1
|
Saha S, Ghosh S, Ghosh S, Nandi S, Nayak A. Unraveling the complexities of colorectal cancer and its promising therapies - An updated review. Int Immunopharmacol 2024; 143:113325. [PMID: 39405944 DOI: 10.1016/j.intimp.2024.113325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Colorectal cancer (CRC) continues to be a global health concern, necessitating further research into its complex biology and innovative treatment approaches. The etiology, pathogenesis, diagnosis, and treatment of colorectal cancer are summarized in this thorough review along with recent developments. The multifactorial nature of colorectal cancer is examined, including genetic predispositions, environmental factors, and lifestyle decisions. The focus is on deciphering the complex interactions between signaling pathways such as Wnt/β-catenin, MAPK, TGF-β as well as PI3K/AKT that participate in the onset, growth, and metastasis of CRC. There is a discussion of various diagnostic modalities that span from traditional colonoscopy to sophisticated molecular techniques like liquid biopsy and radiomics, emphasizing their functions in early identification, prognostication, and treatment stratification. The potential of artificial intelligence as well as machine learning algorithms in improving accuracy as well as efficiency in colorectal cancer diagnosis and management is also explored. Regarding therapy, the review provides a thorough overview of well-known treatments like radiation, chemotherapy, and surgery as well as delves into the newly-emerging areas of targeted therapies as well as immunotherapies. Immune checkpoint inhibitors as well as other molecularly targeted treatments, such as anti-epidermal growth factor receptor (anti-EGFR) as well as anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibodies, show promise in improving the prognosis of colorectal cancer patients, in particular, those suffering from metastatic disease. This review focuses on giving readers a thorough understanding of colorectal cancer by considering its complexities, the present status of treatment, and potential future paths for therapeutic interventions. Through unraveling the intricate web of this disease, we can develop a more tailored and effective approach to treating CRC.
Collapse
Affiliation(s)
- Sayan Saha
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Shreya Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Suman Ghosh
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| | - Sumit Nandi
- Department of Pharmacology, Gupta College of Technological Sciences, Asansol, West Bengal 713301, India
| | - Aditi Nayak
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India.
| |
Collapse
|
2
|
Rutkowski D, Scholey R, Davies J, Pye D, Blackhall F, Warren RB, Jimenez F, Griffiths CEM, Paus R. Epidermal growth factor receptor/mitogen-activated kinase inhibitor treatment induces a distinct inflammatory hair follicle response that includes collapse of immune privilege. Br J Dermatol 2024; 191:791-804. [PMID: 38857906 DOI: 10.1093/bjd/ljae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Inhibitors of epidermal growth factor receptor (EGFRi) or mitogen-activated kinase (MEKi) induce a folliculitis in 75-90% of patients, the pathobiology of which remains insufficiently understood. OBJECTIVES To characterize changes in the skin immune status and global transcriptional profile of patients treated with EGFRi; to investigate whether EGFRi affects the hair follicle's (HF) immune privilege (IP); and to identify early proinflammatory signals induced by EGFRi/MEKi in human scalp HFs ex vivo. METHODS Scalp biopsies were taken from patients exhibiting folliculitis treated long term with EGFRi ('chronic EGFRi' group, n = 9) vs. healthy scalp skin (n = 9) and patients prior to commencing EGFRi treatment and after 2 weeks of EGFRi therapy ('acute EGFRi' group, n = 5). Healthy organ-cultured scalp HFs were exposed to an EGFRi (erlotinib, n = 5) or a MEKi (cobimetinib, n = 5). Samples were assessed by quantitative immunohistomorphometry, RNA sequencing (RNAseq) and in situ hybridization. RESULTS The 'chronic EGFRi' group showed CD8+ T-cell infiltration of the bulge alongside a partial collapse of the HF's IP, evidenced by upregulated major histocompatibility complex (MHC) class I, β2-microglobulin (B2 M) and MHC class II, and decreased transforming growth factor-β1 protein expression. Healthy HFs treated with EGFRi/MEKi ex vivo also showed partial HF IP collapse and increased transcription of human leucocyte antigen (HLA)-A, HLA-DR and B2 M transcripts. RNAseq analysis showed increased transcription of chemokines (CXCL1, CXCL13, CCL18, CCL3, CCL7) and interleukin (IL)-26 in biopsies from the 'chronic EGFRi' cohort, as well as increased IL-33 and decreased IL-37 expression in HF biopsies from the 'acute EGFRi' group and in organ-cultured HFs. CONCLUSIONS The data show that EGFRi/MEKi compromise the physiological IP of human scalp HFs and suggest that future clinical management of EGFRi/MEKi-induced folliculitis requires HF IP protection and inhibition of IL-33.
Collapse
Affiliation(s)
- David Rutkowski
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Manchester University Foundation Trust, Manchester, UK
| | | | - John Davies
- Department of Safety Assessment, Genentech, Inc., South San Francisco, CA, USA
| | - Derek Pye
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | | | - Richard B Warren
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
| | - Francisco Jimenez
- Mediteknia Skin and Hair Lab, Las Palmas de Gran Canaria, Spain
- Universidad Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Christopher E M Griffiths
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Department of Dermatology, King's College Hospital, King's College London, London, UK
| | - Ralf Paus
- Dermatology Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, Manchester, UK
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Monasterium Laboratory, Münster, Germany
- CUTANEON - Skin & Hair Innovations, Hamburg, Germany
| |
Collapse
|
3
|
Abida, Altamimi ASA, Ghaboura N, Balaraman AK, Rajput P, Bansal P, Rawat S, Alanazi FJ, Alruwaili AN, Aldhafeeri NA, Ali H, Deb PK. Therapeutic Potential of lncRNAs in Regulating Disulfidptosis for Cancer Treatment. Pathol Res Pract 2024; 263:155657. [PMID: 39437641 DOI: 10.1016/j.prp.2024.155657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Non-coding RNAs (lncRNAs) play critical roles in various cellular processes, including a novel form of regulated cell death known as disulfidptosis, characterized by accumulating protein disulfide bonds and severe endoplasmic reticulum stress. This review highlights the therapeutic potential of lncRNAs in regulating disulfidptosis for cancer treatment, emphasizing their influence on key pathway components such as GPX4, SLC7A11, and PDIA family members. Recent studies have demonstrated that targeting specific lncRNAs can sensitize cancer cells to disulfidptosis, offering a promising approach to cancer therapy. The regulation of disulfidptosis by lncRNAs involves various signaling pathways, including oxidative stress, ER stress, and calcium signaling. This review also discusses the molecular mechanisms underlying lncRNA regulation of disulfidptosis, the challenges of developing lncRNA-based therapies, and the future potential of this rapidly advancing field in cancer research.
