and Genomes) enrichment of the DEGs. The hub genes were determined by the analysis of protein-protein interaction networks. The connectivity map (CMap) information provided insight into the model action of antitumor small molecule drugs. Hub genes have been identified through function gene networks using STRING analysis. The small molecular targets obtained by CMap comparison showed that 2j is a tubulin inhibitor and it acts mainly affecting tumor cells through the cell cycle, FoxO signaling pathway, apoptotic, and p53 signaling pathways. The possible targets of 2j could be TUBA1A and TUBA4A. Molecular docking results indicated that 2j interacts at the colchicine-binding site on tubulin.
Collapse
Affiliation(s)
- Lyu Weidong
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Laboratory of Immunity, Shantou University Medical College, Shantou, Guangdong, China
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Zeng Tiansheng
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Laboratory of Immunity, Shantou University Medical College, Shantou, Guangdong, China
| | - Li Chengxun
- Laboratory of Immunity, Shantou University Medical College, Shantou, Guangdong, China
| | - Gabriele Murineddu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Gerard A Pinna
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - David J Kelvin
- Laboratory of Immunity, Shantou University Medical College, Shantou, Guangdong, China
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Morice S, Mullard M, Brion R, Dupuy M, Renault S, Tesfaye R, Brounais-Le Royer B, Ory B, Redini F, Verrecchia F. The YAP/TEAD Axis as a New Therapeutic Target in Osteosarcoma: Effect of Verteporfin and CA3 on Primary Tumor Growth. Cancers (Basel) 2020; 12:cancers12123847. [PMID: 33419295 PMCID: PMC7766439 DOI: 10.3390/cancers12123847] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Although some studies suggested that disruption of the Hippo signaling pathway is associated with osteosarcoma progression, the molecular mechanisms by which YAP regulates primary tumor growth is not fully clarified. In addition, the validation of YAP as a therapeutic target through the use of inhibitors in a preclinical model must be demonstrated. RNA-seq analysis and Kaplan-Meier assays identified a YAP signature in osteosarcoma patients and a correlation with patients' outcomes. Molecular and cellular analysis (RNAseq, PLA, immunoprecipitation, promoter/specific gene, proliferation, cell cycle assays) using overexpression of mutated forms of YAP able or unable to interact with TEAD, indicate that TEAD is crucial for YAP-driven cell proliferation and in vivo tumor growth. In addition, in vivo experiments using an orthotopic mice model of osteosarcoma show that two YAP/TEAD inhibitors, verteporfin and CA3, reduce primary tumor growth. In this context, in vitro experiments demonstrate that these inhibitors decrease YAP expression, YAP/TEAD transcriptional activity and cell viability mainly by their ability to induce cell apoptosis. We thus demonstrate that the YAP/TEAD signaling axis is a central actor in mediating primary tumor growth of osteosarcoma, and that the use of YAP inhibitors may be a promising therapeutic strategy against osteosarcoma tumor growth.
Collapse
Affiliation(s)
- Sarah Morice
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Mathilde Mullard
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | | | - Maryne Dupuy
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Sarah Renault
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Robel Tesfaye
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Bénédicte Brounais-Le Royer
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Benjamin Ory
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Françoise Redini
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
| | - Franck Verrecchia
- INSERM UMR1238 “Bone Sarcomas and Remodeling of Calcified Tissues”, Nantes University, F-44035 Nantes, France; (S.M.); (M.M.); (M.D.); (S.R.); (R.T.); (B.B.-L.R.); (B.O.); (F.R.)
- Correspondence: ; Tel.: +33-244-769-116
| |
Collapse
|
11
|
Hippo/YAP Signaling Pathway: A Promising Therapeutic Target in Bone Paediatric Cancers? Cancers (Basel) 2020; 12:cancers12030645. [PMID: 32164350 PMCID: PMC7139637 DOI: 10.3390/cancers12030645] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
Osteosarcoma and Ewing sarcoma are the most prevalent bone pediatric tumors. Despite intensive basic and medical research studies to discover new therapeutics and to improve current treatments, almost 40% of osteosarcoma and Ewing sarcoma patients succumb to the disease. Patients with poor prognosis are related to either the presence of metastases at diagnosis or resistance to chemotherapy. Over the past ten years, considerable interest for the Hippo/YAP signaling pathway has taken place within the cancer research community. This signaling pathway operates at different steps of tumor progression: Primary tumor growth, angiogenesis, epithelial to mesenchymal transition, and metastatic dissemination. This review discusses the current knowledge about the involvement of the Hippo signaling pathway in cancer and specifically in paediatric bone sarcoma progression.
Collapse
|