1
|
Barros JMHF, Santos AA, Stadnik MJ, da Costa C. Encapsulation of eucalyptus and Litsea cubeba essential oils using zein nanopolymer: Preparation, characterization, storage stability, and antifungal evaluation. Int J Biol Macromol 2024; 278:134690. [PMID: 39142480 DOI: 10.1016/j.ijbiomac.2024.134690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The encapsulation of essential oils (EOs) in protein-based biopolymeric matrices stabilized with surfactant ensures protection and physical stability of the EO against unfavorable environmental conditions. Accordingly, this study prepared zein nanoparticles loaded with eucalyptus essential oil (Z-EEO) and Litsea cubeba essential oil (Z-LEO), stable and with antifungal activity against Colletotrichum lindemuthianum, responsible for substantial damage to bean crops. The nanoparticles were prepared by nanoprecipitation with the aid of ultrasound treatment and characterized. The nanoparticles exhibited a hydrodynamic diameter close to 200 nm and PDI < 0.3 for 120 days, demonstrating the physical stability of the carrier system. Scanning electron microscopy and Transmission electron microscopy revealed that the nanoparticles were smooth and uniformly distributed spheres. Fourier-transform infrared spectroscopy showed interaction between zein and EOs through hydrogen bonding and hydrophobic interactions. Thermogravimetric analysis demonstrated the thermal stability of the nanoparticles compared to pure bioactive compounds. The nanoparticles exhibited a dose-dependent effect in inhibiting the fungus in in vitro testing, with Z-EEO standing out by inhibiting 70.0 % of the mycelial growth of C. lindemuthianum. Therefore, the results showed that zein has great potential to encapsulate hydrophobic compounds, improving the applicability of the bioactive compound as a biofungicide, providing protection for the EO.
Collapse
Affiliation(s)
- José Marcelo Honório Ferreira Barros
- Federal University of Santa Catarina, Graduate Program in Engineering Chemistry, Department of Chemical and Food Engineering, Florianópolis, Santa Catarina, Brazil
| | - Alessandro Antônio Santos
- Federal University of Santa Catarina, Graduate Program in Plant Genetic Resources, Department of Plant Sciences, Florianópolis, Santa Catarina, Brazil
| | - Marciel João Stadnik
- Federal University of Santa Catarina, Graduate Program in Plant Genetic Resources, Department of Plant Sciences, Florianópolis, Santa Catarina, Brazil
| | - Cristiane da Costa
- Federal University of Santa Catarina, Graduate Program in Engineering Chemistry, Department of Chemical and Food Engineering, Florianópolis, Santa Catarina, Brazil; Federal University of Santa Catarina, Graduate Program in Textile Engineering, Department of Textile Engineering, Blumenau, Santa Catarina, Brazil.
| |
Collapse
|
2
|
Jooste J, Legoabe LJ, Ilbeigi K, Caljon G, Beteck RM. Hydrazinated geraniol derivatives as potential broad-spectrum antiprotozoal agents. Arch Pharm (Weinheim) 2024; 357:e2400430. [PMID: 38982314 DOI: 10.1002/ardp.202400430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Geraniol, a primary component of several essential oils, has been associated with broad-spectrum antiprotozoal activities, although moderate to weak. This study primarily concentrated on the synthesis of hydrazinated geraniol derivatives as potential antiprotozoal agents. The synthesised compounds were tested in vitro against different parasitic protozoans of clinical relevance, including Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense, Trypanosoma cruzi and Leishmania infantum. Compounds 6, 8, 13, 14 and 15 demonstrated low micromolar activity against the different parasites. Compounds 8, 13, 14 and 15 had the highest efficacy against Trypanosoma brucei rhodesiense, as indicated by their respective IC50 values of 0.74, 0.56, 1.26 and 1.00 µM. Compounds 6, 14 and 15 displayed the best activity against Trypanosoma brucei brucei, with IC50 values of 1.49, 1.48 and 1.85 µM, respectively. The activity of compounds 6, 14 and 15 also extended to intracellular Trypanosoma cruzi, with IC50 values of 5.14, 6.30 and 4.90 µM, respectively. Compound 6, with an IC50 value of 11.73 µM, and compound 14, with an IC50 value of 8.14 µM, demonstrated some modest antileishmanial activity.
