1
|
Singh D, Singh P, Srivastava P, Kakkar D, Pathak M, Tiwari AK. Development and challenges in the discovery of 5-HT 1A and 5-HT 7 receptor ligands. Bioorg Chem 2023; 131:106254. [PMID: 36528920 DOI: 10.1016/j.bioorg.2022.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/29/2022]
Abstract
Serotonin (5-hydroxytryptamine) is a small molecule that acts both in the central and peripheral nervous system as a neurotransmitter and a hormone, respectively. Serotonin is synthesized via a multi-stage pathway beginning with l-tryptophan, which is converted by an enzyme called tryptophan hydroxylase into L-5-Hydroxytryptophan. It is well-known for its significance in the control of mood, anxiety, depression, and insomnia as well as in normal human functions such as sleep, sexual activity, and appetite. Thus, for medical chemists and pharmaceutical firms, serotonin is one of the most desirable targets. Among the seven different classes of serotonin receptors, the 5-HT1A was one of the first discovered serotonin receptors, and the 5-HT7 was the last addition to the serotonin receptor family. Both the classes were thoroughly examined. 5-HT1A neurotransmission-related dysfunctions are linked to many psychological conditions such as anxiety, depression, and movement disorders. 5-HT7 is a member of the cell surface receptor GPCR superfamily and is regulated by the serotonin neurotransmitter. It has been the focus of intensive research efforts since its discovery, which was prompted by its presence in functionally important regions of the brain. The thalamus and hypothalamus have the highest 5-HT7 receptor densities. They are also found in the hippocampus and cortex at higher densities. Thermoregulation, circadian rhythm, learning and memory, and sleep are all associated with the 5-HT7 receptor. It is also suspected that this receptor may be involved in the control of mood, indicating that it may be a beneficial target for depression treatment. Several differently structured molecules such as aminotetralins, ergolines, arylpiperazines, indolylalkylamines, aporphines, and aryloxyalkyl-amines are known to bind to 5-HT1A and 5-HT7 receptor sites. In brain serotonin receptors 5-HT1A and 5-HT7 are strongly co-expressed in regions involved in depression. However, their functional interaction has not been identified. An overview of the 5-HT1A and 5-HT7 receptor ligands belonging to different chemical groups is mentioned in this review.
Collapse
Affiliation(s)
- Deepika Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Priya Singh
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Pooja Srivastava
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi 110054, India
| | - Dipti Kakkar
- Division of Radiological, Nuclear and Imaging Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig S K Mazumdar Road, Timarpur, Delhi 110054, India
| | - Mallika Pathak
- Department of Chemistry, Miranda House, University of Delhi, Delhi 110007, India
| | - Anjani Kumar Tiwari
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India.
| |
Collapse
|
2
|
Employing Molecular Docking Calculations for the Design of Alkyl (2-Alcoxy-2-Hydroxypropanoyl)-L-Tryptophanate Derivatives as Potential Inhibitors of 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1). REACTIONS 2023. [DOI: 10.3390/reactions4010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this paper, we presented the design by computational tools of novel alkyl (2-alcoxy-2-hydroxypropanoyl)-L-tryptophanate derivatives, which can be potential inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). The molecular structure optimization of a group of 36 compounds was performed employing DFT-B3LYP calculations at the level 6-311G(d,p). Then, molecular docking calculations were performed using Autodock tools software, employing the Lamarckian genetic algorithm (LGA). Four parameters (binding, intermolecular and Van Der Waals hydrogen bonding desolvation energies, and HOMO-LUMO gap) were used to evaluate the potential as 11β-HSD1 inhibitors, which nominate L-tryptophan derivatives as the most promissory molecules. Finally, these molecules were obtained starting from the amino acid and pyruvic acid in a convergent methodology with moderate to low yields.
