1
|
Liu W, Yu Y, Hou T, Wei H, Lv F, Shen A, Liu Y, Wang J, Fu D. N-desmethyldauricine from Menispermum dauricum DC suppresses triple-negative breast cancer growth in 2D and 3D models by downregulating the NF-κB signaling pathway. Chem Biol Interact 2024; 398:111113. [PMID: 38908813 DOI: 10.1016/j.cbi.2024.111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, for which targeted therapy regimens are lacking. The traditional Chinese medicine Menispermum dauricum DC (M. dauricum) and its compounds have been reported to have antitumor activity against various cancers; however, their anti-TNBC activity is unknown. In this work, dauricine and N-desmethyldauricine from M. dauricum were separated and identified to have anti-TNBC via a multi-component bioactivity and structure-guided method. The cell counting kit 8 assay showed that dauricine and N-desmethyldauricine inhibited the proliferation of four tested TNBC cell lines, with half maximal inhibitory concentration values ranging from 5.01 μM to 13.16 μM. Further research suggested that N-desmethyldauricine induced cell apoptosis, arrested cell cycle progression in the G0/G1 phase, and inhibited cell migration. Western blot analysis revealed that the proapoptotic protein cleaved-poly-ADP-ribose polymerase 1 was upregulated, and the G0/G1 phase-related proteins cyclin-dependent kinase 2 and cyclin D1 and the migration-related protein matrix metallopeptidase 9 were downregulated. Furthermore, N-desmethyldauricine decreased the protein expression of p65, an important subunit of nuclear factor kappa-beta (NF-κB). Moreover, an antiproliferation assay of three-dimensional (3D) tumor spheroids showed that N-desmethyldauricine diminished cell‒cell adhesion and suppressed the growth of TNBC 3D spheroids. Taken together, these findings indicate that N-desmethyldauricine inhibited the proliferation of TNBC cells and decreased the expression of p65 in the NF-κB pathway.
Collapse
Affiliation(s)
- Wenting Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yan Yu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China
| | - Hongli Wei
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fangbin Lv
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China
| | - Aijin Shen
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China
| | - Yanfang Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China
| | - Jixia Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang, 220000, China.
| | - Dongmei Fu
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
2
|
Tan CH, Sim DSY, Lim SH, Mohd Mohidin TB, Mohan G, Low YY, Kam TS, Sim KS. Antiproliferative and Microtubule-stabilizing Activities of Two Iboga-vobasine Bisindoles Alkaloids from Tabernaemontana corymbosa in Colorectal Adenocarcinoma HT-29 Cells. PLANTA MEDICA 2022; 88:1325-1340. [PMID: 35100653 DOI: 10.1055/a-1755-5605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two iboga-vobasine bisindoles, 16'-decarbomethoxyvoacamine (1: ) and its 19,20-dihydro derivative, 16'-decarbomethoxydihydrovoacamine (2: ) from Tabernaemontana corymbosa exhibited potent cytotoxicity against the human colorectal adenocarcinoma HT-29 cells in our previous studies. Bisindoles 1: and 2: selectively inhibited the growth of HT-29 cells without significant cytotoxicity to normal human colon fibroblasts CCD-18Co. Treatment with bisindoles 1: and 2: suppressed the formation of HT-29 colonies via G0/G1 cell cycle arrest and induction of mitochondrial apoptosis. Owing to its higher antiproliferative activity, bisindole 2: was chosen for the subsequent studies. Bisindole 2: inhibited the formation of HT-29 spheroids (tumor-like cell aggregates) in 3D experiments in a dose-dependent manner, while an in vitro tubulin polymerization assay and molecular docking analysis showed that bisindole 2: is a microtubule-stabilizing agent which is predicted to bind at the β-tubulin subunit at the taxol-binding site. The binding resulted in the generation of ROS, which consequently activated the oxidative stress-related cell cycle arrest and apoptotic pathways, viz., JNK/p38, p21Cip1/Chk1, and p21Cip1/Rb/E2F, as shown by microarray profiling.