Collapse
Affiliation(s)
- Joelien Jooste
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Ling Q, Zhang B, Wang Y, Xiao Z, Hou J, Liu Q, Zhang J, Xiao C, Jin Z, Liu Y. Identification of key genes controlling monoterpene biosynthesis of Citral-type Cinnamomum bodinieri Levl. Based on transcriptome and metabolite profiling. BMC Genomics 2024; 25:540. [PMID: 38822238 PMCID: PMC11141066 DOI: 10.1186/s12864-024-10419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/15/2024] [Indexed: 06/02/2024] Open
Abstract
The citral-type is the most common chemotype in Cinnamomum bodinieri Levl (C. bodinieri), which has been widely used in the daily necessities, cosmetics, biomedicine, and aromatic areas due to their high citral content. Despite of this economic prospect, the possible gene-regulatory roles of citral biosynthesis in the same geographic environment remains unknown. In this study, the essential oils (EOs) of three citral type (B1, B2, B3) and one non-citral type (B0) varieties of C. bodinieri were identified by GC-MS after hydrodistillation extraction in July. 43 components more than 0.10% were identified in the EOs, mainly composed of monoterpenes (75.8-91.84%), and high content citral (80.63-86.33%) were identified in citral-type. Combined transcriptome and metabolite profiling analysis, plant-pathogen interaction(ko04626), MAPK signaling pathway-plant(ko04016), starch and sucrose metabolism(ko00500), plant hormone signal transduction(ko04075), terpenoid backbone biosynthesis (ko00900) and monoterpenoid biosynthesis (ko00902) pathways were enriched significantly. The gene expression of differential genes were linked to the monoterpene content, and the geraniol synthase (CbGES), alcohol dehydrogenase (CbADH), geraniol 8-hydroxylase-like (CbCYP76B6-like) and 8-hydroxygeraniol dehydrogenase (Cb10HGO) were upregulated in the citral-type, indicating that they were associated with high content of geraniol and citral. The activities of CbGES and CbADH in citral type were higher than in non-citral type, which was corroborated by enzyme-linked immunosorbent assay (ELISA). This study on the accumulation mechanism of citral provides a theoretical basis for the development of essential oil of C. bodinieri.
Collapse
Affiliation(s)
- Qingyan Ling
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
- College of Forestry, Jiangxi Agricultural University, Jiangxi Key Laboratory of Subtropical Forest Resources Cultivation, Nanchang, China
| | - Beihong Zhang
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Yanbo Wang
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Zufei Xiao
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Jiexi Hou
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Qingqing Liu
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Jie Zhang
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Changlong Xiao
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China
| | - Zhinong Jin
- School of Soil and Water Conservation, Nanchang Institute of Technology, Jiangxi Provincial Engineering Research Center For Seed-Breeding and Utilization of Camphor Trees, Nanchang, China.
| | - Yuanqiu Liu
- College of Forestry, Jiangxi Agricultural University, Jiangxi Key Laboratory of Subtropical Forest Resources Cultivation, Nanchang, China.
| |
Collapse
|
4
|
de Sousa DP, de Assis Oliveira F, Arcanjo DDR, da Fonsêca DV, Duarte ABS, de Oliveira Barbosa C, Ong TP, Brocksom TJ. Essential Oils: Chemistry and Pharmacological Activities-Part II. Biomedicines 2024; 12:1185. [PMID: 38927394 PMCID: PMC11200837 DOI: 10.3390/biomedicines12061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of essential oils and their components in the industrial sector is attributed to their chemical characteristics and their application in the development of products in the areas of cosmetology, food, and pharmaceuticals. However, the pharmacological properties of this class of natural products have been extensively investigated and indicate their applicability for obtaining new drugs. Therefore, this review discusses the use of these oils as starting materials to synthesize more complex molecules and products with greater commercial value and clinic potential. Furthermore, the antiulcer, cardiovascular, and antidiabetic mechanisms of action are discussed. The main mechanistic aspects of the chemopreventive properties of oils against cancer are also presented. The data highlight essential oils and their derivatives as a strategic chemical group in the search for effective therapeutic agents against various diseases.
