1
|
Satarug S. Urinary N-acetylglucosaminidase in People Environmentally Exposed to Cadmium Is Minimally Related to Cadmium-Induced Nephron Destruction. TOXICS 2024; 12:775. [PMID: 39590955 PMCID: PMC11598048 DOI: 10.3390/toxics12110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024]
Abstract
Exposure to even low levels of the environmental pollutant cadmium (Cd) increases the risk of kidney damage and malfunction. The body burden of Cd at which these outcomes occur is not, however, reliably defined. Here, multiple-regression and mediation analyses were applied to data from 737 non-diabetic Thai nationals, of which 9.1% had an estimated glomerular filtration rate (eGFR) ≤ 60 mL/min/1.73 m2 (a low eGFR). The excretion of Cd (ECd), and renal-effect biomarkers, namely β2-microglobulin (Eβ2M), albumin (Ealb), and N-acetylglucosaminidase (ENAG), were normalized to creatinine clearance (Ccr) as ECd/Ccr Eβ2M/Ccr, Ealb/Ccr, and ENAG/Ccr. After adjustment for potential confounders, the risks of having a low eGFR and albuminuria rose twofold per doubling ECd/Ccr rates and they both varied directly with the severity of β2-microglobulinuria. Doubling ECd/Ccr rates also increased the risk of having a severe tubular injury, evident from ENAG/Ccr increments [POR = 4.80, p = 0.015]. ENAG/Ccr was strongly associated with ECd/Ccr in both men (β = 0.447) and women (β = 0.394), while showing a moderate inverse association with eGFR only in women (β = -0.178). A moderate association of ENAG/Ccr and ECd/Ccr was found in the low- (β = 0.287), and the high-Cd body burden groups (β = 0.145), but ENAG/Ccr was inversely associated with eGFR only in the high-Cd body burden group (β = -0.223). These discrepancies together with mediation analysis suggest that Cd-induced nephron destruction, which reduces GFR and the tubular release of NAG by Cd, involves different mechanisms and kinetics.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Centre for Kidney Disease Research, Translational Research Institute, Woolloongabba, Brisbane, QLD 4102, Australia
| |
Collapse
|
2
|
Lumpuy-Castillo J, Amador-Martínez I, Díaz-Rojas M, Lorenzo O, Pedraza-Chaverri J, Sánchez-Lozada LG, Aparicio-Trejo OE. Role of mitochondria in reno-cardiac diseases: A study of bioenergetics, biogenesis, and GSH signaling in disease transition. Redox Biol 2024; 76:103340. [PMID: 39250857 PMCID: PMC11407069 DOI: 10.1016/j.redox.2024.103340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are global health burdens with rising prevalence. Their bidirectional relationship with cardiovascular dysfunction, manifesting as cardio-renal syndromes (CRS) types 3 and 4, underscores the interconnectedness and interdependence of these vital organ systems. Both the kidney and the heart are critically reliant on mitochondrial function. This organelle is currently recognized as a hub in signaling pathways, with emphasis on the redox regulation mediated by glutathione (GSH). Mitochondrial dysfunction, including impaired bioenergetics, redox, and biogenesis pathways, are central to the progression of AKI to CKD and the development of CRS type 3 and 4. This review delves into the metabolic reprogramming and mitochondrial redox signaling and biogenesis alterations in AKI, CKD, and CRS. We examine the pathophysiological mechanisms involving GSH redox signaling and the AMP-activated protein kinase (AMPK)-sirtuin (SIRT)1/3-peroxisome proliferator-activated receptor-gamma coactivator (PGC-1α) axis in these conditions. Additionally, we explore the therapeutic potential of GSH synthesis inducers in mitigating these mitochondrial dysfunctions, as well as their effects on inflammation and the progression of CKD and CRS types 3 and 4.
Collapse
Affiliation(s)
- Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - Isabel Amador-Martínez
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Miriam Díaz-Rojas
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, 43210, Columbus, Ohio, USA.
| | - Oscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz-Ciberdem, Medicine Department, Autonomous University, 28040, Madrid, Spain.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, 04510, Mexico City, Mexico.
