1
|
Santos AM, Vieira EM, de Jesus JR, Santana Júnior CC, Nascimento Júnior JAC, Oliveira AMS, Araújo AADS, Picot L, Alves IA, Serafini MR. Development and characterization of farnesol complexed in β- and hydroxypropyl-β-cyclodextrin and their antibacterial activity. Carbohydr Res 2025; 550:109406. [PMID: 39864120 DOI: 10.1016/j.carres.2025.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Farnesol (FAR) belongs to terpenes group and is a sesquiterpene alcohol and a hydrophobic compound, which can be extracted from natural sources or obtained by organic chemical or biological synthesis. Recent advances in the field of nanotechnology allow the drawbacks of low drug solubility, which can improve the drug therapeutic index. Therefore, this study aimed to prepare the FAR inclusion complexes with β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) through freeze-drying method, proposing their physicochemical characterization, comparing their toxicity, and evaluating their in vitro antibacterial activity. Initially, physical mixture and freeze-dried inclusion complexes of FAR/β-CD and FAR/HP-β-CD were obtained in the molar ratio (1:1). The samples were characterized by DSC, TG/DTG, FTIR, PXRD, SEM, pHPZC, and the complexation efficiency were performed by HPLC. In vivo toxicity assay was performed using Tenebrio molitor larvae to determine the LD50 and toxic dose of the samples. Also, it was proposed that the evaluation of the fluorescence suppression of Bovine Serum Albumin and the antibacterial activity. The complexation of FAR was evidenced with β-CD and HP-β-CD by the characterization techniques analyzed. The complexation efficiency of FAR/β-CD and FAR/HP-β-CD were 73,53 % and 74.12 %, respectively. The inclusion complexes demonstrated a reduction in toxicity, as evidenced by lower toxic and LD50 doses compared to the free FAR. The inclusion complexes induced conformational changes in BSA, suggesting that they reached the subdomains containing tryptophan residues. In terms of antibacterial activity, FAR/β-CD and FAR/HP-β-CD did not exhibit significant MIC results compared to free FAR, except for FAR/HP-β-CD against S. aureus ATCC 25923.
Collapse
Affiliation(s)
- Anamaria Mendonça Santos
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil.
| | - Edileuza Marcelo Vieira
- Research Laboratory in Biomaterials, LPBio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jemmyson Romário de Jesus
- Research Laboratory in Biomaterials, LPBio, Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | - Ana Maria Santos Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Laurent Picot
- La Rochelle Université, UMR CNRS 7266 LIENSs, La Rochelle, France
| | - Izabel Almeida Alves
- Postgraduate Program in Pharmaceutical Sciences, University of the State of Bahia and Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mairim Russo Serafini
- Postgraduate Program in Health Sciences, Federal University of Sergipe, Aracaju, Sergipe, Brazil; Postgraduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
2
|
Sarabia-Vallejo Á, Caja MDM, Olives AI, Martín MA, Menéndez JC. Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects. Pharmaceutics 2023; 15:2345. [PMID: 37765313 PMCID: PMC10534465 DOI: 10.3390/pharmaceutics15092345] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Many active pharmaceutical ingredients show low oral bioavailability due to factors such as poor solubility and physical and chemical instability. The formation of inclusion complexes with cyclodextrins, as well as cyclodextrin-based polymers, nanosponges, and nanofibers, is a valuable tool to improve the oral bioavailability of many drugs. The microencapsulation process modifies key properties of the included drugs including volatility, dissolution rate, bioavailability, and bioactivity. In this context, we present relevant examples of the stabilization of labile drugs through the encapsulation in cyclodextrins. The formation of inclusion complexes with drugs belonging to class IV in the biopharmaceutical classification system as an effective solution to increase their bioavailability is also discussed. The stabilization and improvement in nutraceuticals used as food supplements, which often have low intestinal absorption due to their poor solubility, is also considered. Cyclodextrin-based nanofibers, which are polymer-free and can be generated using environmentally friendly technologies, lead to dramatic bioavailability enhancements. The synthesis of chemically modified cyclodextrins, polymers, and nanosponges based on cyclodextrins is discussed. Analytical techniques that allow the characterization and verification of the formation of true inclusion complexes are also considered, taking into account the differences in the procedures for the formation of inclusion complexes in solution and in the solid state.