Collapse
Affiliation(s)
| | | | - Daniel Dias Rufino Arcanjo
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Diogo Vilar da Fonsêca
- Collegiate of Medicine, Federal University of São Francisco Valley, Bahia 48607-190, Brazil;
| | - Allana Brunna S. Duarte
- Laboratory of Pharmaceutical Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Celma de Oliveira Barbosa
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Thomas Prates Ong
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil;
- Food Research Center (FoRC), University of São Paulo, São Paulo 05508-000, Brazil
| | - Timothy John Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil;
| |
Collapse
|
5
|
Contreras-Martínez OI, Angulo-Ortíz A, Santafé Patiño G, Rocha FV, Zanotti K, Fortaleza DB, Teixeira T, Sierra Martinez J. Cytotoxic Potential of the Monoterpene Isoespintanol against Human Tumor Cell Lines. Int J Mol Sci 2024; 25:4614. [PMID: 38731832 PMCID: PMC11083712 DOI: 10.3390/ijms25094614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer is a disease that encompasses multiple and different malignant conditions and is among the leading causes of death in the world. Therefore, the search for new pharmacotherapeutic options and potential candidates that can be used as treatments or adjuvants to control this disease is urgent. Natural products, especially those obtained from plants, have played an important role as a source of specialized metabolites with recognized pharmacological properties against cancer, therefore, they are an excellent alternative to be used. The objective of this research was to evaluate the action of the monoterpene isoespintanol (ISO) against the human tumor cell lines MDA-MB-231, A549, DU145, A2780, A2780-cis and the non-tumor line MRC-5. Experiments with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescence with propidium iodide (PI), 4',6-diamidino-2-phenylindole dilactate (DAPI) and green plasma revealed the cytotoxicity of ISO against these cells; furthermore, morphological and chromogenic studies revealed the action of ISO on cell morphology and the inhibitory capacity on reproductive viability to form colonies in MDA-MB-231 cells. Likewise, 3D experiments validated the damage in these cells caused by this monoterpene. These results serve as a basis for progress in studies of the mechanisms of action of these compounds and the development of derivatives or synthetic analogues with a better antitumor profile.
Collapse
Affiliation(s)
| | - Alberto Angulo-Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia;
| | - Gilmar Santafé Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia;
| | - Fillipe Vieira Rocha
- Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, Brazil; (F.V.R.); (K.Z.); (T.T.)
| | - Karine Zanotti
- Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, Brazil; (F.V.R.); (K.Z.); (T.T.)
| | - Dario Batista Fortaleza
- Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, Brazil; (F.V.R.); (K.Z.); (T.T.)
| | - Tamara Teixeira
- Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, Brazil; (F.V.R.); (K.Z.); (T.T.)
| | - Jesus Sierra Martinez
- Genetics and Evolution Department, Federal University of São Carlos, São Carlos 13565-905, Brazil
| |
Collapse
|
6
|
Wang K, Xiao Y, Xie N, Xu H, Li S, Liu C, Huang J, Zhang S, Liu Z, Yin X. Effect of Leaf Grade on Taste and Aroma of Shaken Hunan Black Tea. Foods 2023; 13:42. [PMID: 38201072 PMCID: PMC10778213 DOI: 10.3390/foods13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Shaken Hunan black tea is an innovative Hunan black tea processed by adding shaking to the traditional Hunan black tea. The quality of shaken black tea is influenced by leaf grades of different maturity. In this study, the taste and aroma quality of shaken Hunan black tea processed with different grades were analyzed by sensory evaluation (SP, HPLC, and HS-SPME/GC-MS). The results showed that shaken Hunan black tea processed with one bud and two leaves has the best quality, which has a sweet, mellow, and slightly floral taste, as well as a floral, honey, and sweet aroma. Moreover, caffeine and EGCG were identified as the most important bitter and astringent substances in shaken Hunan black. Combined with the analysis of GC-MS and OAV analysis, geraniol, jasmone, β-myrcene, citral, and trans-β-ocimene might be the most important components that affect the sweet aroma, while methyl jasmonate, indole, and nerolidol were the key components that affect the floral aroma of shaken Hunan black tea. This study lays a foundation for this study of the taste and aroma characteristics of shaken Hunan black tea and guides enterprises to improve shaken black tea processing technology.
Collapse
Affiliation(s)
- Kuofei Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (K.W.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Yangbo Xiao
- Department of Tea Quality Chemistry and Nutrition Health, Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Nianci Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (K.W.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Department of Tea Quality Chemistry and Nutrition Health, Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Hao Xu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (K.W.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Saijun Li
- Department of Tea Quality Chemistry and Nutrition Health, Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (K.W.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (K.W.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Shuguang Zhang
- Department of Tea Quality Chemistry and Nutrition Health, Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (K.W.)
