1
|
Kanjanasirirat P, Saengsawang W, Ketsawatsomkron P, Asavapanumas N, Borwornpinyo S, Soodvilai S, Hongeng S, Charoensutthivarakul S. GDNF and cAMP significantly enhance in vitro blood-brain barrier integrity in a humanized tricellular transwell model. Heliyon 2024; 10:e39343. [PMID: 39492921 PMCID: PMC11530796 DOI: 10.1016/j.heliyon.2024.e39343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Blood-brain barrier (BBB) is a crucial membrane safeguarding neural tissue by controlling the molecular exchange between blood and the brain. However, assessing BBB permeability presents challenges for central nervous system (CNS) drug development. In vitro studies of BBB-permeable agents before animal testing are essential to mitigate failures. Improved in vitro models are needed to mimic physiologically relevant BBB integrity. Here, we established an in vitro human-derived triculture BBB model, coculturing hCMEC/D3 with primary astrocytes and pericytes in a transwell format. This study found that the triculture BBB model exhibited significantly higher paracellular tightness (TEER 147.6 ± 6.5 Ω × cm2) than its monoculture counterpart (106.3 ± 1.0 Ω × cm2). Additionally, BBB permeability in the triculture model was significantly lower. While GDNF and cAMP have been shown to promote BBB integrity in monoculture models, their effect in our model was previously unreported. Our study demonstrates that both GDNF and cAMP increased TEER values (around 200 Ω × cm2 for each; 237.6 ± 17.7 Ω × cm2 for co-treatment) compared to untreated control, and decreased BBB permeability, mediated by increased claudin-5 expression. In summary, this humanized triculture BBB model, enhanced by GDNF and cAMP, offers an alternative for exploring in vitro drug penetration into the human brain.
Collapse
Affiliation(s)
- Phongthon Kanjanasirirat
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Witchuda Saengsawang
- Department of Basic Biomedical Sciences, Dr. William M. Scholl College of Podiatric Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Pimonrat Ketsawatsomkron
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, 10540, Thailand
| | - Nithi Asavapanumas
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn, 10540, Thailand
| | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Sunhapas Soodvilai
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Suradej Hongeng
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sitthivut Charoensutthivarakul
- School of Bioinnovation and Bio-Based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
2
|
da Silva Oliveira DD, Paz F, Brito NPF, Krüger A, Martinho ACC, Lapierre TJWJD, de Oliveira Souza F, Maltarollo VG, Kronenberger T, Mendes MS, Nonato MC, Pilau EJ, Wrenger C, Wunderlich G, Rezende Júnior CDO. Synthesis, design, and optimization of a potent and selective series of pyridylpiperazines as promising antimalarial agents. Eur J Med Chem 2024; 275:116621. [PMID: 38944935 DOI: 10.1016/j.ejmech.2024.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024]
Abstract
An optimization of the pyridylpiperazine series against Plasmodium falciparum has been performed, exploring a structure-activity relationship carried out on the toluyl fragment of hit 1, a compound with low micromolar activity against Plasmodium falciparum discovered by high-throughput screening. After confirming the crucial role played by this aryl fragment in the antiplasmodial activity, the replacement of the ortho-methyl substituent of 1 by halogenated ones led to an improvement for four analogs, either in terms of potency, expected pharmacokinetics profile, or both. Further introduction of endocyclic nitrogens in this fragment identified two more optimized compounds, 20 and 23, which are expected to be much more metabolically stable than 1. Additional assessment of the cytotoxicity, Ligand Lipophilic Efficiency, potency against the chloroquine-resistant Dd2 strain and in silico ADMET predictions revealed a satisfactory profile for most compounds, ultimately identifying the four optimized compounds 7, 9, 20 and 23 as promising compounds for further lead optimization of this series against Plasmodium falciparum.