Collapse
Affiliation(s)
- Chun Hoe Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Dawn Su Yin Sim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Siew Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Taznim Begam Mohd Mohidin
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Gokula Mohan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Yun Yee Low
- Department of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Toh Seok Kam
- Department of Chemistry, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Kae Shin Sim
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Jalan Profesor Diraja Ungku Aziz, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Vergoten G, Bailly C. Molecular docking study of GSK-3β interaction with nomilin, kihadanin B, and related limonoids and triterpenes with a furyl-δ-lactone core. J Biochem Mol Toxicol 2022; 36:e23130. [PMID: 35686814 DOI: 10.1002/jbt.23130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/06/2022]
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a target enzyme considered for the treatment of multiple human diseases, from neurodegenerative pathologies to viral infections and cancers. Numerous inhibitors of GSK-3β have been discovered but thus far only a few have reached clinical trials and only one drug, tideglusib (1), has been registered. Natural products targeting GSK-3β have been identified, including the two anticancer limonoids obacunone (5) and gedunin (4), both presenting a furyl-δ-lactone core. To help identifying novel GSK-3β ligands, we have performed a molecular docking study with 15 complementary natural products bearing a furyl-δ-lactone unit (such as limonin (6) and kihadanins A (8) and B (9)) or a closely related structure (such as cedrelone (10) and nimbolide (11)). The formation of GSK-3β-binding complexes for those natural products was compared to reference GSK-3β ATP-competitive inhibitors LY2090314 (3) and AR-A014418 (2). Our in silico analysis led to the identification of two new GSK-3β-binding natural products: kihadanin B (9) and nomilin (7). The latter surpassed the reference compounds in terms of calculated empirical energy of interaction (ΔE). Nomilin (7) can possibly bind to the active site of GSK-3β, notably via the furyl-δ-lactone core and its 1-acetyl group, implicated in the protein interaction. Compound structure-binding relationships are discussed. The study should help the discovery of novel natural products targeting GSK-3β.
Collapse
Affiliation(s)
- Gérard Vergoten
- Inserm, INFINITE - U1286, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, Lille, France
| | - Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille, Wasquehal, France
| |
Collapse
|
4
|
Luo J, Sun Y, Li Q, Kong L. Research progress of meliaceous limonoids from 2011 to 2021. Nat Prod Rep 2022; 39:1325-1365. [PMID: 35608367 DOI: 10.1039/d2np00015f] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering: July 2010 to December 2021Limonoids, a kind of natural tetranortriterpenoids with diverse skeletons and valuable insecticidal and medicinal bioactivities, are the characteristic metabolites of most plants of the Meliaceae family. The chemistry and bioactivities of meliaceous limonoids are a continuing hot area of natural products research; to date, about 2700 meliaceous limonoids have been identified. In particular, more than 1600, including thirty kinds of novel rearranged skeletons, have been isolated and identified in the past decade due to their wide distribution and abundant content in Meliaceae plants and active biosynthetic pathways. In addition to the discovery of new structures, many positive medicinal bioactivities of meliaceous limonoids have been investigated, and extensive achievements regarding the chemical and biological synthesis have been made. This review summarizes the recent research progress in the discovery of new structures, medicinal and agricultural bioactivities, and chem/biosynthesis of limonoids from the plants of the Meliaceae family during the past decade, with an emphasis on the discovery of limonoids with novel skeletons, the medicinal bioactivities and mechanisms, and chemical synthesis. The structures, origins, and bioactivities of other new limonoids were provided as ESI. Studies published from July 2010 to December 2021 are reviewed, and 482 references are cited.
Collapse
Affiliation(s)
- Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Yunpeng Sun
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Qiurong Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
5
|
Liao M, Qin R, Huang W, Zhu HP, Peng F, Han B, Liu B. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J Hematol Oncol 2022; 15:44. [PMID: 35414025 PMCID: PMC9006445 DOI: 10.1186/s13045-022-01260-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/28/2022] [Indexed: 02/08/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of human breast cancer with one of the worst prognoses, with no targeted therapeutic strategies currently available. Regulated cell death (RCD), also known as programmed cell death (PCD), has been widely reported to have numerous links to the progression and therapy of many types of human cancer. Of note, RCD can be divided into numerous different subroutines, including autophagy-dependent cell death, apoptosis, mitotic catastrophe, necroptosis, ferroptosis, pyroptosis and anoikis. More recently, targeting the subroutines of RCD with small-molecule compounds has been emerging as a promising therapeutic strategy, which has rapidly progressed in the treatment of TNBC. Therefore, in this review, we focus on summarizing the molecular mechanisms of the above-mentioned seven major RCD subroutines related to TNBC and the latest progress of small-molecule compounds targeting different RCD subroutines. Moreover, we further discuss the combined strategies of one drug (e.g., narciclasine) or more drugs (e.g., torin-1 combined with chloroquine) to achieve the therapeutic potential on TNBC by regulating RCD subroutines. More importantly, we demonstrate several small-molecule compounds (e.g., ONC201 and NCT03733119) by targeting the subroutines of RCD in TNBC clinical trials. Taken together, these findings will provide a clue on illuminating more actionable low-hanging-fruit druggable targets and candidate small-molecule drugs for potential RCD-related TNBC therapies.