Collapse
Affiliation(s)
- Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah 21442, Saudi Arabia
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Pranchal Rajput
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India.
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Sushama Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Fadiyah Jadid Alanazi
- Public Health Nursing Department, College of Nursing, Northern Border University, Arar, Saudi Arabia; Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abeer Nuwayfi Alruwaili
- Department of Nursing Administration and Education, College of Nursing, Jouf University, Al Jouf 72388, Saudi Arabia
| | - Nouf Afit Aldhafeeri
- College of Nursing, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Haider Ali
- Center for Global health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences and Technology, Birla Institue of Technology (BIT), Mesra, Ranchi, Jharkhand 835215, India
| |
Collapse
|
4
|
Shaikh MAJ, Babu MA, Ghaboura N, Altamimi ASA, Sharma P, Rani R, Rani GB, Lakhanpal S, Ali H, Balaraman AK, Rawat S, Alzarea SI, Kazmi I. Non-coding RNAs: Key regulators of CDK and Wnt/β-catenin signaling in cancer. Pathol Res Pract 2024; 263:155659. [PMID: 39461246 DOI: 10.1016/j.prp.2024.155659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
Non-coding RNAs (ncRNAs) have become important modulators of gene expression and biological processes, contributing significantly to the initiation and spread of cancer. This study focuses on the complex interactions between ncRNAs and two major signaling pathways-Wnt/β-catenin signaling and cyclin-dependent kinase (CDK)-linked to cancer. We provide an overview of current research on the modulation of these pathways in many cancer types by distinct classes of ncRNAs, such as miRNAs, lncRNAs, and circRNAs. The review focuses on the processes by which ncRNAs regulate cancer cell survival, proliferation, and metastasis. These mechanical processes include CDK activity, the activation of the Wnt/β-catenin cascade and cell cycle advancement. We also discuss the importance of ncRNAs in drug resistance and treatment outcomes, as well as prognosis markers (diagnostic) and therapeutic targets for cancer. Understanding these complex regulatory networks may help in a large way to improve cancer research and diagnosis - but also perhaps treat patients more effectively.
Collapse
Affiliation(s)
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA UNIVERSITY, Mathura, UP 281406, India
| | - Nehmat Ghaboura
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P. O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Pawan Sharma
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India.
| | - Richa Rani
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India
| | - G B Rani
- KKR and KSR Institute of Technology and Sciences, Guntur, India
| | - Sorabh Lakhanpal
- Division of Research and Development, Lovely Professional University, Phagwara 144411, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ashok Kumar Balaraman
- Research and Enterprise, University of Cyberjaya, Persiaran Bestari, Cyber 11, Cyberjaya, Selangor 63000, Malaysia
| | - Sushama Rawat
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Almujri SS, Almalki WH. The paradox of autophagy in cancer: NEAT1's role in tumorigenesis and therapeutic resistance. Pathol Res Pract 2024; 262:155523. [PMID: 39173466 DOI: 10.1016/j.prp.2024.155523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Cancer remains a current active problem of modern medicine, a process during which cell growth and proliferation become uncontrolled. However, the role of autophagy in the oncological processes is counterintuitive and, at the same time, increasingly influential on the formation, development, and response to therapy of oncological diseases. Autophagy is a vital cellular process that removes defective proteins and organelles and supports cellular homeostasis. Autophagy can enhance the ability to form new tumors and suppress this formation in cancer. The dual potential of apoptosis may be the reason for this duality in either promoting or impeding the survival of cancer cells, depending on the situation, including starvation or treatment stress. Furthermore, long non-coding RNA NEAT1, which has been linked to several stages of carcinogenesis and in all forms of the illness, has drawn attention as a major player in cancer biology. NEAT1 is a structural portion of nuclear paraspeckles and has roles in deactivating expression in both transcriptional and post-transcriptional levels. NEAT1 acts in carcinogenesis in numerous ways, comprising interactions with microRNAs, the influence of gene articulation, regulation of epigenetics, and engagement in signalling cascades. In addition, the complexity of NEAT1's role in cancer occurrence is amplified by its place in regulating cancer stem cells and the tumor microenvironment. NEAT1's interaction with autophagy further complicates the already complicated function of this RNA in cancer biology. NEAT1 has been linked to autophagy in several types of cancer, influencing autophagy pathways and altering its stress response and tumor cell viability. Understanding the interrelation between NEAT1, autophagy, and cancer will enable practitioners to identify novel treatment targets and approaches to disrupt oncogenic processes, reduce the occurrence of treatment resistance, and increase patient survival rates. Specialized treatment strategies and regimens are thus achievable. In the present review, the authors analyze sophisticated relationship schemes in cancer: The NEAT1 pathway and the process of autophagy.
Collapse
Affiliation(s)
- Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
6
|
Kumar A, Vaiphei KK, Gulbake A. A nanotechnology driven effectual localized lung cancer targeting approaches using tyrosine kinases inhibitors: Recent progress, preclinical assessment, challenges, and future perspectives. Int J Pharm 2024; 666:124745. [PMID: 39321904 DOI: 10.1016/j.ijpharm.2024.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The higher incidence and mortality rate among all populations worldwide explains the unmet solutions in the treatment of lung cancer. The evolution of targeted therapies using tyrosine kinase inhibitors (TKI) has encouraged anticancer therapies. However, on-target and off-target effects and the development of drug resistance limited the anticancer potential of such targeted biologics. The advances in nanotechnology-driven-TKI embedded carriers that offered a new path toward lung cancer treatment. It is the inhalation route of administration known for its specific, precise, and efficient drug delivery to the lungs. The development of numerous TKI-nanocarriers through inhalation is proof of TKI growth. The future scopes involve using potential lung cancer biomarkers to achieve localized active cancer-targeting strategies. The adequate knowledge of in vitro absorption models usually helps establish better in vitro - in vivo correlation/extrapolation (IVIVC/E) to successfully evaluate inhalable drugs and drug products. The advanced in vitro and ex vivo lung tissue/ organ models offered better tumor heterogeneity, etiology, and microenvironment heterogeneity. The involvement of lung cancer organoids (LCOs), human organ chip models, and genetically modified mouse models (GEMMs) has resolved the challenges associated with conventional in vitro and in vivo models. To access potential inhalation-based drugtherapies, biological barriers, drug delivery, device-based challenges, and regulatory challenges must be encountered associated with their development. A proper understanding of material toxicity, size-based particle deposition at active disease sites, mucociliary clearance, phagocytosis, and the presence of enzymes and surfactants are required to achieve successful inhalational drug delivery (IDD). This article summarizes the future of lung cancer therapy using targeted drug-mediated inhalation using TKI.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India.
