1
|
Emirdağ S, Ulusoy NG, Aksel M. Design, Synthesis and Biological Evaluation of Novel Gypsogenin Derivatives as Potential Anticancer and Antimicrobial Agents. Chem Biodivers 2024; 21:e202400471. [PMID: 38594210 DOI: 10.1002/cbdv.202400471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024]
Abstract
Natural compounds are important sources for the treatment of chronic disorders such as cancer and microbial infectious disorders. In this research, Gypsogenin and its derivatives (2 a-2 f) have been tested against different cancer cell lines (MCF-7, HeLa, Jurkat and K562 cell lines) and further analyzed for cell proliferation, cell death type, and for act of the mechanism. Cell proliferation was determined by the MTT method and cell death types were analyzed with HO/PI staining. Fibroblast Growth Factor 1 (FGF-1), Interleukin 1 (IL-1), Interleukin 6 (IL-6), and Tumor Necrosis Factor Alpha (TNF-α), key players in breast cancer development and progression, were determined by Elisa kits. Results showed that compound 2 e inhibited the MCF-7 cell line proliferation with an IC50 value of 0.66±0.17 μM with 93.38 % apoptosis rate. Compound 2 e also decreased FGF-1, IL-1, IL-6, and TNF-α levels. Molecular docking studies performed in the binding site of FGFR-1 indicated that compound 2 e formed key hydrogen bonding with Arg627 and Asn568. Besides, compounds 2 a-2 f were evaluated for their antimicrobial activities against gram-negative and gram-positive bacteria and C. albicans via the microdilution method. Overall, compound 2 e stands out as a potential anticancer agent for future studies.
Collapse
Affiliation(s)
- Safiye Emirdağ
- Faculty of Science Dean's Department of Chemistry, Ege University, 35040, İzmir, Turkey
| | - Nafia Gökçe Ulusoy
- Faculty of Science Dean's Department of Chemistry, Ege University, 35040, İzmir, Turkey
| | - Mehran Aksel
- Department of Biophysics, Faculty of Medicine, Aydın Adnan Menderes University, 09010, Aydin, Turkey
| |
Collapse
|
2
|
Santos Ferreira DA, de Castro Levatti EV, Santa Cruz LM, Costa AR, Migotto ÁE, Yamada AY, Camargo CH, Christodoulides M, Lago JHG, Tempone AG. Saturated Iso-Type Fatty Acids from the Marine Bacterium Mesoflavibacter zeaxanthinifaciens with Anti-Trypanosomal Potential. Pharmaceuticals (Basel) 2024; 17:499. [PMID: 38675459 PMCID: PMC11053438 DOI: 10.3390/ph17040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chagas disease is a Neglected Tropical Disease with limited and ineffective therapy. In a search for new anti-trypanosomal compounds, we investigated the potential of the metabolites from the bacteria living in the corals and sediments of the southeastern Brazilian coast. Three corals, Tubastraea coccinea, Mussismilia hispida, Madracis decactis, and sediments yielded 11 bacterial strains that were fully identified by MALDI-ToF/MS or gene sequencing, resulting in six genera-Vibrio, Shewanella, Mesoflavibacter, Halomonas, Bacillus, and Alteromonas. To conduct this study, EtOAc extracts were prepared and tested against Trypanosoma cruzi. The crude extracts showed IC50 values ranging from 15 to 51 μg/mL against the trypomastigotes. The bacterium Mesoflavibacter zeaxanthinifaciens was selected for fractionation, resulting in an active fraction (FII) with IC50 values of 17.7 μg/mL and 23.8 μg/mL against the trypomastigotes and amastigotes, respectively, with neither mammalian cytotoxicity nor hemolytic activity. Using an NMR and ESI-HRMS analysis, the FII revealed the presence of unsaturated iso-type fatty acids. Its lethal action was investigated, leading to a protein spectral profile of the parasite altered after treatment. The FII also induced a rapid permeabilization of the plasma membrane of the parasite, leading to cell death. These findings demonstrate that these unsaturated iso-type fatty acids are possible new hits against T. cruzi.