Collapse
Affiliation(s)
- Douglas Davison da Silva Oliveira
- Laboratório de Síntese de Candidatos a Fármacos, Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38400-902, Brazil
| | - Franciarli Paz
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nícolas Peterson Ferreira Brito
- Laboratório de Síntese de Candidatos a Fármacos, Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38400-902, Brazil
| | - Arne Krüger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Clara Cassiano Martinho
- Laboratório de Síntese de Candidatos a Fármacos, Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38400-902, Brazil
| | | | - Felipe de Oliveira Souza
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), State University of Maringá (UEM), Maringá, PR, 807020-900, Brazil
| | - Vinícius G Maltarollo
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Thales Kronenberger
- German Center for Infection Research (DZIF), Partner-site Tübingen, 72076, Tübingen, Germany; School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, 70211, Finland
| | - Marina Sena Mendes
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil; Center for the Research and Advancement of Fragments and Molecular Targets, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Maria Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil; Center for the Research and Advancement of Fragments and Molecular Targets, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14040-903, Brazil
| | - Eduardo Jorge Pilau
- Laboratório de Biomoléculas e Espectrometria de Massas (LaBioMass), State University of Maringá (UEM), Maringá, PR, 807020-900, Brazil
| | - Carsten Wrenger
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gerhard Wunderlich
- Unit for Drug Discovery, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratório de Síntese de Candidatos a Fármacos, Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, 38400-902, Brazil.
| |
Collapse
|
3
|
Silva IR, Souza MACE, Machado RR, Oliveira RBD, Leite EA, César IDC. Enhancing oral bioavailability of an antifungal thiazolylhydrazone derivative: Development and characterization of a self-emulsifying drug delivery system. Int J Pharm 2024; 655:124011. [PMID: 38493843 DOI: 10.1016/j.ijpharm.2024.124011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
RN104 (2-[2-(cyclohexylmethylene)hydrazinyl)]-4-phenylthiazole) is a thiazolylhydrazone derivative with prominent antifungal activity. This work aimed to develop a self-emulsifying drug delivery system (SEDDS) loaded with RN104 to improve its biopharmaceutical properties and enhance its oral bioavailability. Medium chain triglycerides, sorbitan monooleate, and polysorbate 80 were selected as components for the SEDDS formulation based on solubility determination and a pseudo-ternary phase diagram. The formulation was optimized using the central composite design in response surface methodology. The optimized condition consisted of medium chain triglycerides, sorbitan monooleate, and polysorbate 80 in a mass ratio of 65.5:23.0:11.5, achieving maximum drug loading (10 mg/mL) and minimum particle size (118.4 ± 0.7 nm). The developed RN104-SEDDS was fully characterized using dynamic light scattering, in vitro release studies, stability assessments, polarized light microscopy, and transmission electron microscopy. In vivo pharmacokinetic studies in mice demonstrated that RN104-SEDDS significantly improved oral bioavailability compared to free RN104 (the relative bioavailability was 2133 %). These results clearly indicated the successful application of SEDDS to improve the pharmacokinetic profile and to enhance the oral bioavailability of RN104, substantiating its potential as a promising antifungal drug candidate.
Collapse
Affiliation(s)
- Iara Rinco Silva
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Mateus Araújo Castro E Souza
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Renes Resende Machado
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Amaral Leite
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Isabela da Costa César
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, CEP: 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Oliveira NJC, Teixeira INS, Fernandes PO, Veríssimo GC, Valério AD, Moreira CPDS, Freitas TR, Fonseca ACV, Sabino ADP, Johann S, Maltarollo VG, de Oliveira RB. COMPUTER-AIDED MOLECULAR DESIGN, SYNTHESIS AND EVALUATION OF ANTIFUNGAL ACTIVITY OF HETEROCYCLIC COMPOUNDS. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Structural dynamics of the cooperative binding of small inhibitors in human cytochrome P450 2C9. J Mol Graph Model 2022; 113:108151. [DOI: 10.1016/j.jmgm.2022.108151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/03/2022] [Accepted: 02/03/2022] [Indexed: 11/23/2022]
|
6
|
The Brazilian compound library (BraCoLi) database: a repository of chemical and biological information for drug design. Mol Divers 2022; 26:3387-3397. [PMID: 35089481 DOI: 10.1007/s11030-022-10386-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
The Brazilian Compound Library (BraCoLi) is a novel open access and manually curated electronic library of compounds developed by Brazilian research groups to support further computer-aided drug design works, available on https://www.farmacia.ufmg.br/qf/downloads/ . Herein, the first version of the database is described comprising 1176 compounds. Also, the chemical diversity and drug-like profiles of BraCoLi were defined to analyze its chemical space. A significant amount of the compounds fitted Lipinski and Veber's rules, alongside other drug-likeness properties. A comparison using principal component analysis showed that BraCoLi is similar to other databases (FDA-approved drugs and NuBBEDB) regarding structural and physicochemical patterns. Furthermore, a scaffold analysis showed that BraCoLi presents several privileged chemical skeletons with great diversity. Despite the similar distribution in the structural and physicochemical spaces, Tanimoto coefficient values indicated that compounds present in the BraCoLi are generally different from the two other databases, where they showed different kernel distributions and low similarity. These facts show an interesting innovative aspect, which is a desirable feature for novel drug design purposes.