| |
Collapse
|
7
|
Hsiao SC, Liao WH, Chang HA, Lai YS, Chan TW, Chen YC, Chiu WT. Caveolin-1 differentially regulates the transforming growth factor-β and epidermal growth factor signaling pathways in MDCK cells. Biochim Biophys Acta Gen Subj 2024; 1868:130660. [PMID: 38871061 DOI: 10.1016/j.bbagen.2024.130660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/15/2024]
Abstract
Caveolin-1 is critical for interacting with the TGF-β receptor (TGFβR) and EGF receptor (EGFR) signaling, often observed in advanced cancers and tissue fibrosis. However, the mechanism underlying caveolin-1-mediated transactivation of TGFβR and EGFR signaling remains unclear. Therefore, we sought to determine whether caveolin-1 is involved in canonical and non-canonical TGFβR and EGFR signaling transactivation in this study. Methyl-β-cyclodextrin (MβCD) was used to disrupt the cholesterol-containing membranes domains, and the caveolin-1 scaffolding domain (CSD) peptide was used to mimic the CSD of caveolin-1. Additionally, we transfected the Madin-Darby canine kidney cells with wild-type or phosphorylation-defective caveolin-1. We discovered that tyrosine 14 of caveolin-1 was critical for the negative regulation of TGFβR and EGFR canonical signaling. On the contrary, caveolin-1 inhibited TGF-β1-induced ERK2 activation independent of tyrosine 14 phosphorylation. Although EGF failed to induce Smad3 phosphorylation in caveolin-1 knockdown cells, it activated Smad3 upon MβCD co-treatment, indicating that caveolin-1 indirectly regulated the non-canonical pathway of EGF. In conclusion, caveolin-1 differentially modulates TGFβR and EGFR signaling. Thus, targeting caveolin-1 is a potential strategy for treating diseases involving TGF-β1 and EGF signaling.
Collapse
Affiliation(s)
- Shih-Chuan Hsiao
- Department of Hematology & Oncology, Saint Martin de Porres Hospital, Chiayi 600, Taiwan
| | - Wei-Hsiang Liao
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Heng-Ai Chang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Shyun Lai
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Ta-Wei Chan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Ying-Chi Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
8
|
Abd El-Lateef HM, Gaafar A, Alqahtani AS, Al-Mutairi AA, Alshaya DS, Elsaid FG, Fayad E, Farouk NA. Design, synthesis, and antiproliferative screening of new quinoline derivatives bearing a cis-vinyl triamide motif as apoptosis activators and EGFR-TK inhibitors. RSC Adv 2024; 14:24781-24790. [PMID: 39114435 PMCID: PMC11305403 DOI: 10.1039/d4ra04915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
In this work, a congeneric set of quinoline-tethered cis-vinyl triamide hybrids was prepared and evaluated as EGFR tyrosine kinase inhibitors for the management of breast cancer. All of the prepared hybrids were evaluated for their antiproliferative effect against the breast MCF-7 cell line. Among the tested hybrids, compound 6f displayed the most potent antiproliferative activity with an IC50 value of 1.87 μM compared to STU (IC50 = 13.71 μM) as the standard reference. The most promising hybrid, 6f, was found to induce cellular cycle arrest at the G1 phase. Furthermore, the molecular mechanism of this hybrid revealed its ability to induce cellular apoptosis via the mitochondrial-dependent apoptotic pathway. Compound 6f decreased MCF-7 cells' MMP compared to the controls (percentage change value of 57.93%). Further investigation of the selective compound 6f showed that it can inhibit EGFR tyrosine kinase.
Collapse
Affiliation(s)
- Hany M Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University Al-Ahsa 31982 Saudi Arabia
- Department of Chemistry, Faculty of Science, Sohag University Sohag 82524 Egypt
| | - Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University Port Said Egypt
| | - Arwa Sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU) P.O. Box 90950 Riyadh 11623 Saudi Arabia
| | - Aamal A Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University(IMSIU) P.O. Box 90950 Riyadh 11623 Saudi Arabia
| | - Dalal Sulaiman Alshaya
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Fahmy Gad Elsaid
- Department of Biology, College of Science, King Khalid University PO Box 960 Abha 61421 Asir Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - N A Farouk
- Department of Chemistry, Faculty of Science, Port Said University Port Said Egypt
| |
Collapse
|
9
|
Thangavelu L, Moglad E, Gupta G, Menon SV, Gaur A, Sharma S, Kaur M, Chahar M, Sivaprasad GV, Deorari M. GAS5 lncRNA: A biomarker and therapeutic target in breast cancer. Pathol Res Pract 2024; 260:155424. [PMID: 38909406 DOI: 10.1016/j.prp.2024.155424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
Breast cancer is one of the most common causes of cancer-related mortality globally, and its aggressive phenotype results in poor treatment outcomes. Growth Arrest-Specific 5 long non-coding RNA has attracted considerable attention due to its pivotal function in apoptosis regulation and tumor aggressiveness in breast cancer. Gas5 enhances apoptosis by regulating apoptotic proteins, such as caspases and BCL2 family proteins, and the sensitivity of BCCs to chemotherapeutic agents. At the same time, low levels of GAS5 increased invasion, metastasis, and overall tumor aggressiveness. GAS5 also regulates EMT markers, critical for cancer metastasis, and influences tumor cell proliferation by regulating various signaling components. As a result, GAS5 can be restored to suppress tumor development as a possible therapeutic strategy, which might present promising prospects for a patient's treatment. Its activity levels might also be a crucial indicator and diagnostic parameter for prediction. This review highlights the significant role of GAS5 in modulating apoptosis and tumor aggressiveness in breast cancer, emphasizing its potential as a therapeutic target for breast cancer treatment and management.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Ashish Gaur
- Graphic Era (Deemed to be University), Clement Town, Dehradun 248002, India; Graphic Era Hill University, Clement Town, Dehradun 248002, India
| | - Snehlata Sharma
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, Punjab 140307, India
| | - Mandeep Kaur
- Department of Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Mamata Chahar
- Department of Chemistry, NIMS University, Jaipur, India
| | - G V Sivaprasad
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India.