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology Ignacio Chávez, 14080, Mexico City, Mexico.
| |
Collapse
|
3
|
Zheng XM, Zhang XD, Tan LL, Zhang J, Wang TT, Ling Q, Wang H, Ouyang KW, Wang KW, Chang W, Li H, Zhu HL, Xiong YW, Wang H. Sirt1 m6A modification-evoked Leydig cell senescence promotes Cd-induced testosterone decline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116884. [PMID: 39153281 DOI: 10.1016/j.ecoenv.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Diminished testosterone levels have been documented as a key factor in numerous male health disorders. Both human and animal studies have consistently demonstrated that cadmium (Cd), a pervasive environmental heavy metal, results in decreased testosterone levels. However, the exact mechanism through which Cd interferes with testosterone synthesis remains incompletely elucidated. This research sought to examine the impact of cellular senescence on Cd-suppressed testosterone synthesis. We also investigated the related m6A modification mechanism. The results demonstrated that Cd (100 mg/L) led to a decrease in testosterone levels, along with downregulated expression of testosterone synthase in C57BL/6 N male mice. Furthermore, Cd significantly increased β-galactosidase staining intensity, senescence-related proteins, and senescence-related secretory phenotypes in mouse testicular Leydig cells. Subsequent investigations revealed that Cd decreased the mRNA and protein levels of NAD-dependent deacetylase Sirtuin-1 (SIRT1) in Leydig cells. Mechanistically, mice treated with resveratrol (50 mg/kg), a specific SIRT1 activator, mitigated Leydig cell senescence and reversed Cd-reduced testosterone levels in mouse testes. These effects were also restored by SIRT1 overexpression in Leydig cells. Additionally, we found that Cd increased the level of methyltransferase enzyme METTL3 and Sirt1 m6A modification in Leydig cells. Mettl3 siRNA effectively restored Cd-enhanced Sirt1 m6A level and reversed Cd-downregulated Sirt1 mRNA expression in Leydig cells. Overall, our findings suggest that Cd exposure inhibits testosterone synthesis via Sirt1 m6A modification-mediated senescence in mouse testes. These results offer an experimental basis for investigating the causes and potential treatments of hypotestosteronemia induced by environmental factors.
Collapse
Affiliation(s)
- Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China
| | - Xu-Dong Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Tian-Tian Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Center for Big Data and Population Health of IHM, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
4
|
Hernández-Cruz EY, Aparicio-Trejo OE, Hammami FA, Bar-Shalom D, Tepel M, Pedraza-Chaverri J, Scholze A. N-acetylcysteine in Kidney Disease: Molecular Mechanisms, Pharmacokinetics, and Clinical Effectiveness. Kidney Int Rep 2024; 9:2883-2903. [PMID: 39430194 PMCID: PMC11489428 DOI: 10.1016/j.ekir.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 10/22/2024] Open
Abstract
N-acetylcysteine (NAC) has shown beneficial effects in both acute kidney disease and chronic kidney disease (CKD) in preclinical and clinical studies. Different dosage and administration forms of NAC have specific pharmacokinetic properties that determine the temporal pattern of plasma concentrations of NAC and its active metabolites. Especially in acute situations with short-term NAC administration, appropriate NAC and glutathione (GSH) plasma concentrations should be timely ensured. For oral dosage forms, bioavailability needs to be established for the respective NAC formulation. Kidney function influences NAC pharmacokinetics, including a reduction of NAC clearance in advanced CKD. In addition, mechanisms of action underlying beneficial NAC effects depend on kidney function as well as comorbidities, both involving GSH deficiency, alterations in nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent signaling, oxidative stress, mitochondrial dysfunction, and disturbed mitochondrial bioenergetics. This also applies to nonrenal NAC mechanisms. The timing of preventive NAC administration in relation to potential injury is important. NAC administration seems most effective either preceding, or preceding and paralleling conditions that induce tissue damage. Furthermore, studies suggest that very high concentrations of NAC should be avoided because they could exert reductive stress. Delayed administration of NAC might interfere with endogenous repair mechanisms. In conclusion, studies on NAC treatment regimens need to account for both NAC pharmacokinetics and NAC molecular effects. Kidney function of the patient population and pathomechanisms of the kidney disease should guide rational NAC trial design. A targeted trial approach and biomarker-guided protocols could pave the way for the use of NAC in precision medicine.