Collapse
|
7
|
Pantaleão SQ, Fernandes PO, Gonçalves JE, Maltarollo VG, Honorio KM. Recent Advances in the Prediction of Pharmacokinetics Properties in Drug Design Studies: A Review. ChemMedChem 2021; 17:e202100542. [PMID: 34655454 DOI: 10.1002/cmdc.202100542] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/07/2021] [Indexed: 12/11/2022]
Abstract
This review presents the main aspects related to pharmacokinetic properties, which are essential for the efficacy and safety of drugs. This topic is very important because the analysis of pharmacokinetic aspects in the initial design stages of drug candidates can increase the chances of success for the entire process. In this scenario, experimental and in silico techniques have been widely used. Due to the difficulties encountered with the use of some experimental tests to determine pharmacokinetic properties, several in silico tools have been developed and have shown promising results. Therefore, in this review, we address the main free tools/servers that have been used in this area, as well as some cases of application. Finally, we present some studies that employ a multidisciplinary approach with synergy between in silico, in vitro, and in vivo techniques to assess ADME properties of bioactive substances, achieving successful results in drug discovery and design.
Collapse
Affiliation(s)
- Simone Q Pantaleão
- Centro de Ciências Naturais e Humanas, Institution Universidade Federal do ABC, 09210-580, Santo André, SP, Brazil
| | - Philipe O Fernandes
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - José Eduardo Gonçalves
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Vinícius G Maltarollo
- Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, 31270-901, Pampulha, MG, Brazil
| | - Kathia Maria Honorio
- Centro de Ciências Naturais e Humanas, Institution Universidade Federal do ABC, 09210-580, Santo André, SP, Brazil.,Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, 03828-000, São Paulo, SP, Brazil
| |
Collapse
|
8
|
Pérez Santín E, Rodríguez Solana R, González García M, García Suárez MDM, Blanco Díaz GD, Cima Cabal MD, Moreno Rojas JM, López Sánchez JI. Toxicity prediction based on artificial intelligence: A multidisciplinary overview. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Efrén Pérez Santín
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - Raquel Rodríguez Solana
- Department of Food Science and Health Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Avda Córdoba, Andalucía Spain
| | - Mariano González García
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - María Del Mar García Suárez
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - Gerardo David Blanco Díaz
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - María Dolores Cima Cabal
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| | - José Manuel Moreno Rojas
- Department of Food Science and Health Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo Avda Córdoba, Andalucía Spain
| | - José Ignacio López Sánchez
- Escuela Superior de Ingeniería y Tecnología (ESIT) Universidad Internacional de La Rioja (UNIR) Logroño Spain
| |
Collapse
|
9
|
Rocha JE, de Freitas TS, da Cunha Xavier J, Pereira RLS, Junior FNP, Nogueira CES, Marinho MM, Bandeira PN, de Oliveira MR, Marinho ES, Teixeira AMR, Dos Santos HS, Coutinho HDM. Antibacterial and antibiotic modifying activity, ADMET study and molecular docking of synthetic chalcone (E)-1-(2-hydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)prop-2-en-1-one in strains of Staphylococcus aureus carrying NorA and MepA efflux pumps. Biomed Pharmacother 2021; 140:111768. [PMID: 34058442 DOI: 10.1016/j.biopha.2021.111768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
A large number of infections are caused by multi-resistant bacteria worldwide, adding up to a figure of around 700,000 deaths per year. Because of that many strategies are being developed in order to combat the resistance of microorganisms to drugs, in recent times, chalcones have been studied for this purpose. Chalcones are known as α, β-unsaturated ketones, characterized by having the presence of two aromatic rings that are joined by a three-carbon chain, they are a class of compounds considered an exceptional model due to chemical simplicity and a wide variety of biological activities, which include anticancer, anti-inflammatory, antioxidants, antimicrobials, anti-tuberculosis, anti-HIV, antimalarial, anti-allergic, antifungal, antibacterial, and antileishmanial. The objective of this work was evaluate the antibacterial and antibiotic modifying activity of chalcone (E)-1-(2-hydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)prop-2-en-1-one against the bacteria Staphylococcus aureus carrying a NorA and MepA efflux pump. The results showed that chalcone was able to synergistically modulate the action of Norfloxacin and Ethidium Bromide against the bacteria Staphylococcus aureus 1199B and K2068, respectively. The theoretical physicochemical and pharmacokinetic properties of chalcone showed that the chalcone did not present a severe risk of toxicity such as genetic mutation or cardiotoxicity, constituting a good pharmacological active ingredient.