| |
Collapse
|
10
|
Binjawhar DN, Katouah HA, Alshaye NA, Alharthi J, Alsharif G, Elsaid FG, Fayad E, Abu Almaaty AH. Synthesis and biological research of new imidazolone-sulphonamide-pyrimidine hybrids as potential EGFR-TK inhibitors and apoptosis-inducing agents. RSC Adv 2024; 14:20120-20129. [PMID: 38915323 PMCID: PMC11194663 DOI: 10.1039/d4ra03157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024] Open
Abstract
Development of new effective EGFR-targeted antitumor agents is needed because of their clinical significance. A new series of imidazolone-sulphonamide-pyrimidine hybrids was designed and synthesized as modified analogs of some reported EGFR inhibitors. The cytotoxic activity of all the synthesized hybrids was investigated against the breast MCF-7 cancerous cell line using doxorubicin (Dox) as a positive control. 4-(Furan-2-ylmethylene)imidazolone-sulphonamide-pyrimidine 6b had the best potent activity against MCF-7 cells with IC50 result of 1.05 μM, which was better than Dox (IC50 = 1.91 μM). In addition, mechanistic studies revealed the ability of compounds 5g, 5h and 6b to inhibit EGFR kinase. Cell cycle analysis revealed that compound 6b can halt MCF-7 cells at the G1 phase with a concomitant decrease in cellular percentage at the S and G2/M phases. This compound produced a noticeable rise in the proportion of apoptotic cells with regard to the untreated control. Furthermore, the effects of hybrid 6b on the expression levels of pro-apoptotic Bax and pro-survival Bcl2 were assessed. The results showed that this compound upregulated the level of Bax expression as well as declined the expression value of Bcl-2 with regard to the untreated control.
Collapse
Affiliation(s)
- Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Hanadi A Katouah
- Chemistry Department, College of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Najla A Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Jawaher Alharthi
- Department of Biotechnology, College of Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Ghadi Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences P.O.Box 9515 Jeddah 21423 Saudi Arabia
- Department of Biomedical Research, King Abdullah International Medical Research Center 21423 Jeddah Saudi Arabia
| | - Fahmy G Elsaid
- Department of Biology, College of Science, King Khalid University PO Box 960 Abha Asir 61421 Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Ali H Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| |
Collapse
|
11
|
Abu-Alghayth MH, Khan FR, Belali TM, Abalkhail A, Alshaghdali K, Nassar SA, Almoammar NE, Almasoudi HH, Hessien KBG, Aldossari MS, Binshaya AS. The emerging role of noncoding RNAs in the PI3K/AKT/mTOR signalling pathway in breast cancer. Pathol Res Pract 2024; 255:155180. [PMID: 38330621 DOI: 10.1016/j.prp.2024.155180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
Breast cancer persists as a major problem for the world's healthcare, thus it is essential to fully understand the complex molecular processes that cause its growth and development. ncRNAs had been discovered to serve critical roles in a variety of cellular functions, including the regulation of signalling pathways. Within different pathways, the AKT/PI3K/mTOR signalling cascade has received a lot of interest because of its role in cancer. A complex interaction between ncRNAs, notably miRNAs, lncRNAs, and circRNAs, and the AKT/PI3K/mTOR signalling pathway exerts both oncogenic and tumor-suppressive activities by targeting critical components of the pathway directly or indirectly. Through miRNA-mediated post-transcriptional regulation, lncRNA-guided chromatin remodelling, and circRNA sequestration, ncRNAs modulate the activity of PI3K, AKT, and mTOR, influencing cell proliferation, survival, and metastasis. Furthermore, ncRNAs can serve as promising biomarkers for breast cancer prognosis, diagnosis, and treatment response, as their dysregulation is commonly observed in breast cancer patients. Harnessing the potential of ncRNAs as therapeutic targets or tools for restoring pathway homeostasis holds promise for innovative treatment strategies in breast cancer. Understanding the intricate regulatory networks orchestrated by ncRNAs in this context may pave the way for novel diagnostic approaches, therapeutic interventions, and a deeper comprehension of breast cancer's molecular landscape, ultimately improving patient outcomes. This abstract underscores the emerging significance of ncRNAs in the AKT/PI3K/mTOR signaling pathway in breast cancer.
Collapse
Affiliation(s)
- Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, P.O. Box 255, 67714, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Tareg M Belali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, P.O. Box 255, 67714, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia
| | - Khalid Alshaghdali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, P.O Box 2440, Saudi Arabia
| | - Somia A Nassar
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Nasser Eissa Almoammar
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Khater Balatone G Hessien
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | | | - Abdulkarim S Binshaya
- Department of Medical Laboratory Science, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| |
Collapse
|
12
|
Hazazi A, AlShehah AA, Khan FR, Hakami MA, Almarshadi F, Abalkhail A, Nassar SA, Almasoudi HH, Ali AA, Abu-Alghayth MH, Kukreti N, Binshaya AS. From diagnosis to therapy: The transformative role of lncRNAs in eye cancer management. Pathol Res Pract 2024; 254:155081. [PMID: 38211388 DOI: 10.1016/j.prp.2023.155081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024]
Abstract
The genomic era has brought about a transformative shift in our comprehension of cancer, unveiling the intricate molecular landscape underlying disease development. Eye cancers (ECs), encompassing diverse malignancies affecting ocular tissues, pose distinctive challenges in diagnosis and management. Long non-coding RNAs (lncRNAs), an emerging category of non-coding RNAs, are pivotal actors in the genomic intricacies of eye cancers. LncRNAs have garnered recognition for their multifaceted roles in gene expression regulation and influence on many cellular processes. Many studies support that the lncRNAs have a role in developing various cancers. Recent investigations have pinpointed specific lncRNAs associated with ECs, including retinoblastoma and uveal melanoma. These lncRNAs exert control over critical pathways governing tumor initiation, progression, and metastasis, endowing them with the ability to function as evaluation, predictive, and therapeutic indicators. The article aims to synthesize the existing information concerning the functions of lncRNAs in ECs, elucidating their regulatory mechanisms and clinical significance. By delving into the lncRNAs' expanding relevance in the modulation of oncogenic and tumor-suppressive networks, we gain a deeper understanding of the molecular complexities intrinsic to these diseases. In our exploration of the genomic intricacies of ECs, lncRNAs introduce a fresh perspective, providing an opportunity to function as clinical and therapeutic indicators, and they also have therapeutic benefits that show promise for advancing the treatment of ECs. This comprehensive review bridges the intricate relationship between lncRNAs and ECs within the context of the genomic era.