Collapse
Affiliation(s)
- Estefani Y. Hernández-Cruz
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Omar E. Aparicio-Trejo
- Department of Cardio-Renal Pathophysiology, Ignacio Chávez National Institute of Cardiology, Mexico City, Mexico
| | - Fadi A. Hammami
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Daniel Bar-Shalom
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| | - Martin Tepel
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Jose Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City, Mexico
| | - Alexandra Scholze
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Research Unit of Cardiac, Thoracic, and Vascular surgery, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Zhu J, Gong Z, Wang X, Zhang K, Ma Y, Zou H, Song R, Zhao H, Liu Z, Dong W. mTORC1 and mTORC2 Co-Protect against Cadmium-Induced Renal Tubular Epithelial Cell Apoptosis and Acute Kidney Injury by Regulating Protein Kinase B. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19667-19679. [PMID: 39219293 PMCID: PMC11404484 DOI: 10.1021/acs.jafc.4c05702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The potential threat of cadmium (Cd)-induced acute kidney injury (AKI) is increasing. In this study, our primary goal was to investigate the individual roles played by mTOR complexes, specifically mTORC1 and mTORC2, in Cd-induced apoptosis in mouse kidney cells. We constructed a mouse model with specific deletion of Raptor/Rictor renal cells. Inhibitors and activators of mTORC1 or mTORC2 were also applied. The effects of protein kinase B (AKT) activation and autophagy were studied. Both mTORC1 and mTORC2 were found to mediate the antiapoptotic mechanism of renal cells by regulating the AKT activity. Inhibition of mTORC1 or mTORC2 exacerbated Cd-induced kidney cell apoptosis, suggesting that both proteins exert antiapoptotic effects under Cd exposure. We further found that the AKT activation plays a key role in mTORC1/TORC2-mediated antiapoptosis, protecting Cd-exposed kidney cells from apoptosis. We also found that mTOR activators inhibited excessive autophagy, alleviated apoptosis, and promoted cell survival. These findings provide new insights into the regulatory mechanisms of mTOR in renal diseases and provide a theoretical basis for the development of novel therapeutic strategies to treat renal injury.
Collapse
Affiliation(s)
- Jiaqiao Zhu
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Zhonggui Gong
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Agricultural
High-tech Industrial Demonstration Area of the Yellow River Delta
of Shandong Province, Dongying, Shandong 257000, China
- National
Technological Innovation Center for Comprehensive Utilization of Saline-Alkali
Land, Dongying, Shandong 257000, China
| | - Xueru Wang
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Kanglei Zhang
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yonggang Ma
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Hui Zou
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Ruilong Song
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Hongyan Zhao
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Zongping Liu
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Institute
of Agricultural Science and Technology Development (Joint International
Research Laboratory of Agriculture and Agri-Product Safety of the
Ministry of Education of China), Yangzhou
University, Yangzhou, Jiangsu 225009, China
- Jiangsu
Co-Innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Wenxuan Dong
- College
of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Laboratory
of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary
Medicine, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
6
|
Dong W, Zhang K, Wang X, Li J, Zou H, Yuan Y, Gu J, Zhu J, Liu G, Liu Z, Song R. SIRT1 alleviates Cd nephrotoxicity through NF-κB/p65 deacetylation-mediated pyroptosis in rat renal tubular epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172392. [PMID: 38608885 DOI: 10.1016/j.scitotenv.2024.172392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Cadmium (Cd) is a widely distributed environmental pollutant, primarily causing nephrotoxicity through renal proximal tubular cell impairment. Pyroptosis is an inflammation-related nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3)-dependent pathway for programmed cell death. We previously reported that inappropriate inflammation caused by Cd is a major contributor to kidney injury. Therefore, research on Cd-induced inflammatory response and pyroptosis may clarify the mechanisms underlying Cd-induced nephrotoxicity. In this study, we observed that Cd-induced nephrotoxicity is associated with NLRP3 inflammasome activation, leading to an increase in proinflammatory cytokine expression and secretion, as well as pyroptosis-related gene upregulation, both in primary rat proximal tubular (rPT) cells and kidney tissue from Cd-treated rats. In vitro, these effects were significantly abrogated through siRNA-based Nlrp3 silencing; thus, Cd may trigger pyroptosis through an NLRP3 inflammasome-dependent pathway. Moreover, Cd exposure considerably elevated reactive oxygen species (ROS) content. N-acetyl-l-cysteine, an ROS scavenger, mitigated Cd-induced NLRP3 inflammasome activation and subsequent pyroptosis. Mechanistically, Cd hindered the expression and deacetylase activity of SIRT1, eventually leading to a decline in SIRT1-p65 interactions, followed by an elevation in acetylated p65 levels. The administration of resveratrol (a SIRT1 agonist) or overexpression of Sirt1 counteracted Cd-induced RELA/p65/NLRP3 pathway activation considerably, leading to pyroptosis. This is the first study to reveal significant contributions of SIRT1-triggered p65 deacetylation to pyroptosis and its protective effects against Cd-induced chronic kidney injury. Our results may aid in developing potential therapeutic strategies for preventing Cd-induced pyroptosis through SIRT1-mediated p65 deacetylation.