Collapse
Affiliation(s)
- Álvaro Sarabia-Vallejo
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - María del Mar Caja
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - Ana I. Olives
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - M. Antonia Martín
- Unidad de Química Analítica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain;
| |
Collapse
|
3
|
Tanori M, Pitaro M, Fratini E, Colantoni E, Amoresano A, Celentano S, Chiaramonte B, Mancuso M. Safety in Rats of a Novel Nasal Spray Formulation for the Prevention of Airborne Viral Infections. Pharmaceutics 2023; 15:pharmaceutics15020591. [PMID: 36839913 PMCID: PMC9965416 DOI: 10.3390/pharmaceutics15020591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Hexedra+® is a nasal spray containing hydroxypropyl methylcellulose, beta-cyclodextrin, and usnic acid. It has been developed with the aim of reducing the risk of transmission of airborne viral infections, with particular reference to influenza and COVID-19. As part of the preclinical development of the product, we carried out a study on thirty male Wistar rats divided into three study groups and treated with Hexedra+, an alternative formulation containing a double concentration of usnic acid (0.015% instead of 0.0075%) or saline solution. Products were administered at the dose of 30 μL into each nostril, three times a day for seven consecutive days by means of a micropipette. By the end of the treatment period, no significant changes were observed in body weight. Histological examination of nasal mucosa and soft organs did not show any significant difference in the three study groups. Serum transaminase level remained in the normal limit in all the animals treated. The serum level of usnic acid was measured in order to assess the absorption of the molecule through the nasal mucosa. By the end of the study period, the usnic acid serum level was negligible in all the animals treated. In conclusion, the safety profile of Hexedra+ appears favorable in the animal model studied.
Collapse
Affiliation(s)
- Mirella Tanori
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Michele Pitaro
- INBB–Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
- Correspondence:
| | - Emiliano Fratini
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Eleonora Colantoni
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| | - Angela Amoresano
- INBB–Biostructures and Biosystems National Institute, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Simona Celentano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Naples, Italy
| | - Barbara Chiaramonte
- Istituto Nazionale per l’Assicurazione Contro Gli Infortuni sul Lavoro (INAIL), P.le Pastore 6, 00144 Rome, Italy
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Via Anguillarese 301, 00123 Rome, Italy
| |
Collapse
|
4
|
Diwani N, Chelly M, Athmouni K, Chelly S, Gammoudi S, Turki M, Boudawara T, Ayadi H, Bouaziz-Ketata H. β-cyclodextrin microencapsulation enhanced antioxidant and antihyperlipidemic properties of Tunisian Periploca angustifolia roots condensed tannins in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61049-61064. [PMID: 35435548 DOI: 10.1007/s11356-022-20095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to investigate the microencapsulation of novel condensed tannins isolated from Periploca angustifolia roots, using β-cyclodextrin macrocyclic oligosaccharides, in order to enhance their antioxidant and antihyperlipidemic potentials. Scanning electron microscopy and Fourier transform infrared spectroscopy results revealed that tannin fraction was successfully included into β-cyclodextrin cavities proved with an encapsulation efficacy of 70%. Our in vitro findings highlighted that both pure and encapsulated tannins have efficient inhibition capacities of pancreatic lipase activity. However, the inclusion complex has the greatest, in vivo, antioxidant, and antihyperlipidemic effects. In fact, results showed that complexed tannins had markedly restored serum lipid biomarkers, lipid peroxidation, protein carbonyl oxidation, and antioxidant enzyme defense. These findings were additionally confirmed by aortic and myocardial muscle sections of histological examination. Consequently, β-cyclodextrin microencapsulation may be considered as an effective and promising technique for tannin delivery with improved antioxidant and antihyperlipidemic activities.
Collapse
Affiliation(s)
- Nouha Diwani
- Laboratory of Toxicology-Microbiology Environmental and Health, LR17ES06, Sfax Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Meryam Chelly
- Laboratory of Toxicology-Microbiology Environmental and Health, LR17ES06, Sfax Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia.