Collapse
Affiliation(s)
- Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | | | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Fahad Almarshadi
- Department of Public Health, College of Public Health and Health Informatics, University of Ha'il, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Public Health and Health Informatics, Qassim University, Qassim, Saudi Arabia
| | - Somia A Nassar
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Hassan H Almasoudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Abdulkarim S Binshaya
- Department of Medical Laboratory Sciences, College of Applied medical sciences, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia.
| |
Collapse
|
13
|
Uppu JL, Challa VS, Syamprasad NP, Manepalli P, Naidu V, Syed A, Roshan S, Tazneem B, Almalki WH, Alharbi KS, Gupta G. Apoptosis-driven synergistic anti-cancer efficacy of ethyl acetate extract of Memecylon sisparense Gamble leaves and doxorubicin in in-vitro and in-vivo models of triple-negative breast cancer. Pathol Res Pract 2024; 253:155032. [PMID: 38176306 DOI: 10.1016/j.prp.2023.155032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024]
Abstract
In the spectrum of breast neoplasms, approximately 15 to 20% of all diagnosed cases are triple-negative breast carcinoma. TNBC grows and spreads faster than other invasive breast cancers and has a worse prognosis. The existing therapies and chemotherapeutic drugs have several limitations, so the development of safe and affordable treatment options is currently in demand. Hence, this research focuses on scientifically evaluating the therapeutic anticancer effect of ethyl acetate extract of MSG and its combined efficacy with doxorubicin against TNBC. MSG has shown an IC50 value of 48.40 ± 1.68 µg/ml on the MDA-MB-231 cell line, and the combination of MSG with Dox demonstrated the synergistic effect. Apoptotic changes such as membrane blebbing chromatin condensation were observed in MSG alone and in combination with doxorubicin treatments. Apoptosis was confirmed with Annexin V-FITC/PI staining and increased apoptotic markers such as Cleaved caspase-3 Bax and decreased anti-apoptotic markers Bcl-2 by western blotting. The tumor burden significantly decreased in MSG and combination treatment groups while restoring their body weights. Meanwhile, the Dox-treated group indicated a decreased tumor burden combined with weight loss. The present investigation revealed that MSG and doxorubicin have a synergistic anticancer effect in TNBC.
Collapse
Affiliation(s)
- Jaya Lakshmi Uppu
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, Andhra Pradesh, India; Pharmacology and Toxicology Department, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Veerabhadra Swamy Challa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India; Pharmacology and Toxicology Department, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - N P Syamprasad
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India
| | - Pavanprasanth Manepalli
- Novartis, Salarpuria-Sattva Knowledge City, Inorbit Mall Rd, Durgam Cheruvu Rd, HITEC City, Hyderabad, India
| | - Vgm Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India; Pharmacology and Toxicology Department, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Asha Syed
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, Andhra Pradesh, India.
| | - S Roshan
- Deccan School of Pharmacy, Hyderabad, India
| | - B Tazneem
- Deccan School of Pharmacy, Hyderabad, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Khalid Saad Alharbi
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India.
| |
Collapse
|
14
|
Eissa IH, Yousef RG, Elkaeed EB, Alsfouk AA, Husein DZ, Ibrahim IM, El-Mahdy HA, Elkady H, Metwaly AM. Computer-Assisted Drug Discovery of a Novel Theobromine Derivative as an EGFR Protein-Targeted Apoptosis Inducer. Evol Bioinform Online 2023; 19:11769343231217916. [PMID: 38046652 PMCID: PMC10693208 DOI: 10.1177/11769343231217916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
The overexpression of the Epidermal Growth Factor Receptor (EGFR) marks it as a pivotal target in cancer treatment, with the aim of reducing its proliferation and inducing apoptosis. This study aimed at the CADD of a new apoptotic EGFR inhibitor. The natural alkaloid, theobromine, was used as a starting point to obtain a new semisynthetic (di-ortho-chloro acetamide) derivative (T-1-DOCA). Firstly, T-1-DOCA's total electron density, energy gap, reactivity indices, and electrostatic surface potential were determined by DFT calculations, Then, molecular docking studies were carried out to predict the potential of T-1-DOCA against wild and mutant EGFR proteins. T-1-DOCA's correct binding was further confirmed by molecular dynamics (MD) over 100 ns, MM-GPSA, and PLIP experiments. In vitro, T-1-DOCA showed noticeable efficacy compared to erlotinib by suppressing EGFRWT and EGFRT790M with IC50 values of 56.94 and 269.01 nM, respectively. T-1-DOCA inhibited also the proliferation of H1975 and HCT-116 malignant cell lines, exhibiting IC50 values of 14.12 and 23.39 µM, with selectivity indices of 6.8 and 4.1, respectively, indicating its anticancer potential and general safety. The apoptotic effects of T-1-DOCA were indicated by flow cytometric analysis and were further confirmed through its potential to increase the levels of BAX, Casp3, and Casp9, and decrease Bcl-2 levels. In conclusion, T-1-DOCA, a new apoptotic EGFR inhibitor, was designed and evaluated both computationally and experimentally. The results suggest that T-1-DOCA is a promising candidate for further development as an anti-cancer drug.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Reda G Yousef
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Dalal Z Husein
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja, Egypt
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University. Cairo, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| |
Collapse
|
15
|
Thapa R, Afzal O, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Altamimi ASA, Subramaniyan V, Thangavelu L, Singh SK, Dua K. Unveiling the connection: Long-chain non-coding RNAs and critical signaling pathways in breast cancer. Pathol Res Pract 2023; 249:154736. [PMID: 37579591 DOI: 10.1016/j.prp.2023.154736] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/β-catenin, Notch, DNA damage response, TGF-β, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/β-catenin, Notch, TGF-β, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Vetriselvan Subramaniyan
- Department of Pharmacology, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Malaysia
| | - Lakshmi Thangavelu
- Center for Global Health Research , Saveetha Medical College , Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| |
Collapse
|
16
|
Lu H, Zhang B, Xie Y, Zhao W, Han W, Zhou L, Wang Z. Sitravatinib is a potential EGFR inhibitor and induce a new death phenotype in Glioblastoma. Invest New Drugs 2023; 41:564-578. [PMID: 37322389 DOI: 10.1007/s10637-023-01373-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023]