Collapse
Affiliation(s)
- Janaína Esmeraldo Rocha
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Thiago Sampaio de Freitas
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Jayze da Cunha Xavier
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Raimundo Luiz Silva Pereira
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | | | - Carlos Emídio Sampaio Nogueira
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Márcia Machado Marinho
- Faculdade de Educação, Ciência e Letras de Iguatu, Universidade Estadual do Ceará, Iguatu, Ceará, Brazil
| | - Paulo Nogueira Bandeira
- Universidade Estadual do Vale do Acaraú, Centro de Ciencias Exatas e Tecnologia, Sobral, Ceará, Brazil
| | | | - Emmanuel Silva Marinho
- Universidade Estadual do Ceará, Faculdade de Filosofia Dom Aureliano Matos, Limoeiro do Norte, Ceará, Brazil
| | - Alexandre Magno Rodrigues Teixeira
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil
| | - Hélcio Silva Dos Santos
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil; Universidade Estadual do Vale do Acaraú, Centro de Ciencias Exatas e Tecnologia, Sobral, Ceará, Brazil; Universidade Estadual do Ceará, Centro de Ciências e Tecnologia, Programa de Pós-Graduação Ciências Naturais, Fortaleza, Ceará, Brazil
| | - Henrique Douglas Melo Coutinho
- Departamento de Química Biológica, Laboratório de Microbiologia e Biologia Molecular - LMBM, Universidade Regional do Cariri, Crato, Ceará, Brazil.
| |
Collapse
|
10
|
Faria DR, Melo RC, Arita GS, Sakita KM, Rodrigues-Vendramini FAV, Capoci IRG, Becker TCA, Bonfim-Mendonça PDS, Felipe MSS, Svidzinski TIE, Kioshima ES. Fungicidal Activity of a Safe 1,3,4-Oxadiazole Derivative Against Candida albicans. Pathogens 2021; 10:pathogens10030314. [PMID: 33800117 PMCID: PMC8001722 DOI: 10.3390/pathogens10030314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Candida albicans is the most common species isolated from nosocomial bloodstream infections. Due to limited therapeutic arsenal and increase of drug resistance, there is an urgent need for new antifungals. Therefore, the antifungal activity against C. albicans and in vivo toxicity of a 1,3,4-oxadiazole compound (LMM6) was evaluated. This compound was selected by in silico approach based on chemical similarity. LMM6 was highly effective against several clinical C. albicans isolates, with minimum inhibitory concentration values ranging from 8 to 32 µg/mL. This compound also showed synergic effect with amphotericin B and caspofungin. In addition, quantitative assay showed that LMM6 exhibited a fungicidal profile and a promising anti-biofilm activity, pointing to its therapeutic potential. The evaluation of acute toxicity indicated that LMM6 is safe for preclinical trials. No mortality and no alterations in the investigated parameters were observed. In addition, no substantial alteration was found in Hippocratic screening, biochemical or hematological analyzes. LMM6 (5 mg/kg twice a day) was able to reduce both spleen and kidneys fungal burden and further, promoted the suppresses of inflammatory cytokines, resulting in infection control. These preclinical findings support future application of LMM6 as potential antifungal in the treatment of invasive candidiasis.
Collapse
Affiliation(s)
- Daniella Renata Faria
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Raquel Cabral Melo
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Glaucia Sayuri Arita
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Karina Mayumi Sakita
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Franciele Abigail Vilugron Rodrigues-Vendramini
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Isis Regina Grenier Capoci
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Tania Cristina Alexandrino Becker
- Laboratory of General Pathology, Department of Basic Health Sciences, State University of Maringá, Maringá (UEM), Maringá, Paraná 87020-900, Brazil;
| | - Patrícia de Souza Bonfim-Mendonça
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Maria Sueli Soares Felipe
- Program of Genomic Sciences and Biotechnology, Catholic University of Brasilia, Brasília 70790-160, Brazil;
| | - Terezinha Inez Estivalet Svidzinski
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
| | - Erika Seki Kioshima
- Laboratory of Medical Mycology, Department of Clinical Analysis and Biomedicine, State University of Maringá (UEM), Maringá, Paraná 87020-900, Brazil; (D.R.F.); (R.C.M.); (G.S.A.); (K.M.S.); (F.A.V.R.-V.); (I.R.G.C.); (P.d.S.B.-M.); (T.I.E.S.)