Collapse
|
3
|
Singh D, Kaur L, Rahman AJ, Singh P, Kumar Tiwari A, Ojha H. Binding and mechanistic studies of 5-HT7 specific benzothiazolone derivatives with Bovine Serum Albumin: Spectroscopic and In silico studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Marimuthu B, Saravanaselvam S, Michael S, Jeyaraman P, Arulannandham X. Synthesis, characterization, in vitro, in silico and in vivo investigations and biological assessment of Knoevenagel condensate β-diketone Schiff base transition metal complexes. J Biomol Struct Dyn 2022; 41:3800-3820. [PMID: 35403564 DOI: 10.1080/07391102.2022.2056509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A novel Schiff base ligand was synthesized by the Knoevenagel condensation of β-diketone (obtained from substituted Curcumin and Cuminaldehyde) and 4-amino antipyrine. Metal complexes were made from this Schiff base by reacting with metal salts such as Cu(II), Ni(II), Ru(III), VO(IV), and Ce(IV). Physicochemical approaches such as UV-Vis, FT-IR, NMR, EPR, and Mass spectroscopy were used to determine the geometry of the complexes. The thermodynamic stability and biological accessibility of the complexes were investigated using density functional theory (DFT) calculations at the B3LYP/6-31G(d) level. A molecular docking analysis was also performed on 1BNA receptor. Both the Schiff base ligand and metal complexes interacted well to this protein receptor. All metal complexes have a significant potential to bind to CT DNA via the intercalation mechanism. All the in vivo and in vitro screening studies showed that the complexes exhibit higher activities than the free Schiff base.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Samuel Michael
- Research Department of Chemistry, VHNSN College, Virudhunagar, India
| | - Porkodi Jeyaraman
- Research Department of Chemistry, The Standard Fireworks Rajarathinam College for Women, Sivakasi, India
| | | |
Collapse
|
5
|
Huang R, Zhou PK. DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 2021; 6:254. [PMID: 34238917 PMCID: PMC8266832 DOI: 10.1038/s41392-021-00648-7] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/28/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Genomic instability is the hallmark of various cancers with the increasing accumulation of DNA damage. The application of radiotherapy and chemotherapy in cancer treatment is typically based on this property of cancers. However, the adverse effects including normal tissues injury are also accompanied by the radiotherapy and chemotherapy. Targeted cancer therapy has the potential to suppress cancer cells' DNA damage response through tailoring therapy to cancer patients lacking specific DNA damage response functions. Obviously, understanding the broader role of DNA damage repair in cancers has became a basic and attractive strategy for targeted cancer therapy, in particular, raising novel hypothesis or theory in this field on the basis of previous scientists' findings would be important for future promising druggable emerging targets. In this review, we first illustrate the timeline steps for the understanding the roles of DNA damage repair in the promotion of cancer and cancer therapy developed, then we summarize the mechanisms regarding DNA damage repair associated with targeted cancer therapy, highlighting the specific proteins behind targeting DNA damage repair that initiate functioning abnormally duo to extrinsic harm by environmental DNA damage factors, also, the DNA damage baseline drift leads to the harmful intrinsic targeted cancer therapy. In addition, clinical therapeutic drugs for DNA damage and repair including therapeutic effects, as well as the strategy and scheme of relative clinical trials were intensive discussed. Based on this background, we suggest two hypotheses, namely "environmental gear selection" to describe DNA damage repair pathway evolution, and "DNA damage baseline drift", which may play a magnified role in mediating repair during cancer treatment. This two new hypothesis would shed new light on targeted cancer therapy, provide a much better or more comprehensive holistic view and also promote the development of new research direction and new overcoming strategies for patients.
Collapse
Affiliation(s)
- Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Ping-Kun Zhou
- Department of Radiation Biology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, AMMS, Beijing, China.
| |
Collapse
|
6
|
Huang M, Huang X, Zuo Y, Yi Z, Liu H. Exploring the toxic effects and mechanism of methoxylated polybrominated diphenyl ethers (MeO-PBDEs) on thyroxine-binding globulin (TBG): Synergy between spectroscopic and computations. LUMINESCENCE 2021; 36:1621-1631. [PMID: 34107557 DOI: 10.1002/bio.4103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 01/03/2023]
Abstract
The interaction mechanism between thyroxine-binding globulin (TBG) and three methoxylated polybrominated diphenyl ethers (MeO-PBDEs) was analyzed by steady-state fluorescence, ultraviolet-visible (UV-visible) spectroscopy, circular dichroism (CD), molecular docking and molecular dynamics simulation methods. The results of the molecular docking technique revealed that 2'-MeO-BDE-3, 5-MeO-BDE-47, and 3-MeO-BDE-100 combined with TBG at the active site. The steady-state fluorescence spectra displayed that MeO-PBDEs quenched the endogenous fluorescence of TBG through static quenching mechanism, and complex formation between MeO-PBDEs and TBG was further indicated by UV-vis spectroscopy. The thermodynamic quantities showed that the binding process is spontaneous, and the major forces responsible for the binding are hydrogen bonding and hydrophobic interactions, which are consistent with the results of molecular docking to a certain extent. The results of CD confirmed that the secondary structure of TBG was changed after combining with MeO-PBDEs. The dynamic simulation results illustrated that the protein structure is more compact and changes in the secondary structure of TBG after binding to MeO-PBDEs. Additionally, we also utilized the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) method to analyze the binding free energy of TBG and MeO-PBDEs. The results suggest that van der Waals force plays an essential role in the combination.