Abstract
Glioblastoma (GBM) is a highly lethal neurological tumor that presents significant challenge for clinicians due to its heterogeneity and high mortality rate. Despite extensive research, there is currently no effective drug treatment available for GBM. Research evidence has consistently demonstrated that the epidermal growth factor receptor (EGFR) promotes tumor progression and is associated with poor prognosis in several types of cancer. In glioma, EGFR abnormal amplification is reported in approximately 40% of GBM patients, with overexpression observed in 60% of cases, and deletion or mutation in 24% to 67% of patients. In our study, Sitravatinib, a potential EGFR inhibitor, was identified through molecular docking screening based on protein structure. The targeting of EGFR and the tumor inhibitory effect of Sitravatinib on glioma were verified through cellular and in vivo experiments, respectively. Our study also revealed that Sitravatinib effectively inhibited GBM invasive and induced DNA damage and cellular senescence. Furthermore, we observed a novel cell death phenotype induced by Sitravatinib, which differed from previously reported programmed death patterns such as apoptosis, pyroptosis, ferroptosis, and necrosis.
Collapse
Affiliation(s)
- Hanwen Lu
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen City, China
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen City, China
| | - Bingchang Zhang
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen City, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen City, China
| | - Yuanyuan Xie
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen City, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen City, China
| | - Wenpeng Zhao
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen City, China
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen City, China
| | - Wanhong Han
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen City, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen City, China
| | - Liwei Zhou
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen City, China
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen City, China
| | - Zhanxiang Wang
- The Department of Neuroscience, Institute of Neurosurgery, School of Medicine, Xiamen University, Xiamen City, China.
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen City, China.
- Department of Neurosurgery, The First Affiliated Hospital of Xiamen University, Xiamen City, China.
- Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen City, China.
| |
Collapse
|
17
|
Sobh EA, Dahab MA, Elkaeed EB, Alsfouk AA, Ibrahim IM, Metwaly AM, Eissa IH. Discovery of new thieno[2,3- d]pyrimidines as EGFR tyrosine kinase inhibitors for cancer treatment. Future Med Chem 2023; 15:1167-1184. [PMID: 37529910 DOI: 10.4155/fmc-2023-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background: EGFR has been considered a vital molecular target in cancer management. Aim: The discovery of new thieno[2,3-d]pyrimidine derivatives as EGFR tyrosine kinase inhibitors. Methods: Nine derivatives were designed, synthesized and subjected to in vitro and in silico studies. Results: Compound 7a significantly inhibited the growth of HepG2 and PC3 cells for both EGFR wild-type and EGFRT790M. Compound 7a caused a significant apoptotic effect, arresting HepG2 cells' growth in the S and G2/M phases. Docking and molecular dynamics simulation studies confirmed the correct and stable binding modes of the synthesized compounds against the active sites. Conclusion: Compound 7a is a promising dual EGFR inhibitor for cancer treatment.
Collapse
Affiliation(s)
- Eman A Sobh
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Menoufia University, Menoufia, Egypt
| | - Mohammed A Dahab
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, 13713, Saudi Arabia
| | - Aisha A Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, PO Box 84428, Riyadh, 11671, Saudi Arabia
| | - Ibrahim M Ibrahim
- Biophysics Department, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy & Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering & Biotechnology Research Institute, City of Scientific Research & Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
18
|
Hao XS, Feng PP, Zhang YY, Wang FZ, Wang GL, Fei HR. Scutebarbatine A induces ROS-mediated DNA damage and apoptosis in breast cancer cells by modulating MAPK and EGFR/Akt signaling pathway. Chem Biol Interact 2023; 378:110487. [PMID: 37072049 DOI: 10.1016/j.cbi.2023.110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 04/20/2023]
Abstract
Scutebarbatine A (SBT-A), a diterpenoid alkaloid, has exerted cytotoxicity on hepatocellular carcinoma cells in our previous works. Here, the antitumor activity of SBT-A in breast cancer cells and the underlying mechanism were explored. The anti-proliferative effect of SBT-A was measured by trypan blue staining, 5-ethynyl-2'-deoxyuridine (EdU) incorporation and colony formation assay. DNA double-strand breaks (DSBs) were evaluated by observing the nuclear focus formation of γ-H2AX. Cell cycle distribution was assessed by flow cytometry. Apoptosis was determined by a TUNEL assay. Intracellular reactive oxygen species (ROS) generation and superoxide production were measured with 2', 7'-dichlorofluorescein diacetate (DCFH-DA) and dihydroethidium (DHE) staining, respectively. The results indicated that SBT-A showed a dose-dependent cytotoxic effect against breast cancer cells while revealing less toxicity toward MCF-10A breast epithelial cells. Moreover, SBT-A remarkably induced DNA damage, cell cycle arrest and apoptosis in both MDA-MB-231 and MCF-7 cells. SBT-A treatment increased the levels of ROS and cytosolic superoxide production. Pretreatment with N-acetyl cysteine (NAC), a ROS scavenger, was sufficient to block viability reduction, DNA damage, apoptosis and endoplasmic reticulum (ER) stress caused by SBT-A. By exposure to SBT-A, the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38MAPK) was upregulated, while the phosphorylation of extracellular signal-regulated kinase (ERK) was downregulated. In addition, SBT-A inhibited the EGFR signaling pathway by decreasing EGFR expression and phosphorylation of Akt and p70S6K. As mentioned above, SBT-A has a potent inhibitory effect on breast cancer cells through induction of DNA damage, apoptosis and ER stress via ROS generation and modulation of MAPK and EGFR/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiao-Shan Hao
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, PR China
| | - Pan-Pan Feng
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, PR China
| | - Yun-Yun Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, PR China
| | - Feng-Ze Wang
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, PR China
| | - Gui-Ling Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, PR China
| | - Hong-Rong Fei
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, PR China.