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Xia Yin
- Department of Tea Quality Chemistry and Nutrition Health, Tea Research Institute, Hunan Academy of Agricultural Sciences, Hunan Tea Plant and Tea Processing Observation Station of Ministry of Agriculture, Changsha 410125, China
| |
Collapse
|
7
|
Bharati R, Gupta A, Novy P, Severová L, Šrédl K, Žiarovská J, Fernández-Cusimamani E. Synthetic polyploid induction influences morphological, physiological, and photosynthetic characteristics in Melissa officinalis L. FRONTIERS IN PLANT SCIENCE 2023; 14:1332428. [PMID: 38155852 PMCID: PMC10752996 DOI: 10.3389/fpls.2023.1332428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Melissa officinalis L., a well-known herb with diverse industrial and ethnopharmacological properties. Although, there has been a significant lack in the breeding attempts of this invaluable herb. This study aimed to enhance the agronomical traits of M. officinalis through in vitro polyploidization. Nodal segments were micropropagated and subjected to oryzalin treatment at concentrations of 20, 40, and 60 mM for 24 and 48 hours. Flow cytometry, chromosome counting, and stomatal characteristics were employed to confirm the ploidy level of the surviving plants. The survival rate of the treated explants decreased exponentially with increasing oryzalin concentration and duration. The highest polyploid induction rate (8%) was achieved with 40 mM oryzalin treatment for 24 hours. The induced tetraploid plants exhibited vigorous growth, characterized by longer shoots, larger leaves, and a higher leaf count. Chlorophyll content and fluorescence parameters elucidated disparities in photosynthetic performance between diploid and tetraploid genotypes. Tetraploid plants demonstrated a 75% increase in average essential oil yield, attributed to the significantly larger size of peltate trichomes. Analysis of essential oil composition in diploid and tetraploid plants indicated the presence of three major components: geranial, neral, and citronellal. While citronellal remained consistent, geranial and neral increased by 11.06% and 9.49%, respectively, in the tetraploid population. This effective methodology, utilizing oryzalin as an anti-mitotic agent for polyploid induction in M. officinalis, resulted in a polyploid genotype with superior morpho-physiological traits. The polyploid lemon balm generated through this method has the potential to meet commercial demands and contribute significantly to the improvement of lemon balm cultivation.
Collapse
Affiliation(s)
- Rohit Bharati
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Aayushi Gupta
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavel Novy
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Lucie Severová
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Karel Šrédl
- Department of Economic Theories, Faculty of Economics and Management, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jana Žiarovská
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Eloy Fernández-Cusimamani
- Department of Crop Sciences and Agroforestry, The Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
8
|
Nasr FA, Noman OM, Al-zharani M, Ahmed MZ, Qamar W, Rizwan Ahamad S, Al Mishari AA, Aleissa MS, Rudayni HA, Alqahtani AS. Chemical profile, antiproliferative and pro-apoptotic activities of essential oils of Pulicaria arabica against A549 lung cancer cell line. Saudi Pharm J 2023; 31:101879. [PMID: 38192283 PMCID: PMC10772242 DOI: 10.1016/j.jsps.2023.101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Pulicaria arabica has been traditionally utilized in folk medicine for various purposes such as ulcer treatments as well as antidiarrheal agent. Herein, the chemical profiles of Pulicaria arabica essential oils (PAEOs) and the in vitro antiproliferative effect of PAEOs were investigated. Hydrodistillation was employed to prepare PAEOs which were then characterized by GC/MS, while the antiproliferative effects were investigated by MTT assay as well as flow cytometric and RT-PCR analysis. Sixty-four (99.99 %) constituents were recognized from PAEOs. Carvotanacetone (36.97 %), (-)-carvomenthone (27.20 %) and benzene, 2-(1,1-dimethylethyl)-1,4-dimethoxy- (6.92 %) were the main components. PAEOs displayed IC50 values ranging from 30 to 50 μg/mL. DNA content analysis revealed that A549 cells exposed to PAEOs exhibited an increase in G1 cells population. The flow cytometry analysis results also showed that the PAEOs antiproliferative effect was mediated via apoptosis induction. Furthermore, a modulation in the pro-apoptotic markers (caspase-3 and Bax) and anti-apoptotic (Bcl-2) was also observed. In conclusion, PAEOs exhibited a moderate anti-proliferative effect on A549 cells through modulating the cell cycle progression and apoptosis initiation. These findings could offer a potential therapeutic use of PAEOs in lung cancer treatment.