Collapse
Affiliation(s)
- Dayana Agnes Santos Ferreira
- Pathophysiology Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, Sao Paulo 05503-900, SP, Brazil; (D.A.S.F.); (E.V.d.C.L.)
| | | | - Lucas Monteiro Santa Cruz
- Centre of Organic Contaminants, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 355, Sao Paulo 01246-000, SP, Brazil; (L.M.S.C.); (A.R.C.)
| | - Alan Roberto Costa
- Centre of Organic Contaminants, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 355, Sao Paulo 01246-000, SP, Brazil; (L.M.S.C.); (A.R.C.)
| | - Álvaro E. Migotto
- Centre for Marine Biology, Universidade de São Paulo, Rodovia Doutor Manoel Hipólito do Rego, km. 131,5, Pitangueiras, Sao Sebastiao 11612-109, SP, Brazil;
| | - Amanda Yaeko Yamada
- Centre of Bacteriology, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, Sao Paulo 01246-000, SP, Brazil; (A.Y.Y.); (C.H.C.)
| | - Carlos Henrique Camargo
- Centre of Bacteriology, Instituto Adolfo Lutz, Av. Dr. Arnaldo, 351, Sao Paulo 01246-000, SP, Brazil; (A.Y.Y.); (C.H.C.)
| | - Myron Christodoulides
- Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - João Henrique G. Lago
- Centre of Natural Sciences and Humanities, Universidade Federal do ABC, Sao Paulo 09210-580, SP, Brazil
| | - Andre Gustavo Tempone
- Pathophysiology Laboratory, Instituto Butantan, Av. Vital Brazil, 1500, Sao Paulo 05503-900, SP, Brazil; (D.A.S.F.); (E.V.d.C.L.)
| |
Collapse
|
3
|
Barbosa H, Espinoza GZ, Amaral M, de Castro Levatti EV, Abiuzi MB, Veríssimo GC, Fernandes PDO, Maltarollo VG, Tempone AG, Honorio KM, Lago JHG. Andrographolide: A Diterpenoid from Cymbopogon schoenanthus Identified as a New Hit Compound against Trypanosoma cruzi Using Machine Learning and Experimental Approaches. J Chem Inf Model 2024; 64:2565-2576. [PMID: 38148604 DOI: 10.1021/acs.jcim.3c01410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
American Trypanosomiasis, also known as Chagas disease, is caused by the protozoan Trypanosoma cruzi and exhibits limited options for treatment. Natural products offer various structurally complex metabolites with biological activities, including those with anti-T. cruzi potential. The discovery and development of prototypes based on natural products frequently display multiple phases that could be facilitated by machine learning techniques to provide a fast and efficient method for selecting new hit candidates. Using Random Forest and k-Nearest Neighbors, two models were constructed to predict the biological activity of natural products from plants against intracellular amastigotes of T. cruzi. The diterpenoid andrographolide was identified from a virtual screening as a promising hit compound. Hereafter, it was isolated from Cymbopogon schoenanthus and chemically characterized by spectral data analysis. Andrographolide was evaluated against trypomastigote and amastigote forms of T. cruzi, showing IC50 values of 29.4 and 2.9 μM, respectively, while the standard drug benznidazole displayed IC50 values of 17.7 and 5.0 μM, respectively. Additionally, the isolated compound exhibited a reduced cytotoxicity (CC50 = 92.8 μM) against mammalian cells and afforded a selectivity index (SI) of 32, similar to that of benznidazole (SI = 39). From the in silico analyses, we can conclude that andrographolide fulfills many requirements implemented by DNDi to be a hit compound. Therefore, this work successfully obtained machine learning models capable of predicting the activity of compounds against intracellular forms of T. cruzi.