| |
Collapse
|
19
|
Fang WB, Medrano M, Cote P, Portsche M, Rao V, Hong Y, Behbod F, Knapp JR, Bloomer C, Noel-Macdonnell J, Cheng N. Transcriptome analysis reveals differences in cell cycle, growth and migration related genes that distinguish fibroblasts derived from pre-invasive and invasive breast cancer. Front Oncol 2023; 13:1130911. [PMID: 37091166 PMCID: PMC10118028 DOI: 10.3389/fonc.2023.1130911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
Background/Introduction As the most common form of pre-invasive breast cancer, ductal carcinoma in situ (DCIS) affects over 50,000 women in the US annually. Despite standardized treatment involving lumpectomy and radiation therapy, up to 25% of patients with DCIS experience disease recurrence often with invasive ductal carcinoma (IDC), indicating that a subset of patients may be under-treated. As most DCIS cases will not progress to invasion, many patients may experience over-treatment. By understanding the underlying processes associated with DCIS to IDC progression, we can identify new biomarkers to determine which DCIS cases may become invasive and improve treatment for patients. Accumulation of fibroblasts in IDC is associated with disease progression and reduced survival. While fibroblasts have been detected in DCIS, little is understood about their role in DCIS progression. Goals We sought to determine 1) whether DCIS fibroblasts were similar or distinct from normal and IDC fibroblasts at the transcriptome level, and 2) the contributions of DCIS fibroblasts to breast cancer progression. Methods Fibroblasts underwent transcriptome profiling and pathway analysis. Significant DCIS fibroblast-associated genes were further analyzed in existing breast cancer mRNA databases and through tissue array immunostaining. Using the sub-renal capsule graft model, fibroblasts from normal breast, DCIS and IDC tissues were co-transplanted with DCIS.com breast cancer cells. Results Through transcriptome profiling, we found that DCIS fibroblasts were characterized by unique alterations in cell cycle and motility related genes such as PKMYT1, TGF-α, SFRP1 and SFRP2, which predicted increased cell growth and invasion by Ingenuity Pathway Analysis. Immunostaining analysis revealed corresponding increases in expression of stromal derived PKMYT1, TGF-α and corresponding decreases in expression of SFRP1 and SFRP2 in DCIS and IDC tissues. Grafting studies in mice revealed that DCIS fibroblasts enhanced breast cancer growth and invasion associated with arginase-1+ cell recruitment. Conclusion DCIS fibroblasts are phenotypically distinct from normal breast and IDC fibroblasts, and play an important role in breast cancer growth, invasion, and recruitment of myeloid cells. These studies provide novel insight into the role of DCIS fibroblasts in breast cancer progression and identify some key biomarkers associated with DCIS progression to IDC, with important clinical implications.
Collapse
Affiliation(s)
- Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marcela Medrano
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Paige Cote
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Mike Portsche
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Vinamratha Rao
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Yan Hong
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Fariba Behbod
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jennifer R. Knapp
- Center for Genes Environment and Health, National Jewish Health, Denver, CO, United States
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Clark Bloomer
- Kansas Intellectual and Developmental Disabilities Research Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Janelle Noel-Macdonnell
- Biostatistics and Epidemiology Core, Health Services and Outcomes Research Children’s Mercy Hospital, Kansas City, MO, United States
- Department of Pediatrics, University of Missouri-Kansas City (UMKC) School of Medicine, Kansas City, MO, United States
| | - Nikki Cheng
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
20
|
Li S, Chen T, Liu J, Zhang H, Li J, Wang Z, Shang G. PROTACs: Novel tools for improving immunotherapy in cancer. Cancer Lett 2023; 560:216128. [PMID: 36933781 DOI: 10.1016/j.canlet.2023.216128] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
Posttranslational modifications (PTMs), such as phosphorylation, methylation, ubiquitination, and acetylation, are important in governing protein expression levels. Proteolysis targeting chimeras (PROTACs) are novel structures designed to target a protein of interest (POI) for ubiquitination and degradation, leading to the selective reduction in the expression levels of the POI. PROTACs have exhibited great promise due to their ability to target undruggable proteins, including several transcription factors. Recently, PROTACs have been characterized to improve anticancer immunotherapy via the regulation of specific proteins. In this review, we describe how the PROTACs target several molecules, including HDAC6, IDO1, EGFR, FoxM1, PD-L1, SHP2, HPK1, BCL-xL, BET proteins, NAMPT, and COX-1/2, to regulate immunotherapy in human cancers. PROTACs may provide potential treatment benefits by enhancing immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Shizhe Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - Jinxin Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - He Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - Jiatong Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China; The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Guanning Shang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China.
| |
Collapse
|
21
|
Bordeianu G, Filip N, Cernomaz A, Veliceasa B, Hurjui LL, Pinzariu AC, Pertea M, Clim A, Marinca MV, Serban IL. The Usefulness of Nanotechnology in Improving the Prognosis of Lung Cancer. Biomedicines 2023; 11:biomedicines11030705. [PMID: 36979684 PMCID: PMC10045176 DOI: 10.3390/biomedicines11030705] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Lung cancer remains a major public health problem both in terms of incidence and specific mortality despite recent developments in terms of prevention, such as smoking reduction policies and clinical management advances. Better lung cancer prognosis could be achieved by early and accurate diagnosis and improved therapeutic interventions. Nanotechnology is a dynamic and fast-developing field; various medical applications have been developed and deployed, and more exist as proofs of concepts or experimental models. We aim to summarize current knowledge relevant to the use of nanotechnology in lung cancer management. Starting from the chemical structure-based classification of nanoparticles, we identify and review various practical implementations roughly organized as diagnostic or therapeutic in scope, ranging from innovative contrast agents to targeted drug carriers. Available data are presented starting with standards of practice and moving to highly experimental methods and proofs of concept; particularities, advantages, limits and future directions are explored, focusing on the potential impact on lung cancer clinical prognosis.