| | - Khaled Athmouni
- Laboratory of Biodiversity and Aquatic Ecosystems Ecology and Planktonology, Faculty of Sciences, University of Sfax Tunisia, Street of Soukra Km 3.5, BP 1171, 3000, Sfax, CP, Tunisia
| | - Sabrine Chelly
- Laboratory of Toxicology-Microbiology Environmental and Health, LR17ES06, Sfax Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Sana Gammoudi
- Laboratory of Biodiversity and Aquatic Ecosystems Ecology and Planktonology, Faculty of Sciences, University of Sfax Tunisia, Street of Soukra Km 3.5, BP 1171, 3000, Sfax, CP, Tunisia
| | - Mouna Turki
- Clinical Biochemistry Laboratory, Habib Bourguiba University Hospital, 3000, Sfax, Tunisia
| | - Tahia Boudawara
- Anatomopathology Laboratory, Sfax-Faculty of Medicine, Habib Bourguiba University Hospital, University of Sfax, Sfax, Tunisia
| | - Habib Ayadi
- Laboratory of Biodiversity and Aquatic Ecosystems Ecology and Planktonology, Faculty of Sciences, University of Sfax Tunisia, Street of Soukra Km 3.5, BP 1171, 3000, Sfax, CP, Tunisia
| | - Hanen Bouaziz-Ketata
- Laboratory of Toxicology-Microbiology Environmental and Health, LR17ES06, Sfax Faculty of Sciences, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| |
Collapse
|
5
|
Popovici V, Bucur L, Gîrd CE, Rambu D, Calcan SI, Cucolea EI, Costache T, Ungureanu-Iuga M, Oroian M, Mironeasa S, Schröder V, Ozon EA, Lupuliasa D, Caraiane A, Badea V. Antioxidant, Cytotoxic, and Rheological Properties of Canola Oil Extract of Usnea barbata (L.) Weber ex F.H. Wigg from Călimani Mountains, Romania. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11070854. [PMID: 35406834 PMCID: PMC9002375 DOI: 10.3390/plants11070854] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 05/04/2023]
Abstract
Usnea genus (Parmeliaceae, lichenized Ascomycetes) is a potent phytomedicine, due to phenolic secondary metabolites, with various pharmacological effects. Therefore, our study aimed to explore the antioxidant, cytotoxic, and rheological properties of Usnea barbata (L.) Weber ex F.H. Wigg (U. barbata) extract in canola oil (UBO) compared to cold-pressed canola seed oil (CNO), as a green solvent used for lichen extraction, which has phytoconstituents. The antiradical activity (AA) of UBO and CNO was investigated using UV-Vis spectrophotometry. Their cytotoxicity was examined in vivo through a brine shrimp lethality (BSL) test after Artemia salina (A. salina) larvae exposure for 6 h to previously emulsified UBO and CNO. The rheological properties of both oil samples (flow behavior, thixotropy, and temperature-dependent viscosity variation) were comparatively analyzed. The obtained results showed that UBO (IC50 = 0.942 ± 0.004 mg/mL) had a higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity than CNO (IC50 = 1.361 ± 0.008 mg/mL). Both UBO and CNO emulsions induced different and progressive morphological changes to A. salina larvae, incompatible with their survival; UBO cytotoxicity was higher than that of CNO. Finally, in the temperature range of 32-37 °C, the UBO and CNO viscosity and viscoelastic behavior indicated a clear weakening of the intermolecular bond when temperature increases, leading to a more liquid state, appropriate for possible pharmaceutical formulations. All quantified parameters were highly intercorrelated. Moreover, their significant correlation with trace/heavy minerals and phenolic compounds can be observed. All data obtained also suggest a possible synergism between lichen secondary metabolites, minerals, and canola oil phytoconstituents.
Collapse
Affiliation(s)
- Violeta Popovici
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania; (V.P.); (V.B.)
| | - Laura Bucur
- Department of Pharmacognosy, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Cerasela Elena Gîrd
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Dan Rambu
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tâncăbești, Romania; (D.R.); (S.I.C.); (E.I.C.); (T.C.)
| | - Suzana Ioana Calcan
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tâncăbești, Romania; (D.R.); (S.I.C.); (E.I.C.); (T.C.)
| | - Elena Iulia Cucolea
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tâncăbești, Romania; (D.R.); (S.I.C.); (E.I.C.); (T.C.)
| | - Teodor Costache
- Research Center for Instrumental Analysis SCIENT, 1E Petre Ispirescu Street, 077167 Tâncăbești, Romania; (D.R.); (S.I.C.); (E.I.C.); (T.C.)
| | - Mădălina Ungureanu-Iuga
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13th University Street, 720229 Suceava, Romania;
- Integrated Center for Research, Development, and Innovation in Advanced Materials, Nanotechnologies and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, 13th University Street, 720229 Suceava, Romania
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Mircea Oroian
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13th University Street, 720229 Suceava, Romania;
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Silvia Mironeasa
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 13th University Street, 720229 Suceava, Romania;
| | - Verginica Schröder
- Department of Cellular and Molecular Biology, Faculty of Pharmacy, Ovidius University of Constanta, 6 Capitan Al. Serbanescu Street, 900001 Constanta, Romania
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Emma-Adriana Ozon
- Department of Pharmaceutical Technology and Biopharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
- Correspondence: (L.B.); (C.E.G.); (M.U.-I.); (M.O.); (V.S.); (E.-A.O.)
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Biopharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Street, 020956 Bucharest, Romania;
| | - Aureliana Caraiane
- Department of Oral Rehabilitation, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania;
| | - Victoria Badea
- Department of Microbiology and Immunology, Faculty of Dental Medicine, Ovidius University of Constanta, 7 Ilarie Voronca Street, 900684 Constanta, Romania; (V.P.); (V.B.)
| |
Collapse
|