Collapse
Affiliation(s)
- Fahd A. Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Al-zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohammad Z. Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah A. Al Mishari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed S. Aleissa
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Hassan A. Rudayni
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Karimivaselabadi A, Osanloo M, Ghanbariasad A, Zarenezhad E, Hosseini H. Comparison of chitosan nanoparticles containing Lippia citriodora essential oil and citral on the induction of apoptosis in A375 melanoma cells. BMC Complement Med Ther 2023; 23:435. [PMID: 38041055 PMCID: PMC10691079 DOI: 10.1186/s12906-023-04268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Using nanoparticles containing L. citriodora EO and citral has shown potential in treating skin disorders such as melanoma. METHODS In this study, GC‒MS was used to analyze the chemical composition of L. citriodora essential oil (EO). The ion gelation method prepared free chitosan nanoparticles and chitosan nanoparticles containing L. citriodora EO and citral. The successful loading of the EO and citral was evaluated using ATR-FTIR. The DPPH assay measured the antioxidant effect of citral, L. citriodora EO, Citral-ChiNPs, L. citriodora-ChiNPs, and Free-ChiNPs. A375 melanoma cell viability was assessed using the MTT assay. The qPCR technique was employed to evaluate the expression of apoptotic genes, and flow cytometry was used to detect apoptosis. RESULTS This study showed that in equal concentrations, the antioxidant properties of chitosan nanoparticles containing citral were greater than those of chitosan nanoparticles containing L. citriodora. The IC50 values of chitosan nanoparticles containing citral, L. citriodora EO, and their nonformulated states were 105.6, 199.9, 136.9, and 240 µg/ml, respectively. The gene expression results showed that the ratio of the expression of the apoptosis gene to the inhibitory gene was higher than 1 in all the samples, indicating that the conditions for apoptosis were present. Flow cytometry confirmed cell apoptosis, with 93.5 ± 0.3% in chitosan nanoparticles containing citral, 80 ± 0.2% in chitosan nanoparticles containing L. citriodora EO, 63 ± 0.3 in citral, and 42.03% in L. citriodora EO-treated cells. CONCLUSION The results showed that using the Nano form of L. citriodora and citral increased their efficiency in apoptosis pathways and their toxicity against 375 melanoma cancer cells.
Collapse
Affiliation(s)
- Abolfazl Karimivaselabadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Ryu DH, Cho JY, Yang SH, Kim HY. Effects of Harvest Timing on Phytochemical Composition in Lamiaceae Plants under an Environment-Controlled System. Antioxidants (Basel) 2023; 12:1909. [PMID: 38001762 PMCID: PMC10669742 DOI: 10.3390/antiox12111909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
The Lamiaceae family is widely recognized for its production of essential oils and phenolic compounds that have promising value as pharmaceutical materials. However, the impact of environmental conditions and different harvest stages on the phytochemical composition of Lamiaceae plants remains poorly understood. This study aimed to investigate the effects of harvest time on the phytochemical composition, including rosmarinic acid (RA) and volatile organic compounds (VOCs), of four Lamiaceae plants-Korean mint (AR), lemon balm (MO), opal basil (OBP), and sage (SO)-and was conducted under an environment-controlled system. Although all four plants had RA as the dominant compound, its distribution varied by species. The flowered plants, including AR and OBP, exhibited a rapid increase of RA during the transition from the vegetative stage to the reproductive stage. In contrast, non-flowered groups, including MO and SO, showed a steady increase in the content of total phenolics and RA. The main components of VOCs also differed depending on the plant, with characteristic fragrance compounds identified for each one (AR: estragole; MO: (Z)-neral and geranial; OBP: methyl eugenol, eugenol, and linalool; and SO: (Z)-thujone, camphor, and humulene). The total VOCs content was highest on the 60th day after transplanting regardless of the species, while the trends of total phenolics, RA content, and antioxidant activities were different depending on whether plant species flowered during the cultivation cycle. There was a steady increase in species that had not flowered, and the highest content and activity of the flowering period were confirmed in the flowering plant species.
Collapse
Affiliation(s)
- Da-Hye Ryu
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.-H.R.); (J.-Y.C.)
| | - Jwa-Yeong Cho
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.-H.R.); (J.-Y.C.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seung-Hoon Yang
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea;
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (D.-H.R.); (J.-Y.C.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
11
|
Quispe-Sanchez L, Mestanza M, Oliva-Cruz M, Rimarachín N, Caetano AC, Chuquizuta T, Goñas M, Ambler Gill ER, Chavez SG. Oxidative stability and physicochemical changes of dark chocolates with essential oils addition. Heliyon 2023; 9:e18139. [PMID: 37501977 PMCID: PMC10368843 DOI: 10.1016/j.heliyon.2023.e18139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/02/2023] [Accepted: 07/09/2023] [Indexed: 07/29/2023] Open
Abstract
This research aimed to evaluate the oxidative stability and rheological properties of dark chocolates with the addition of essential oils (EO) of Cymbopogon citratus, Pimpinella anisum, and Mintostachys mollis. For this purpose, before the inclusion in chocolates, the EO were chemically characterized to identify the most important volatile compounds. We added essential oils of P. anisum, C. citratus and M. mollis to dark chocolates (cocoa 70%) at doses of 10, 12 and 14 μL per 500 g, separately. These chocolates were evaluated for oxidative activity, hardness, microstructure, rheological and melting properties and antioxidant capacity. It was found that C. citratus EO (10 μL/500 g of chocolate) improve the oxidative stability of the chocolates at 90 days of storage at 25 °C (230 meq O2/kg), while higher concentrations promote lipid oxidation. The incorporation of essential oils improves the antioxidant capacity, likewise, it changes the rheological, thermal, and microstructural properties. Therefore, essential oils can improve the physicochemical characteristics of dark chocolates allowing greater stability in oxidative fat and thus increase the shelf life.