Collapse
Affiliation(s)
- Muwei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Xiaomei Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Yanqiu Zuo
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Zhongsheng Yi
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| | - Hongyan Liu
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, China
| |
Collapse
|
7
|
Geng W, Lv Z, Fan J, Xu J, Mao K, Yin Z, Qing W, Jin Y. Identification of the Prognostic Significance of Somatic Mutation-Derived LncRNA Signatures of Genomic Instability in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:657667. [PMID: 33855028 PMCID: PMC8039462 DOI: 10.3389/fcell.2021.657667] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is a highly heterogeneous tumor with substantial somatic mutations and genome instability, which are emerging hallmarks of cancer. Long non-coding RNAs (lncRNAs) are promising cancer biomarkers that are reportedly involved in genomic instability. However, the identification of genome instability-related lncRNAs (GInLncRNAs) and their clinical significance has not been investigated in LUAD. Methods: We determined GInLncRNAs by combining somatic mutation and transcriptome data of 457 patients with LUAD and probed their potential function using co-expression network and Gene Ontology (GO) enrichment analyses. We then filtered GInLncRNAs by Cox regression and LASSO regression to construct a genome instability-related lncRNA signature (GInLncSig). We subsequently evaluated GInLncSig using correlation analyses with mutations, external validation, model comparisons, independent prognostic significance analyses, and clinical stratification analyses. Finally, we established a nomogram for prognosis prediction in patients with LUAD and validated it in the testing set and the entire TCGA dataset. Results: We identified 161 GInLncRNAs, of which seven were screened to develop a prognostic GInLncSig model (LINC01133, LINC01116, LINC01671, FAM83A-AS1, PLAC4, MIR223HG, and AL590226.1). GInLncSig independently predicted the overall survival of patients with LUAD and displayed an improved performance compared to other similar signatures. Furthermore, GInLncSig was related to somatic mutation patterns, suggesting its ability to reflect genome instability in LUAD. Finally, a nomogram comprising the GInLncSig and tumor stage exhibited improved robustness and clinical practicability for predicting patient prognosis. Conclusion: Our study identified a signature for prognostic prediction in LUAD comprising seven lncRNAs associated with genome instability, which may provide a useful indicator for clinical stratification management and treatment decisions for patients with LUAD.
Collapse
Affiliation(s)
- Wei Geng
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilei Lv
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinshuo Fan
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Xu
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaimin Mao
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengrong Yin
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanlu Qing
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yang Jin
- NHC Key Laboratory of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Zhang X, Song H, Tang X, Wang S, Li J, Hao Y. Research progress on radioprotective effects of bee products. Int J Radiat Biol 2021; 97:444-451. [PMID: 33464164 DOI: 10.1080/09553002.2021.1876949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 12/25/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Radiation exposure is an on going and serious threat in military and public health concern. There is an unmet need for effective preventative or mitigative treatments against radiation-induced injuries. The handful of Food and Drug Administration in the US approved radiation protection agents cannot be widely used due to their side effects. Some natural nontoxic compounds such as bee products have been reported to prevent and treat radiation-induced injuries (e.g. scavenging free radicals, inhibiting cell apoptosis and reducing DNA damage), indicating that they may be a potential option as a safe radioprotective agent. Bee products are nontoxic and have no known side effects on the human body, and are effective in the field of radiation protection. They are expected to be interesting drug candidates for preventing and treating radiation-induced injuries. This article reviews the prevention and treatment of bee products on radiation-induced injuries.
Collapse
Affiliation(s)
- Xin Zhang
- Chongqing Normal University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Huali Song
- Chongqing Normal University, Chongqing, China
| | | | - Shuang Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Juan Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Yuhui Hao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| |
Collapse
|