- Correspondence: or ; Tel.: +55-44-3011-4810
| |
Collapse
|
11
|
Improving the solubility of an antifungal thiazolyl hydrazone derivative by cyclodextrin complexation. Eur J Pharm Sci 2021; 156:105575. [DOI: 10.1016/j.ejps.2020.105575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 09/07/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022]
|
12
|
Ribeiro JLS, Soares JCAV, Portapilla GB, Providello MV, Lima CHS, Muri EMF, de Albuquerque S, Dias LRS. Trypanocidal activity of new 1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine derivatives: Synthesis, in vitro and in vivo studies. Bioorg Med Chem 2020; 29:115855. [PMID: 33199200 DOI: 10.1016/j.bmc.2020.115855] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/15/2020] [Accepted: 11/01/2020] [Indexed: 11/16/2022]
Abstract
Despite the serious public health problems caused by Chagas disease in several countries, the available therapy remains with only two drugs that are poorly active during the chronic phase of the disease in addition to having severe side effects. In search of new trypanocidal agents, herein we describe the synthesis and biological evaluation of eleven new 1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine compounds containing the carbohydrazide or the 2,3-dihydro-1,3,4-oxadiazole moieties. Two of them showed promising in vitro activity against amastigote forms of T. cruzi and were evaluated in vivo in male BALB/c mice infected with T. cruzi Y strain. Our results suggest that the substitution at the C-2 position of the phenyl group connected to the carbohydrazide or to the 2,3-dihydro-1,3,4-oxadiazole moieties plays an important role in the trypanocidal activity of this class of compounds. Moreover, the compound containing the 2,3-dihydro-1,3,4-oxadiazole moiety has demonstrated more favorable structural requirements for in vivo activity than its carbohydrazide analog.
Collapse
Affiliation(s)
- Joana L S Ribeiro
- Universidade Federal Fluminense, Faculdade de Farmácia, Laboratório de Química Medicinal, RJ, Brazil
| | - Júlio C A V Soares
- Universidade Federal Fluminense, Faculdade de Farmácia, Laboratório de Química Medicinal, RJ, Brazil
| | - Gisele B Portapilla
- Universidade de São Paulo, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, SP, Brazil
| | - Maiara V Providello
- Universidade de São Paulo, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, SP, Brazil
| | - Camilo H S Lima
- Universidade Federal do Rio de Janeiro, Instituto de Química, RJ, Brazil
| | - Estela M F Muri
- Universidade Federal Fluminense, Faculdade de Farmácia, Laboratório de Química Medicinal, RJ, Brazil
| | - Sérgio de Albuquerque
- Universidade de São Paulo, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, SP, Brazil.
| | - Luiza R S Dias
- Universidade Federal Fluminense, Faculdade de Farmácia, Laboratório de Química Medicinal, RJ, Brazil.
| |
Collapse
|
13
|
Poroikov VV. Computer-Aided Drug Design: from Discovery of Novel Pharmaceutical Agents to Systems Pharmacology. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2020. [DOI: 10.1134/s1990750820030117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Sharma S, Durairaj P, Bureik M. Rapid and convenient biotransformation procedure for human drug metabolizing enzymes using permeabilized fission yeast cells. Anal Biochem 2020; 607:113704. [PMID: 32697953 DOI: 10.1016/j.ab.2020.113704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/27/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
The development of convenient assays for the in vitro study of drug metabolizing enzymes (DMEs) such as cytochromes P450 (CYPs) and UDP-glucuronosyltransferases (UGTs) greatly facilitates metabolism studies of candidate drug compounds and other xenobiotics. We have developed and optimized an experimental approach that combines the advantages of recombinant expression in yeast with a microsomal-like biotransformation and thus allows for rapid and convenient enzymatic assays. Recombinant strains of the fission yeast Schizosaccharomyces pombe have previously been demonstrated to functionally express human CYPs and UGTs. Permeabilization of such cells with Triton X-100 results in the formation of enzyme bags, which can be used as biocatalysts. This protocol describes the preparation of such enzyme bags (3 h) and their application in enzyme activity assays (4 h) utilizing either pro-luminescent substrates and luminescence measurements or non-luminescent substrates and liquid chromatography coupled to mass spectrometry (LC-MS). Both applications provide practical tools for investigating CYP and UGT reactions in vitro without the need for additional sophisticated instrumentation or expertise.