Collapse
Affiliation(s)
- Luz Quispe-Sanchez
- Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Marilu Mestanza
- Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Manuel Oliva-Cruz
- Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Nelson Rimarachín
- Facultad de Ingeniería y Ciencias Agrarias de La Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Aline C. Caetano
- Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- Facultad de Ingeniería y Ciencias Agrarias de La Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| | - Tony Chuquizuta
- Instituto de Investigación Del Mejoramiento Productivo, Universidad Nacional Autónoma de Chota, Chota, 06121, Peru
| | - Malluri Goñas
- Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Elizabeth Renee Ambler Gill
- Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- College of Life Sciences and Agriculture COLSA, University of New Hampshire, Durham, NC, United States
| | - Segundo G. Chavez
- Instituto de Investigación para El Desarrollo Sustentable de Ceja de Selva, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
- Facultad de Ingeniería y Ciencias Agrarias de La Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, 01001, Peru
| |
Collapse
|
12
|
Zhang Y, Su R, Yuan H, Zhou H, Jiangfang Y, Liu X, Luo J. Widely Targeted Volatilomics and Metabolomics Analysis Reveal the Metabolic Composition and Diversity of Zingiberaceae Plants. Metabolites 2023; 13:700. [PMID: 37367858 PMCID: PMC10301730 DOI: 10.3390/metabo13060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Zingiberaceae plants are widely used in the food and pharmaceutical industries; however, research on the chemical composition and interspecific differences in the metabolome and volatilome of Zingiberaceae plants is still limited. In this study, seven species of Zingiberaceae plants were selected, including Curcuma longa L., Zingiber officinale Rosc., Alpinia officinarum Hance, Alpinia tonkinensis Gagnep, Amomum tsaoko Crevost et Lemarie, Alpinia hainanensis K. Schum. and Amomum villosum Lour. Myristica fragrans Houtt. was also selected due to its flavor being similar to that of the Zingiberaceae plant. The metabolome and volatilome of selected plants were profiled by widely targeted approaches; 542 volatiles and 738 non-volatile metabolites were detected, and β-myrcene, α-phellandrene and α-cadinene were detected in all the selected plants, while chamigren, thymol, perilla, acetocinnamone and cis-α-bisabolene were exclusively detected in certain Zingiberaceae plants. Differential analysis showed that some terpenoids, such as cadalene, cadalene-1,3,5-triene, cadalene-1,3,8-triene and (E)-β-farnesene, and some lipids, including palmitic acid, linoleic acid and oleic acid were amongst the most varied compounds in Zingiberaceae plants. In conclusion, this study provided comprehensive metabolome and volatilome profiles for Zingiberaceae plants and revealed the metabolic differences between these plants. The results of this study could be used as a guide for the nutrition and flavor improvement of Zingiberaceae plants.
Collapse
Affiliation(s)
- Youjin Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Rongxiu Su
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Honglun Yuan
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Haihong Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Yiding Jiangfang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Xianqing Liu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Jie Luo
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Ben Ammar R. Potential Effects of Geraniol on Cancer and Inflammation-Related Diseases: A Review of the Recent Research Findings. Molecules 2023; 28:molecules28093669. [PMID: 37175079 PMCID: PMC10180430 DOI: 10.3390/molecules28093669] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Geraniol (GNL), a natural monoterpene, is found in many essential oils of fruits, vegetables, and herbs, including lavender, citronella, lemongrass, and other medicinal and aromatic plants. GNL is commonly used by the cosmetic and food industries and has shown a wide spectrum of pharmacological activities including anti-inflammatory, anticancer, antimicrobial, antioxidant, and neuroprotective activities. It represents a potential anti-inflammatory agent and a promising cancer chemopreventive agent, as it has been found to be effective against a broad range of cancers, including colon, prostate, breast, lung, skin, kidney, liver, and pancreatic cancer. Moreover, GNL scavenges free radicals and preserves the activity of antioxidant enzymes. In addition, GNL induces apoptosis and cell cycle arrest, modulates multiple molecular targets, including p53 and STAT3, activates caspases, and modulates inflammation via transcriptional regulation. In the present study, different modes of action are described for GNL's activity against cancer and inflammatory diseases. This compound protects various antioxidant enzymes, such as catalase, glutathione-S-transferase, and glutathione peroxidase. Experiments using allergic encephalomyelitis, diabetes, asthma, and carcinogenesis models showed that GNL treatment had beneficial effects with low toxicity. GNL has been shown to be effective in animal models and tumor cell lines, but there have not been any clinical studies carried out for it. The aim of the present review is to provide updated data on the potential effects of GNL on cancer and inflammation, and to enhance our understanding of molecular targets, involved pathways, and the possible use of GNL for clinical studies and therapeutic purposes in the treatment of cancer and inflammation-related diseases.