Collapse
Affiliation(s)
- Gabriela Bordeianu
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Nina Filip
- Department of Morpho-Functional Sciences (II), Discipline of Biochemistry, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Andrei Cernomaz
- III-rd Medical Department, Discipline of Pneumology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Correspondence: (N.F.); (A.C.)
| | - Bogdan Veliceasa
- Department of Orthopedics and Traumatology, Surgical Science (II), Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Loredana Liliana Hurjui
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Constantin Pinzariu
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Pertea
- Department of Plastic Surgery and Reconstructive Microsurgery, “Sf. Spiridon” Emergency County Hospital, 700111 Iasi, Romania
| | - Andreea Clim
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihai Vasile Marinca
- III-rd Medical Department, Discipline of Oncology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences (II), Discipline of Physiology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
22
|
Serrano-López EM, Coronado-Parra T, Marín-Vicente C, Szallasi Z, Gómez-Abellán V, López-Andreo MJ, Gragera M, Gómez-Fernández JC, López-Nicolás R, Corbalán-García S. Deciphering the Role and Signaling Pathways of PKCα in Luminal A Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms232214023. [PMID: 36430510 PMCID: PMC9696894 DOI: 10.3390/ijms232214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Protein kinase C (PKC) comprises a family of highly related serine/threonine protein kinases involved in multiple signaling pathways, which control cell proliferation, survival, and differentiation. The role of PKCα in cancer has been studied for many years. However, it has been impossible to establish whether PKCα acts as an oncogene or a tumor suppressor. Here, we analyzed the importance of PKCα in cellular processes such as proliferation, migration, or apoptosis by inhibiting its gene expression in a luminal A breast cancer cell line (MCF-7). Differential expression analysis and phospho-kinase arrays of PKCα-KD vs. PKCα-WT MCF-7 cells identified an essential set of proteins and oncogenic kinases of the JAK/STAT and PI3K/AKT pathways that were down-regulated, whereas IGF1R, ERK1/2, and p53 were up-regulated. In addition, unexpected genes related to the interferon pathway appeared down-regulated, while PLC, ERBB4, or PDGFA displayed up-regulated. The integration of this information clearly showed us the usefulness of inhibiting a multifunctional kinase-like PKCα in the first step to control the tumor phenotype. Then allowing us to design a possible selection of specific inhibitors for the unexpected up-regulated pathways to further provide a second step of treatment to inhibit the proliferation and migration of MCF-7 cells. The results of this study suggest that PKCα plays an oncogenic role in this type of breast cancer model. In addition, it reveals the signaling mode of PKCα at both gene expression and kinase activation. In this way, a wide range of proteins can implement a new strategy to fine-tune the control of crucial functions in these cells and pave the way for designing targeted cancer therapies.
Collapse
Affiliation(s)
- Emilio M. Serrano-López
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Teresa Coronado-Parra
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Microscopy Core Unit, Área Científica y Técnica de Investigación, Universidad de Murcia, 30100 Murcia, Spain
| | - Consuelo Marín-Vicente
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Cardiovascular Proteomics and Developmental Biology Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Zoltan Szallasi
- Computational Health Informatics Program, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Bioinformatics, Semmelweis University, H-1092 Budapest, Hungary
| | - Victoria Gómez-Abellán
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Department of Cellular Biology and Histology, Biology School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
| | - María José López-Andreo
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Molecular Biology Unit, Área Científica y Técnica de Investigación, Universidad de Murcia, 30100 Murcia, Spain
| | - Marcos Gragera
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Centro Nacional Biotecnología, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - Juan C. Gómez-Fernández
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
| | - Rubén López-Nicolás
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
- Department of Bromatology and Nutrition, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Correspondence: (R.L.-N.); (S.C.-G.)
| | - Senena Corbalán-García
- Department of Biochemistry and Molecular Biology A, Veterinary School, Universidad de Murcia, CEIR Campus Mare Nostrum (CMN), 30100 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, El Palmar, 30120 Murcia, Spain
- Correspondence: (R.L.-N.); (S.C.-G.)
| |
Collapse
|
23
|
Rades D, Delikanli C, Schild SE, Kristiansen C, Tvilsted S, Janssen S. A New Survival Score for Patients ≥65 Years Assigned to Radiotherapy of Bone Metastases. Cancers (Basel) 2022; 14:cancers14194679. [PMID: 36230602 PMCID: PMC9563043 DOI: 10.3390/cancers14194679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Survival scores are important for personalized treatment of bone metastases. Elderly patients are considered a separate group. Therefore, a specific score was developed for these patients. Elderly patients (≥65 years) irradiated for bone metastases were randomly assigned to the test (n = 174) or validation (n = 174) cohorts. Thirteen factors were retrospectively analyzed for survival. Factors showing significance (p < 0.05) or a trend (p < 0.06) in the multivariate analysis were used for the score. Based on 6-month survival rates, prognostic groups were formed. The score was compared to an existing tool developed in patients of any age. In the multivariate analysis, performance score, tumor type, and visceral metastases showed significance and gender was a trend. Three groups were designed (17, 18−25 and 27−28 points) with 6-month survival rates of 0%, 51%, and 100%. In the validation cohort, these rates were 9%, 55%, and 86%. Comparisons of prognostic groups between both cohorts did not reveal significant differences. In the test cohort, positive predictive values regarding death ≤6 and survival ≥6 months were 100% with the new score vs. 80% and 88% with the existing tool. The new score was more accurate demonstrating the importance of specific scores for elderly patients.
Collapse
Affiliation(s)
- Dirk Rades
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
- Correspondence: ; Tel.: +49-451-500-45400
| | - Cansu Delikanli
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| | - Steven E. Schild
- Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Charlotte Kristiansen
- Department of Oncology, Vejle Hospital, University Hospital of Southern Denmark, 7100 Vejle, Denmark
| | - Søren Tvilsted
- Research Department, Zealand University Hospital, 4600 Køge, Denmark
| | - Stefan Janssen
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
- Medical Practice for Radiotherapy and Radiation Oncology, 30161 Hannover, Germany
| |
Collapse
|