Collapse
Affiliation(s)
- Shishir Sharma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Pradeepraj Durairaj
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
15
|
Silva IR, Braga AV, Gloria MBDA, Machado RDR, César IC, Oliveira RB. Preclinical pharmacokinetic study of a new thiazolyl hydrazone derivative with antifungal activity in mice plasma by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1149:122180. [DOI: 10.1016/j.jchromb.2020.122180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
|
16
|
Khan HU, Aamir K, Sisinthy SP, Nagojappa NBS, Arya A. Food additive "lauric acid" possess non-toxic profile on biochemical, haematological and histopathological studies in female Sprague Dawley (SD) rats. PeerJ 2020; 8:e8805. [PMID: 32266118 PMCID: PMC7120040 DOI: 10.7717/peerj.8805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Lauric acid (LA), a common constituent of coconut oil, is used as food additives and supplements in various formulations. Despite various potential pharmacological properties, no scientific evidence on its dose-related toxicity and safety is available till date. Objective The current study was conducted to evaluate acute oral toxicity of LA on normal rats. Methods The study was conducted in accordance with the Organization for Economic Co-operation and Development guidelines (OECD 423) with slight modifications. LA was administered orally to female Sprague Dawley (SD) rats (n = 6/group) at a single dose of 300 and 2,000 mg/kg body weight, respectively, while normal control received vehicle only. Animals from all the three groups were monitored for any behavioural and toxicological changes and mortality for two weeks. Food and fluid consumption, body weight was monitored on daily basis. At the end (on day 15th) of the experimental period, blood was collected for haematological and biochemical analysis. Further, all the animals were euthanized, and internal organs were harvested for histopathological investigation using four different stainings; haematoxylin and eosin, Masson trichrome, Periodic Acid Schiff and Picro Sirius Red for gross pathology through microscopical observation. Results The study results showed no LA treatment-related mortality and morbidity at two different dosages. Daily food and water consumption, body weight, relative organ weight, haematological, and biochemical analysis were observed to be normal with no severe alterations to the internal tissues. Conclusion The current finding suggests that single oral administration of LA, even up to 2,000 mg/kg body weight, did not exhibit any signs of toxicity in SD rats; thus, it was safe to be used on disease models in animals.
Collapse
Affiliation(s)
- Hidayat Ullah Khan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Khurram Aamir
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Sreenivas Patro Sisinthy
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | | | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia.,Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Parkville VIC, Australia.,Malaysian Institute of Pharmaceuticals and Nutraceuticals, (IPHARM), Bukit Gelugor Pulau, Pinang, Malaysia
| |
Collapse
|
17
|
Poroikov VV. [Computer-aided drug design: from discovery of novel pharmaceutical agents to systems pharmacology]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2020; 66:30-41. [PMID: 32116224 DOI: 10.18097/pbmc20206601030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
New drug discovery is based on the analysis of public information about the mechanisms of the disease, molecular targets, and ligands, which interaction with the target could lead to the normalization of the pathological process. The available data on diseases, drugs, pharmacological effects, molecular targets, and drug-like substances, taking into account the combinatorics of the associative relations between them, correspond to the Big Data. To analyze such data, the application of computer-aided drug design methods is necessary. An overview of the studies in this area performed by the Laboratory for Structure-Function Based Drug Design of IBMC is presented. We have developed the approaches to identifying promising pharmacological targets, predicting several thousand types of biological activity based on the structural formula of the compound, analyzing protein-ligand interactions based on assessing local similarity of amino acid sequences, identifying likely molecular mechanisms of side effects of drugs, calculating the integral toxicity of drugs taking into account their metabolism, have been developed in the human body, predicting sustainable and sensitive options strains and evaluating the effectiveness of combinations of antiretroviral drugs in patients, taking into account the molecular genetic characteristics of the clinical isolates of HIV-1. Our computer programs are implemented as the web-services freely available on the Internet, which are used by thousands of researchers from many countries of the world to select the most promising substances for the synthesis and determine the priority areas for experimental testing of their biological activity.
Collapse
Affiliation(s)
- V V Poroikov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|