Collapse
Affiliation(s)
- Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
14
|
Xie J, Li X, Li W, Ding H, Yin J, Bie S, Li F, Tian C, Han L, Yang W, Song X, Yu H, Li Z. Characterization of the key volatile organic components of different parts of fresh and dried Perilla frutescens based on headspace-gas chromatography-ion mobility spectrometry and headspace solid phase microextraction-gas chromatography-mass spectrometry. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
15
|
Tryfon P, Kamou NN, Pavlou A, Mourdikoudis S, Menkissoglu-Spiroudi U, Dendrinou-Samara C. Nanocapsules of ZnO Nanorods and Geraniol as a Novel Mean for the Effective Control of Botrytis cinerea in Tomato and Cucumber Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1074. [PMID: 36903940 PMCID: PMC10005723 DOI: 10.3390/plants12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Inorganic-based nanoparticle formulations of bioactive compounds are a promising nanoscale application that allow agrochemicals to be entrapped and/or encapsulated, enabling gradual and targeted delivery of their active ingredients. In this context, hydrophobic ZnO@OAm nanorods (NRs) were firstly synthesized and characterized via physicochemical techniques and then encapsulated within the biodegradable and biocompatible sodium dodecyl sulfate (SDS), either separately (ZnO NCs) or in combination with geraniol in the effective ratios of 1:1 (ZnOGer1 NCs), 1:2 (ZnOGer2 NCs), and 1:3 (ZnOGer2 NCs), respectively. The mean hydrodynamic size, polydispersity index (PDI), and ζ-potential of the nanocapsules were determined at different pH values. The efficiency of encapsulation (EE, %) and loading capacity (LC, %) of NCs were also determined. Pharmacokinetics of ZnOGer1 NCs and ZnOGer2 NCs showed a sustainable release profile of geraniol over 96 h and a higher stability at 25 ± 0.5 °C rather than at 35 ± 0.5 °C. ZnOGer1 NCs, ZnOGer2 NCs and ZnO NCs were evaluated in vitro against B. cinerea, and EC50 values were calculated at 176 μg/mL, 150 μg/mL, and > 500 μg/mL, respectively. Subsequently, ZnOGer1 NCs and ZnOGer2 NCs were tested by foliar application on B. cinerea-inoculated tomato and cucumber plants, showing a significant reduction of disease severity. The foliar application of both NCs resulted in more effective inhibition of the pathogen in the infected cucumber plants as compared to the treatment with the chemical fungicide Luna Sensation SC. In contrast, tomato plants treated with ZnOGer2 NCs demonstrated a better inhibition of the disease as compared to the treatment with ZnOGer1 NCs and Luna. None of the treatments caused phytotoxic effects. These results support the potential for the use of the specific NCs as plant protection agents against B. cinerea in agriculture as an effective alternative to synthetic fungicides.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nathalie N. Kamou
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Akrivi Pavlou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Urania Menkissoglu-Spiroudi
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
16
|
Sanwal N, Mishra S, Sharma N, Sahu JK, Raut PK, Naik SN. Evaluation of the phytoconstituents and bioactivity potentials of Sea buckthorn (Hippophae sp.) leaves using GC-MS, HPLC-PDA and ICP-MS: a gender-based comprehensive metabolic profiling. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Azadi S, Osanloo M, Zarenezhad E, Farjam M, Jalali A, Ghanbariasad A. Nano-scaled emulsion and nanogel containing Mentha pulegium essential oil: cytotoxicity on human melanoma cells and effects on apoptosis regulator genes. BMC Complement Med Ther 2023; 23:6. [PMID: 36624422 PMCID: PMC9830879 DOI: 10.1186/s12906-023-03834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Topical drug delivery using nanoemulsions and nanogels is a promising approach to treating skin disorders such as melanoma. METHODS In this study, the chemical composition of Mentha pulegium essential oil with five major compounds, including pulegone (68.11%), l-menthone (8.83%), limonene (2.90%), iso-pulegone (2.69%), and iso-menthone (1.48%) was first identified using GC-MS (Gas chromatography-Mass Spectrometry) analysis. Afterward, a nano-scaled emulsion containing the essential oil with a droplet size of 7.70 ± 1 nm was prepared. Nanogel containing the essential oil was then prepared by adding (2% w/v) carboxymethyl cellulose to the nano-scaled emulsion. Moreover, the successful loading of M. pulegium essential oil in the nano-scaled emulsion and nanogel was confirmed using ATR-FTIR (Attenuated total reflectance-Fourier Transform InfraRed) analysis. Then, human A375 melanoma cells were treated with different concentrations of samples, the MTT assay evaluated cell viability, and cell apoptosis was confirmed by flow cytometry. In addition, the expression of apoptotic and anti-apoptotic genes, including Bax and Bcl-2, was evaluated using the qPCR (quantitative Polymerase Chain Reaction) technique. RESULTS The results showed that cell viability was reduced by 90 and 45% after treatment with 300 μg/mL of the nanogel and nano-scaled emulsion. As confirmed by flow cytometry, this effect was mediated by apoptosis. Furthermore, gene expression analysis showed up-regulation of Bax and down-regulation of Bcl-2 genes. Therefore, the prepared nanogel, with high efficacy, could be considered a potent anticancer agent for supplementary medicine and in vivo research.