Collapse
Affiliation(s)
- Henrique Barbosa
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo 09210-180, Brazil
| | | | - Maiara Amaral
- Laboratory of Pathophysiology, Butantan Institute, São Paulo 05503-900, Brazil
| | | | | | - Gabriel Correa Veríssimo
- Department of Pharmaceutical Products, Federal University of Minas Gerais, Minas Gerais, 31270-901, Brazil
| | | | | | | | - Kathia Maria Honorio
- Center for Natural and Human Sciences, Federal University of ABC, São Paulo 09210-180, Brazil
- School of Arts, Science, and Humanities, University of São Paulo, São Paulo 03828-000, Brazil
| | | |
Collapse
|
4
|
Rocha V, Cajas RA, Andrade-de-Siqueira AI, Almeida RBP, Godoy-Silva J, Gonçalves MM, Lago JHG, de Moraes J. Evaluating the Antischistosomal Activity of Dehydrodieugenol B and Its Methyl Ether Isolated from Nectandra leucantha-A Preclinical Study against Schistosoma mansoni Infection. ACS OMEGA 2023; 8:40890-40897. [PMID: 37929107 PMCID: PMC10620922 DOI: 10.1021/acsomega.3c06111] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Schistosomiasis, a parasitic disease affecting nearly 250 million individuals globally, poses a significant health challenge. With praziquantel being the sole available treatment and its limited efficacy in early stage infections, the identification of novel bioactive compounds becomes imperative. This study examines the potential of dehydrodieugenol B (1) and its methyl ether (2), derived from the leaves of the Brazilian Nectandra leucantha plant (Lauraceae), in combatting Schistosoma mansoni infections through a preclinical approach. Initially, compound 1 displayed noteworthy in vitro antiparasitic activity with an EC50 of 31.9 μM, showcasing low toxicity in mammalian cells and an in vivo animal model (Caenorhabditis elegans). Conversely, compound 2 exhibited no activity. In silico predictions pointed to favorable oral bioavailability and the absence of PAINS similarities. Subsequently, a single oral dose of 400 mg/kg of compound 1 or praziquantel was administered to mice infected with adult (patent infection) or immature parasites (prepatent infection). Remarkably, in prepatent infections, 1 resulted in a significant reduction (approximately 50%) in both worm and egg burden, while praziquantel reduced worm and egg numbers by 30%. The superior efficacy of dehydrodieugenol B (1) compared to praziquantel in premature infections holds the potential to advance the development of new molecular prototypes for schistosomiasis treatment.
Collapse
Affiliation(s)
- Vinicius
C. Rocha
- Instituto
de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema 09972-270, Brazil
| | - Rayssa A. Cajas
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo 07023-070, Brazil
| | | | - Roberto B. P. Almeida
- Departamento
de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil
| | - Julia Godoy-Silva
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo 07023-070, Brazil
| | - Marina M. Gonçalves
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo
André, São Paulo 09210-180, Brazil
| | - João Henrique G. Lago
- Centro
de Ciências Naturais e Humanas, Universidade
Federal do ABC, Santo
André, São Paulo 09210-180, Brazil
| | - Josué de Moraes
- Núcleo
de Pesquisa em Doenças Negligenciadas, Universidade Guarulhos, Guarulhos, São Paulo 07023-070, Brazil
| |
Collapse
|
5
|
Londero VS, Rosa ME, Baitello JB, Costa-Silva TA, Cruz LMS, Tempone AG, Caseli L, Lago JHG. Barbellatanic acid, a new antitrypanosomal pseudo-disesquiterpenoid isolated from Nectandra barbellata, displayed interaction with protozoan cell membrane. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184184. [PMID: 37301246 DOI: 10.1016/j.bbamem.2023.184184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023]
Abstract
As part of our ongoing studies involving the discovery of new natural prototypes with antiprotozoal activity against Trypanosoma cruzi from Brazilian plant species, the chromatographic fractionation of hexane extract from leaves of Nectandra barbellata afforded one new pseudo-disesquiterpenoid, barbellatanic acid. The structure of this compound was elucidated by NMR and HR-ESIMS data analysis. Barbellatanic acid displayed a trypanocidal effect with IC50 of 13.2 μM to trypomastigotes and no toxicity against NCTC cells (CC50 > 200 μM), resulting in an SI value higher than 15.1. The investigation of the lethal mechanism of barbellatanic acid in trypomastigotes, using both fluorescence microscopy and spectrofluorimetric analysis, revealed a time-dependent permeation of the plasma membrane. Based on these results, this compound was incorporated in cellular membrane models built with lipid Langmuir monolayers. The interaction of barbellatanic acid with the models was inferred by tensiometric, rheological, spectroscopical, and morphological techniques, which showed that this compound altered the thermodynamic, viscoelastic, structural, and morphological properties of the film. Taking together, these results could be employed when this prodrug interacts with lipidic interfaces, such as protozoa membranes or liposomes for drug delivery systems.
