1
|
Ye M, Liu J, Deng G, Cai X, Zhang X, Yao L, Wu J, He X, Peng D, Yu N. Protective effects of Dendrobium huoshanense polysaccharide on D-gal induced PC12 cells and aging mice, in vitro and in vivo studies. J Food Biochem 2022; 46:e14496. [PMID: 36350934 DOI: 10.1111/jfbc.14496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/30/2022] [Accepted: 10/20/2022] [Indexed: 11/10/2022]
Abstract
Dendrobium huoshanense C. Z. Tang et S. J. Cheng polysaccharide (DHP) is the essential active ingredient of D.huoshanense and has high medicinal value. A high dose of D-galactose (D-gal) is commonly utilized in the aging model establishment. In this study, we explored whether DHP shields PC12 cells and aging mice from D-gal caused damage and the possible mechanism. In vitro experiments, D-gal induced PC12 cells were used to investigate, and then DHP was used for treatment. In vivo experiments, 72 SPF ICR male mice were randomly divided into six groups (control: normal saline; model: D-gal (400 mg/kg); VE group: VE (50 μg/ml); DHP groups: D-gal + DHP (15.6 mg/ml; 31.2 mg/ml; 62.4 mg/ml)). The results showed that DHP could enhance the viability of D-gal injured PC12 cells and prevent cell apoptosis. DHP effectively promoted the transition from phase G0/G1 to phase S and inhibited cell cycle arrest. DHP has a potential neuroprotective effect on D-gal caused cognitive and memory disorders in mice. On the one hand, DHP protects the antioxidant enzymes SOD, GSH-PX, and CAT from excessive ROS buildup. On the other hand, DHP was demonstrated to block the expression of the P53/P21 signaling pathway-related proteins P53, P21, and P16. These results imply that DHP could be a potential neuroprotective agent against aging. PRACTICAL APPLICATIONS: Cognitive and memory decline caused by aging problems has become a problem in recent years. There are many theories about aging, among which oxidative stress is considered to be one of the important pathophysiological parts of various diseases in the aging process. In this study, DHP could not only improve the damage of D-Gal to PC12 cells, but also improve the cognitive and memory impairment caused by D-Gal in mice. In conclusion, this study verified the anti-aging effect of DHP from in vitro and in vivo experiments, and its mechanism may involve the P53/P21 pathway. Therefore, this study indicated that polysaccharides from Dendrobium huoshanense, a traditional Chinese medicine of homologous medicine and food, had potential and industrial value as potential anti-aging drugs.
Collapse
Affiliation(s)
- Mengjuan Ye
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Junlin Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Guanghui Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiao Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiaoqian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Jing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China
| | - Xianglin He
- Anhui Huoshan Changchong Chinese Herbal Medicine Co. Ltd, Huoshan, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China.,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Academy of Chinese Medicine, Hefei, China.,MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Targeting cellular senescence in cancer by plant secondary metabolites: A systematic review. Pharmacol Res 2021; 177:105961. [PMID: 34718135 DOI: 10.1016/j.phrs.2021.105961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Senescence suppresses tumor growth, while also developing a tumorigenic state in the nearby cells that is mediated by senescence-associated secretory phenotypes (SASPs). The dual function of cellular senescence stresses the need for identifying multi-targeted agents directed towards the promotion of cell senescence in cancer cells and suppression of the secretion of pro-tumorigenic signaling mediators in neighboring cells. Natural secondary metabolites have shown favorable anticancer responses in recent decades, as some have been found to target the senescence-associated mediators and pathways. Furthermore, phenolic compounds and polyphenols, terpenes and terpenoids, alkaloids, and sulfur-containing compounds have shown to be promising anticancer agents through the regulation of paracrine and autocrine pathways. Plant secondary metabolites are potential regulators of SASPs factors that suppress tumor growth through paracrine mediators, including growth factors, cytokines, extracellular matrix components/enzymes, and proteases. On the other hand, ataxia-telangiectasia mutated, ataxia-telangiectasia and Rad3-related, extracellular signal-regulated kinase/mitogen-activated protein kinase, phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin, nuclear factor-κB, Janus kinase/signal transducer and activator of transcription, and receptor tyrosine kinase-associated mediators are main targets of candidate phytochemicals in the autocrine senescence pathway. Such a regulatory role of phytochemicals on senescence-associated pathways are associated with cell cycle arrest and the attenuation of apoptotic/inflammatory/oxidative stress pathways. The current systematic review highlights the critical roles of natural secondary metabolites in the attenuation of autocrine and paracrine cellular senescence pathways, while also elucidating the chemopreventive and chemotherapeutic capabilities of these compounds. Additionally, we discuss current challenges, limitations, and future research indications.
Collapse
|