Collapse
Affiliation(s)
- Wenxuan Dong
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China; College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xueru Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
7
|
Zhang K, Li J, Dong W, Huang Q, Wang X, Deng K, Ali W, Song R, Zou H, Ran D, Liu G, Liu Z. Luteolin Alleviates Cadmium-Induced Kidney Injury by Inhibiting Oxidative DNA Damage and Repairing Autophagic Flux Blockade in Chickens. Antioxidants (Basel) 2024; 13:525. [PMID: 38790630 PMCID: PMC11117664 DOI: 10.3390/antiox13050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Chickens are a major source of meat and eggs in human food and have significant economic value. Cadmium (Cd) is a common environmental pollutant that can contaminate feed and drinking water, leading to kidney injury in livestock and poultry, primarily by inducing the generation of free radicals. It is necessary to develop potential medicines to prevent and treat Cd-induced nephrotoxicity in poultry. Luteolin (Lut) is a natural flavonoid compound mainly extracted from peanut shells and has a variety of biological functions to defend against oxidative damage. In this study, we aimed to demonstrate whether Lut can alleviate kidney injury under Cd exposure and elucidate the underlying molecular mechanisms. Renal histopathology and cell morphology were observed. The indicators of renal function, oxidative stress, DNA damage and repair, NAD+ content, SIRT1 activity, and autophagy were analyzed. In vitro data showed that Cd exposure increased ROS levels and induced oxidative DNA damage and repair, as indicated by increased 8-OHdG content, increased γ-H2AX protein expression, and the over-activation of the DNA repair enzyme PARP-1. Cd exposure decreased NAD+ content and SIRT1 activity and increased LC3 II, ATG5, and particularly p62 protein expression. In addition, Cd-induced oxidative DNA damage resulted in PARP-1 over-activation, reduced SIRT1 activity, and autophagic flux blockade, as evidenced by reactive oxygen species scavenger NAC application. The inhibition of PARP-1 activation with the pharmacological inhibitor PJ34 restored NAD+ content and SIRT1 activity. The activation of SIRT1 with the pharmacological activator RSV reversed Cd-induced autophagic flux blockade and cell injury. In vivo data demonstrated that Cd treatment caused the microstructural disruption of renal tissues, reduced creatinine, and urea nitrogen clearance, raised MDA content, and decreased the activities or contents of antioxidants (GSH, T-SOD, CAT, and T-AOC). Cd treatment caused oxidative DNA damage and PARP-1 activation, decreased NAD+ content, decreased SIRT1 activity, and impaired autophagic flux. Notably, the dietary Lut supplement observably alleviated these alterations in chicken kidney tissues induced by Cd. In conclusion, the dietary Lut supplement alleviated Cd-induced chicken kidney injury through its potent antioxidant properties by relieving the oxidative DNA damage-activated PARP-1-mediated reduction in SIRT1 activity and repairing autophagic flux blockade.