Collapse
Affiliation(s)
- Vinicius S Londero
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, 09972-270 São Paulo, Brazil
| | - Matheus E Rosa
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, 09972-270 São Paulo, Brazil
| | - João B Baitello
- Division of Dasonomy, Forestry Institute, 02377-000 São Paulo, Brazil
| | - Thais A Costa-Silva
- Center for Natural and Human Sciences, Federal University of ABC, 09210-180 São Paulo, Brazil
| | - Lucas Monteiro S Cruz
- Organic Contaminants Nucleus - Contaminants Center, Adolfo Lutz Institute, 01246-902 São Paulo, Brazil
| | - Andre G Tempone
- Center for Parasitology and Mycology, Adolfo Lutz Institute, 01246-902 São Paulo, Brazil
| | - Luciano Caseli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, 09972-270 São Paulo, Brazil.
| | - João Henrique G Lago
- Center for Natural and Human Sciences, Federal University of ABC, 09210-180 São Paulo, Brazil.
| |
Collapse
|
6
|
Thevenard F, Brito IA, Costa-Silva TA, Tempone AG, Lago JHG. Enyne acetogenins from Porcelia macrocarpa displayed anti-Trypanosoma cruzi activity and cause a reduction in the intracellular calcium level. Sci Rep 2023; 13:10254. [PMID: 37355735 PMCID: PMC10290671 DOI: 10.1038/s41598-023-37520-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
Natural products are a promising source of new compounds with a wide spectrum of pharmacological properties, including antiprotozoal activities. Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, is one of several neglected tropical diseases with reduced options for treatment, which presents limitations such as toxicity and ineffectiveness in the chronic stage of the disease. Aiming to investigate the Brazilian flora for the discovery of new anti-T. cruzi compounds, the MeOH extract from Porcelia macrocarpa R.E. Fries (Annonaceae) fruit peels displayed potent activity against trypomastigotes and intracellular amastigotes and was subjected to bioactivity-guided fractionation. Using different chromatographic steps, a fraction composed of a mixture of four new chemically related acetogenins was obtained. The compounds were characterized as (2S*,3R*,4R*)-3-hydroxy-4-methyl-2-(n-octadeca-13',17'-dien-11'-inil)butanolide (1), (2S*,3R*,4R*)-3-hydroxy-4-methyl-2-(n-eicosa-13',19'-dien-11'-inil)butanolide (2), (2S*,3R*,4R*)-3-hydroxy-4-methyl-2-(n-octadec-13'-en-11'-inil)butanolide (3), and (2S*,3R*,4R*)-3-hydroxy-4-methyl-2-(n-eicosa-13'-en-11'-inil)butanolide (4) by NMR analysis and UHPLC/ESI-HRMS data. The mixture of compounds 1-4, displayed an EC50 of 4.9 and 2.5 µg/mL against trypomastigote and amastigote forms of T. cruzi, respectively, similar to the standard drug benznidazole (EC50 of 4.8 and 1.4 µg/mL). Additionally, the mixture of compounds 1-4 displayed no mammalian toxicity for murine fibroblasts (CC50 > 200 µg/mL), resulting in a SI > 40.8 and > 83.3 against trypomastigotes and amastigotes, respectively. Based on these results, the mechanism of action of this bioactive fraction was investigated. After a short-time incubation with the trypomastigotes, no alterations in the cell membrane permeability were observed. However, it was verified a decrease in the intracellular calcium of the parasites, without significant pH variations of the acidocalcisomes. The intracellular damages were followed by an upregulation of the reactive oxygen species and ATP, but no depolarization effects were observed in the mitochondrial membrane potential. These data suggest that the mixture of compounds 1-4 caused an irreversible oxidative stress in the parasites, leading to death. If adequately studied, these acetogenins can open new insights for the discovery of new routes of death in T. cruzi.
Collapse
Affiliation(s)
- Fernanda Thevenard
- Centre for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
| | - Ivanildo A Brito
- Centre for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
| | - Thais A Costa-Silva
- Centre for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
- SENAI Institute of Innovation in Biotechnology, São Paulo, 01130-000, Brazil
| | - Andre G Tempone
- Centre for Parasitology and Mycology, Instituto Adolfo Lutz, São Paulo, Brazil.
| | - João Henrique G Lago
- Centre for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil.
| |
Collapse
|