Collapse
Affiliation(s)
- Sareh Azadi
- grid.411135.30000 0004 0415 3047Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- grid.411135.30000 0004 0415 3047Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- grid.411135.30000 0004 0415 3047Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mojtaba Farjam
- grid.411135.30000 0004 0415 3047Department of Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Akram Jalali
- grid.411950.80000 0004 0611 9280Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Ghanbariasad
- grid.411135.30000 0004 0415 3047Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
18
|
Li WR, Zeng TH, Zhang ZQ, Shi QS, Xie XB. Geraniol attenuates virulence factors by inhibiting quorum sensing of Pseudomonas aeruginosa. Front Microbiol 2023; 14:1190619. [PMID: 37180245 PMCID: PMC10172488 DOI: 10.3389/fmicb.2023.1190619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 05/16/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic pathogen that can cause severe respiratory tract infections. Geraniol, a chemical component of essential oils, has antimicrobial and anti-inflammatory activities, along with low toxicity. However, the effect and mechanism of geraniol against P. aeruginosa virulence factors are rarely studied. In this study, we investigated the quorum sensing (QS) inhibitory effects and mechanisms of geraniol against P. aeruginosa PAO1, using physiological and biochemical techniques, quantitative reverse transcription polymerase chain reaction, and transcriptomics. Geraniol slightly affected P. aeruginosa PAO1 growth, prolonged the lag phase, and delayed growth periods in a concentration-dependent manner. Geraniol inhibited three QS systems of P. aeruginosa, las, rhl, and pqs by suppressing the expression level of their key genes, including the three signal synthetase encoding genes of lasI, rhlI, and pqsABCDEH, and the corresponding signal receptor encoding genes of lasR, rhlR, and pqsR. Geraniol also suppressed certain virulence genes regulated by these three QS systems, including rhlABC, lasAB, lecAB, phzABMS, and pelABG, resulting in the attenuation of the related virulence factors, rhamnolipids, exoprotease LasA, elastase, lectin, pyocyanin, and biofilm. In conclusion, geraniol can suppress the virulence factors of P. aeruginosa PAO1 by inhibiting the three QS systems of las, rhl, and pqs. This study is significant for improving the treatment of bacterial infections caused by P. aeruginosa.
Collapse
|
19
|
Effect of Different Cytokinins on Shoot Outgrowth and Bioactive Compounds Profile of Lemograss Essential Oil. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2022. [DOI: 10.3390/ijpb13030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lemongrass (Cymbopogon citratus) essential oil (EO) is a major source of bioactive compounds (BC) with anticancer activity such as α-citral, limonene, geraniol, geranyl acetate, and β-caryophyllene. Comparative studies about cytokinin effects on BC profiles in lemongrass are missing. Here, we evaluated four cytokinins (2iP, tZ, BAP, and KIN) in two different osmotic media, MS-N (3% sucrose, 3 g L−1 Gelrite™) and MS-S (5% sucrose, 5 g L−1 Gelrite™). It results in a higher multiplication rate in BAP containing medium compared to tZ, KIN, and 2iP (p ≤ 0.05). While shoots grown on MS-N/BAP, tZ, and KIN exhibited a highly branching morphology, MS-N/2iP produced a less branching architecture. BC profile analysis of established plants in pots revealed that their maxima production depends on the in vitro shoot growth conditions: i.e., highest content (80%) of α-citral in plants that were cultured in MS-S/BAP (p ≤ 0.05), limonene (41%) in MS-N/2iP, or geranyl acetate (25.79%) in MS-S/2iP. These results indicate that it is possible to increase or address the production of BC in lemongrass by manipulating the cytokinin type and osmotic pressure in culture media. The culture protocol described here is currently successfully applied for somatic embryogenesis induction and genetic transformation in lemongrass.
Collapse
|