Collapse
Affiliation(s)
- Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wenxuan Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266000, China;
| | - Qing Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueru Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Deng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Di Ran
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
8
|
Zhang S, Wu J, Wang L, Mu L, Xu X, Li J, Tang G, Chen G, Zhang C, Zhang Y, Feng Y. SIRT1/P53 in retinal pigment epithelial cells in diabetic retinopathy: a gene co-expression analysis and He-Ying-Qing-Re formula treatment. Front Mol Biosci 2024; 11:1366020. [PMID: 38633216 PMCID: PMC11021775 DOI: 10.3389/fmolb.2024.1366020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
Objective Diabetic retinopathy (DR) is a severe diabetic complication that leads to severe visual impairment or blindness. He-Ying-Qing-Re formula (HF), a traditional Chinese medicinal concoction, has been identified as an efficient therapy for DR with retinal vascular dysfunction for decades and has been experimentally reported to ameliorate retinal conditions in diabetic mice. This study endeavors to explore the therapeutic potential of HF with key ingredients in DR and its underlying novel mechanisms. Methods Co-expression gene modules and hub genes were calculated by weighted gene co-expression network analysis (WGCNA) based on transcriptome sequencing data from high-glucose-treated adult retinal pigment epithelial cell line-19 (ARPE-19). The chromatographic fingerprint of HF was established by ultra-performance liquid chromatography coupled with high-resolution mass spectrometry (UPLC-Q-TOF-MS). The molecular affinity of the herbal compound was measured by molecular docking. Reactive oxygen species (ROS) was measured by a DCFDA/H2DCFDA assay. Apoptosis was detected using the TUNEL Assay Kit, while ELISA, Western blot, and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) were used for detecting the cytokine, protein, and mRNA expressions, respectively. Results Key compounds in HF were identified as luteolin, paeoniflorin, and nobiletin. For WGCNA, ME-salmon ("protein deacetylation") was negatively correlated with ME-purple ("oxidative impairment") in high-glucose-treated ARPE-19. Luteolin has a high affinity for SIRT1 and P53, as indicated by molecular docking. Luteolin has a hypoglycemic effect on type I diabetic mice. Moreover, HF and luteolin suppress oxidative stress production (ROS and MDA), inflammatory factor expression (IL-6, TNF-α, IL1-β, and MCP-1), and apoptosis, as shown in the in vivo and in vitro experiments. Concurrently, treatment with HF and luteolin led to an upregulation of SIRT1 and a corresponding downregulation of P53. Conclusion Using HF and its active compound luteolin as therapeutic agents offers a promising approach to diabetic retinopathy treatment. It primarily suppressed protein acetylation and oxidative stress via the SIRT1/P53 pathway in retinal pigment epithelial cells.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Jiajun Wu
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Leilei Wang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Eye Disease Prevention and Treatment Center, Shanghai, China
| | - Lin Mu
- Eye, Ear, Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Xiaoyu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Jiahui Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Guoyi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Guang Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Yinjian Zhang
- Department of Ophthalmology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| |
Collapse
|
9
|
Dhiman S, Mannan A, Taneja A, Mohan M, Singh TG. Sirtuin dysregulation in Parkinson's disease: Implications of acetylation and deacetylation processes. Life Sci 2024; 342:122537. [PMID: 38428569 DOI: 10.1016/j.lfs.2024.122537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative condition that primarily affects motor function and is caused by a gradual decline of dopaminergic neurons in the brain's substantia pars compacta (Snpc) region. Multiple molecular pathways are involved in the pathogenesis, which results in impaired cellular functions and neuronal degeneration. However, the role of sirtuins, a type of NAD+-dependent deacetylase, in the pathogenesis of Parkinson's disease has recently been investigated. Sirtuins are essential for preserving cellular homeostasis because they control a number of biological processes, such as metabolism, apoptosis, and DNA repair. This review shed lights on the dysregulation of sirtuin activity in PD, highlighting the role that acetylation and deacetylation processes play in the development of the disease. Key regulators of protein acetylation, sirtuins have been found to be involved in the aberrant acetylation of vital substrates linked to PD pathology when their balance is out of balance. The hallmark characteristics of PD such as neuroinflammation, oxidative stress, and mitochondrial dysfunction have all been linked to the dysregulation of sirtuin expression and activity. Furthermore, we have also explored how the modulators of sirtuins can be a promising therapeutic intervention in the treatment of PD.