Collapse
Affiliation(s)
- Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, China
| | - Fu Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
6
|
Kaleem M, Perwaiz M, Nur SM, Abdulrahman AO, Ahmad W, Al-Abbasi FA, Kumar V, Kamal MA, Anwar F. Epigenetics of Triple-negative breast cancer via natural compounds. Curr Med Chem 2021; 29:1436-1458. [PMID: 34238140 DOI: 10.2174/0929867328666210707165530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly resistant, lethal, and metastatic sub-division of breast carcinoma, characterized by the deficiency of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In women, TNBC shows a higher aggressive behavior with poor patient prognosis and a higher recurrence rate during reproductive age. TNBC is defined by the presence of epithelial-to-mesenchymal-transition (EMT), which shows a significant role in cancer progression. At the epigenetic level, TNBC is characterized by epigenetic signatures, such as DNA methylation, histone remodeling, and a host of miRNA, MiR-193, LncRNA, HIF-2α, eEF2K, LIN9/NEK2, IMP3, LISCH7/TGF-β1, GD3s and KLK12 mediated regulation. These modifications either are silenced or activate the necessary genes that are prevalent in TNBC. The review is based on epigenetic mediated mechanistic changes in TNBC. Furthermore, Thymoquinone (TQ), Regorafenib, Fangjihuangqi decoction, Saikosaponin A, and Huaier, etc., are potent antitumor natural compounds extensively reported in the literature. Further, the review emphasizes the role of these natural compounds in TNBC and their possible epigenetic targets, which can be utilized as a potential therapeutic strategy in treatment of TNBC.
Collapse
Affiliation(s)
- Mohammed Kaleem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Maryam Perwaiz
- Department of Sciences, University of Toronto. Mississauga. Canada
| | - Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Wasim Ahmad
- Department of Kuliyate Tib, National Institute of Unani Medicine, Kottigepalya, Bengaluru, India
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Vikas Kumar
- Natural Product Discovery Laboratory, Department of Pharmaceutical Sciences, Shalom Institute of Health and Allied Sciences. SHUATS, Naini, Prayagraj, India
| | - Mohammad Amjad Kamal
- West China School of Nursing / Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
7
|
Tan CH, Yeap JSY, Lim SH, Low YY, Sim KS, Kam TS. The Bisindole Alkaloids Angustilongines M and A from Alstonia penangiana Induce Mitochondrial Apoptosis and G0/G1 Cell Cycle Arrest in HT-29 Cells through Promotion of Tubulin Polymerization. JOURNAL OF NATURAL PRODUCTS 2021; 84:1524-1533. [PMID: 33872002 DOI: 10.1021/acs.jnatprod.1c00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new linearly fused macroline-sarpagine bisindole, angustilongine M (1), was isolated from the methanolic extract of Alstonia penangiana. The structure of the alkaloid was elucidated based on analysis of the spectroscopic data, and its biological activity was evaluated together with another previously reported macroline-akuammiline bisindole from the same plant, angustilongine A (2). Compounds 1 and 2 showed pronounced in vitro growth inhibitory activity against a wide panel of human cancer cell lines. In particular, the two compounds showed potent and selective antiproliferative activity against HT-29 cells, as well as strong growth inhibitory effects against HT-29 spheroids. Cell death mechanistic studies revealed that the compounds induced mitochondrial apoptosis and G0/G1 cell cycle arrest in HT-29 cells in a time-dependent manner, while in vitro tubulin polymerization assays and molecular docking analysis showed that the compounds are microtubule-stabilizing agents, which are predicted to bind at the β-tubulin subunit at the Taxol-binding site.
Collapse
Affiliation(s)
- Chun-Hoe Tan
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Siew-Huah Lim
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yun-Yee Low
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae-Shin Sim
- Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Toh-Seok Kam
- Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Becceneri AB, Fuzer AM, Plutin AM, Batista AA, Lelièvre SA, Cominetti MR. Three-dimensional cell culture models for metallodrug testing: induction of apoptosis and phenotypic reversion of breast cancer cells by the trans-[Ru(PPh 3) 2( N, N-dimethyl- N-thiophenylthioureato-k 2O,S)(bipy)]PF 6 complex. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00502a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Effects of trans-[Ru(PPh3)2(N,N-dimethyl-N-thiophenylthioureato-k2O,S)(bipy)]PF6 complex on cytotoxicity, on the induction of apoptosis and on the phenotypic reversion of tumor cells in different 3D culture techniques.
Collapse
Affiliation(s)
| | - Angelina M. Fuzer
- Department of Gerontology
- Federal University of São Carlos
- São Paulo
- Brazil
| | - Ana M. Plutin
- Facultad de Química
- Universidad de la Habana
- Habana
- Cuba
| | - Alzir A. Batista
- Department of Chemistry
- Federal University of São Carlos
- São Paulo
- Brazil
| | - Sophie A. Lelièvre
- Department of Basic Medical Sciences and Center for Cancer Research
- Purdue University
- West Lafayette
- USA
| | | |
Collapse
|