Collapse
Affiliation(s)
- Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ayushi Taneja
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Maneesh Mohan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
10
|
Jin Q, Ma F, Liu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Sirtuins in kidney diseases: potential mechanism and therapeutic targets. Cell Commun Signal 2024; 22:114. [PMID: 38347622 PMCID: PMC10860260 DOI: 10.1186/s12964-023-01442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 02/15/2024] Open
Abstract
Sirtuins, which are NAD+-dependent class III histone deacetylases, are involved in various biological processes, including DNA damage repair, immune inflammation, oxidative stress, mitochondrial homeostasis, autophagy, and apoptosis. Sirtuins are essential regulators of cellular function and organismal health. Increasing evidence suggests that the development of age-related diseases, including kidney diseases, is associated with aberrant expression of sirtuins, and that regulation of sirtuins expression and activity can effectively improve kidney function and delay the progression of kidney disease. In this review, we summarise current studies highlighting the role of sirtuins in renal diseases. First, we discuss sirtuin family members and their main mechanisms of action. We then outline the possible roles of sirtuins in various cell types in kidney diseases. Finally, we summarise the compounds that activate or inhibit sirtuin activity and that consequently ameliorate renal diseases. In conclusion, targeted modulation of sirtuins is a potential therapeutic strategy for kidney diseases. Video Abstract.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Alanazi ST, Harisa GI, Salama SA. Modulating SIRT1, Nrf2, and NF-κB signaling pathways by bergenin ameliorates the cadmium-induced nephrotoxicity in rats. Chem Biol Interact 2024; 387:110797. [PMID: 37949422 DOI: 10.1016/j.cbi.2023.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
In light of the current industrial evolution, exposure to cadmium has become a significant public health concern. Cadmium accumulates in the renal tubular cells and causes nephrotoxicity largely through disruption of the redox homeostasis, induction of inflammation, and suppression of the histone deacetylase SIRT1 expression. The current work aimed at exploring the protective capability of bergenin, a naturally-occurring methyl gallic acid derivative, against the cadmium-evoked nephrotoxicity. Male Wistar rats were treated either with cadmium alone or with cadmium and bergenin for a 7-day experimental period followed by collection of kidney and blood specimens that were subjected to biochemical, molecular, and histological investigations. The results revealed the ability of bergenin to improve the renal functions in the cadmium-intoxicated rats as evidenced by increased glomerular filtration rate, and decreased serum creatinine and blood urea nitrogen. Equally important, bergenin reduced the renal tissue injury and enhanced its redox homeostasis as indicated by decreased protein expression of the kidney injury marker KIM-1, reduced lipid peroxidation, and improved antioxidant potential and histopathological picture of the renal tissues. Mechanistically, bergenin reduced the renal tissue cadmium content, markedly up-regulated protein expression of SIRT1 that regulates inflammation and the redox status of the renal tissues. Additionally, it improved the expression of the major antioxidant transcription factor Nrf2 and its responsive gene products heoxygenase-1 and NAD(P)H quinone dehydrogenase 1 in the cadmium-intoxicated rats. In the same context, bergenin down-regulated the acetylation and the nuclear translocation of the inflammatory transcription factor NF-κB and reduced levels of its responsive gene products TNF-α and IL-1β, as well as the activity of the inflammatory cell infiltration biomarker myeloperoxidase. Collectively, the current study underscores the ameliorating activity of bergenin against the cadmium-evoked nephrotoxicity and highlights modulation of SIRT1, Nrf2, and NF-κB signaling as potential underlining molecular mechanisms.
Collapse
Affiliation(s)
- Samyah T Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Samir A Salama
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt; Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
12
|
Ryabova YV, Minigalieva IA, Sutunkova MP, Klinova SV, Tsaplina AK, Valamina IE, Petrunina EM, Tsatsakis AM, Mamoulakis C, Stylianou K, Kuzmin SV, Privalova LI, Katsnelson BA. Toxic Kidney Damage in Rats Following Subchronic Intraperitoneal Exposure to Element Oxide Nanoparticles. TOXICS 2023; 11:791. [PMID: 37755801 PMCID: PMC10537166 DOI: 10.3390/toxics11090791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Chronic diseases of the urogenital tract, such as bladder cancer, prostate cancer, reproductive disorders, and nephropathies, can develop under the effects of chemical hazards in the working environment. In this respect, nanosized particles generated as by-products in many industrial processes seem to be particularly dangerous to organs such as the testes and the kidneys. Nephrotoxicity of element oxide particles has been studied in animal experiments with repeated intraperitoneal injections of Al2O3, TiO2, SiO2, PbO, CdO, CuO, and SeO nanoparticles (NPs) in total doses ranging from 4.5 to 45 mg/kg body weight of rats. NPs were synthesized by laser ablation. After cessation of exposure, we measured kidney weight and analyzed selected biochemical parameters in blood and urine, characterizing the state of the excretory system. We also examined histological sections of kidneys and estimated proportions of different cells in imprint smears of this organ. All element oxide NPs under investigation demonstrated a nephrotoxic effect following subchronic exposure. Following the exposure to SeO and SiO2 NPs, we observed a decrease in serum creatinine and urea, respectively. Exposure to Al2O3 NPs caused an increase in urinary creatinine and urea, while changes in total protein were controversial, as it increased under the effect of Al2O3 NPs and was reduced after exposure to CuO NPs. Histomorphological changes in kidneys are associated with desquamation of the epithelium (following the exposure to all NPs except those of Al2O3 and SiO2) and loss of the brush border (following the exposure to all NPs, except those of Al2O3, TiO2, and SiO2). The cytomorphological evaluation showed greater destruction of proximal sections of renal tubules. Compared to the controls, we observed statistically significant alterations in 42.1% (8 of 19) of parameters following the exposure to PbO, CuO, and SeO NPs in 21.1% (4 of 19)-following that, to CdO and Al2O3 NPs-and in 15.8% (3 of 19) and 10.5% (2 of 19) of indicators, following the exposure to TiO2 and SiO2 nanoparticles, respectively. Histomorphological changes in kidneys are associated with desquamation of epithelium and loss of the brush border. The cytomorphological evaluation showed greater destruction of proximal sections of renal tubules. The severity of cyto- and histological structural changes in kidneys depends on the chemical nature of NPs. These alterations are not always consistent with biochemical ones, thus impeding early clinical diagnosis of renal damage. Unambiguous ranking of the NPs examined by the degree of their nephrotoxicity is difficult. Additional studies are necessary to establish key indicators of the nephrotoxic effect, which can facilitate early diagnosis of occupational and nonoccupational nephropathies.
Collapse
Affiliation(s)
- Yuliya V. Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Ilzira A. Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Marina P. Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Svetlana V. Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Alexandra K. Tsaplina
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Irene E. Valamina
- Department of Pathology, Ural State Medical University, 620028 Yekaterinburg, Russia
| | - Ekaterina M. Petrunina
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Aristides M. Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
- Department of Human Ecology and Environmental Hygiene, IM Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Kostas Stylianou
- Department of Nephrology, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Sergey V. Kuzmin
- Federal Budgetary Establishment of Science “F.F. Erisman Scientific Centre of Hygiene” of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 141014 Mytishchi, Russia
| | - Larisa I. Privalova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| | - Boris A. Katsnelson
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 620014 Yekaterinburg, Russia
| |
Collapse
|
13
|
Medipally A, Xiao M, Satoskar AA, Biederman L, Dasgupta A, Ivanov I, Mikhalina G, Rovin B, Brodsky SV. N-acetylcysteine ameliorates hematuria-associated tubulointerstitial injury in 5/6 nephrectomy mice. Physiol Rep 2023; 11:e15767. [PMID: 37419616 DOI: 10.14814/phy2.15767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by increased interstitial fibrosis and tubular atrophy (IFTA) in the kidney. Chronic hematuria is a hallmark of several human kidney diseases and often is seen in patients on anticoagulation therapy. We had previously demonstrated that chronic hematuria associated with warfarin increases IFTA in 5/6 nephrectomy (5/6NE) rats, and such treatment increases reactive oxygen species (ROS) in the kidney. The goal of this study was to evaluate the effects of the antioxidant N-acetylcysteine (NAC) on the progression of IFTA in 5/6NE mice. 5/6NE C57BL/6 and 5/6NE 129S1/SvImJ mice were treated with warfarin alone or with warfarin and NAC for 23 weeks. Serum creatinine (SCr), hematuria, blood pressure (BP), and ROSs in the kidney were measured; kidney morphology was evaluated. Warfarin doses were titrated to achieve prothrombin time (PT) increase to the levels seen with therapeutic human doses. Warfarin treatment resulted in an increased SCr, systolic BP, hematuria, expression of TGF-ß and ROS in the kidney in both mouse strains. Tumor necrosis factor alpha (TNF-ɑ) levels in the serum were increased in 5/6NE mice treated with warfarin. IFTA was increased as compared with control 5/6NE mice, and this increase in IFTA was more prominent in 129S1/SvImJ than in C57BL/6 mice. NAC ameliorated the warfarin-associated increase in SCr and BP but not hematuria. IFTA, TGF-ß, and ROS in the kidney as well as TNF-ɑ levels in the serum were reduced in mice treated with NAC and warfarin as compared to mice treated with warfarin alone. NAC mitigates the increase in SCr and IFTA in mice with chronic hematuria by reducing oxidative stress in the kidney. This data open novel possibilities for treatments in CKD patients.
Collapse
Affiliation(s)
- Ajay Medipally
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Min Xiao
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Anjali A Satoskar
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Laura Biederman
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Department of Pathology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Alana Dasgupta
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Iouri Ivanov
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | | | - Brad Rovin
- Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sergey V Brodsky
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|