1
|
Dhurandhar Y, Tomar S, Das A, Singh AP, Prajapati JL, Bodakhe SH, Namdeo KP. Unlocking the Potential of Oxymatrine: A Comprehensive Review of Its Neuroprotective Mechanisms and Therapeutic Prospects in Neurological Disorders. ACS Chem Neurosci 2024; 15:4245-4257. [PMID: 39539195 DOI: 10.1021/acschemneuro.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Sophora flavescens, the source of oxymatrine, is gaining popularity due to its potential in neuroprotection and treatment of various neurological conditions like epilepsy, depression, Parkinson's, Alzheimer's and multiple sclerosis. Its natural occurrence and promising preliminary research highlight its ability to reduce nerve cell damage and inflammation, attributed to its antiapoptotic, antioxidant and anti-inflammatory properties. However, challenges like solubility, potential adverse effects and limited bioavailability hinder its full therapeutic utilization. Current strategies, including formulation optimization and innovative drug delivery systems, aim to enhance its efficacy and safety. Despite its potential, further research is necessary to overcome these obstacles and maximize its clinical effectiveness. Conclusively, oxymatrine demonstrates distinct neuroprotective properties, offering unique advantages over other agents currently being studied or used in clinical practice for neurological disorders. nevertheless, additional study is necessary to surmount current obstacles and maximize its effectiveness for clinical settings. This study provides a comprehensive overview of oxymatrine's neuroprotective mechanisms and therapeutic potential while emphasizing the need for continued investigation and development for practical clinical application.
Collapse
Affiliation(s)
- Yogita Dhurandhar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Shubham Tomar
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Sector-23, Raj Nagar, Ghaziabad 201002, Uttar Pradesh, India
| | - Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - As Pee Singh
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Jeevan Lal Prajapati
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Kamta P Namdeo
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
2
|
Wu H, Wu J, Jiang J, Qian Z, Yang S, Sun Y, Cui H, Li S, Zhang P, Zhou Z. Compound 7 regulates microglia polarization and attenuates radiation-induced myelopathy via the Nrf2 signaling pathway in vivo and in vitro studies. Mol Med 2024; 30:198. [PMID: 39497026 PMCID: PMC11536861 DOI: 10.1186/s10020-024-00951-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Radiation-induced myelopathy (RM) is a significant complication of radiotherapy with its mechanisms still not fully understood and lacking effective treatments. Compound 7 (C7) is a newly identified, potent, and selective inhibitor of the Keap1-Nrf2 interaction. This study aimed to explore the protective effects and mechanisms of C7 on RM in vitro and in vivo. METHODS Western blotting, quantitative real-time polymerase chain reaction (qRT-PCR), reactive oxygen species (ROS) and mitochondrial polarization, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, genetic editing techniques, locomotor functions, and tissue staining were employed to explore the protective effects and underlying mechanisms of C7 in radiation-induced primary rat microglia and BV2 cells, as well as RM rat models. RESULTS In this study, we found that C7 inhibited the production of pro-inflammation cytokines and oxidative stress induced by irradiation in vitro. Further, the data revealed that radiation worsened the locomotor functions in rats, and C7 significantly improved histological and functional recovery in RM rats. Mechanically, C7 activated Nrf2 signaling and promoted the microglia transformation from M1 to M2 phenotype. CONCLUSION C7 could ameliorate RM by boosting Nrf2 signaling and promoting M2 phenotype microglia polarization in vitro and in vivo.
Collapse
Affiliation(s)
- Han Wu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianping Wu
- Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University, Wuxi, China
| | - Jianzhuo Jiang
- Clinical Research and Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Zeyu Qian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuang Yang
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanze Sun
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongxia Cui
- Department of Pathology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengwen Li
- Department of Orthopedics, Haining People's Hospital, Jiaxing, China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
- Health Management Center, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| | - Zhiqiang Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
3
|
Sheng W, Yue Y, Qi T, Qin H, Liu P, Wang D, Zeng H, Yu F. The Multifaceted Protective Role of Nuclear Factor Erythroid 2-Related Factor 2 in Osteoarthritis: Regulation of Oxidative Stress and Inflammation. J Inflamm Res 2024; 17:6619-6633. [PMID: 39329083 PMCID: PMC11424688 DOI: 10.2147/jir.s479186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the degradation of joint cartilage, subchondral bone sclerosis, synovitis, and structural changes in the joint. Recent research has highlighted the role of various genes in the pathogenesis and progression of OA, with nuclear factor erythroid 2-related factor 2 (NRF2) emerging as a critical player. NRF2, a vital transcription factor, plays a key role in regulating the OA microenvironment and slowing the disease's progression. It modulates the expression of several antioxidant enzymes, such as Heme oxygenase-1 (HO-1) and NAD(P)H oxidoreductase 1 (NQO1), among others, which help reduce oxidative stress. Furthermore, NRF2 inhibits the nuclear factor kappa-B (NF-κB) signaling pathway, thereby decreasing inflammation, joint pain, and the breakdown of cartilage extracellular matrix, while also mitigating cell aging and death. This review discusses NRF2's impact on oxidative stress, inflammation, cell aging, and various cell death modes (such as apoptosis, necroptosis, and ferroptosis) in OA-affected chondrocytes. The role of NRF2 in OA macrophages, and synovial fibroblasts was also discussed. It also covers NRF2's role in preserving the cartilage extracellular matrix and alleviating joint pain. The purpose of this review is to provide a comprehensive understanding of NRF2's protective mechanisms in OA, highlighting its potential as a therapeutic target and underscoring its significance in the development of novel treatment strategies for OA.
Collapse
Affiliation(s)
- Weibei Sheng
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Yaohang Yue
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Tiantian Qi
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Haotian Qin
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Peng Liu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Deli Wang
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| | - Hui Zeng
- Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, People’s Republic of China
| | - Fei Yu
- Department of Bone & Joint Surgery, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Peking University Shenzhen Hospital, Shenzhen, 518036, People’s Republic of China
| |
Collapse
|
4
|
Tao L, Yang K, Wang K, Yang Y. NOX1-mediated oxidative stress induces chondrocyte ferroptosis by inhibiting the Nrf2/HO-1 pathway. Sci Rep 2024; 14:19877. [PMID: 39191890 DOI: 10.1038/s41598-024-70991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Osteoarthritis (OA) is a common joint disease associated with the aging of the population, and it reduces the quality of life of patients. It is characterized by the destruction of articular cartilage and the secretion of inflammatory cytokines. Owing to the unclear pathogenesis of OA, current treatment methods have significant limitations. Oxidative stress has been revealed to play an important role in the development of OA. Our experiments indicated that the levels of GSH decreased and the level of MDA increased in chondrocytes, which induced ferroptosis in chondrocytes in OA. We also revealed that ferroptosis was the main mechanism of cartilage destruction caused by the addition of the ferroptosis activator erastin and the ferroptosis inhibitor ferrostatin-1. NOX1 is the main modulator of oxidative stress by increasing the generation of reactive oxidative species (ROS). We suppressed the expression of NOX1 in chondrocytes through cell transfection. The expression of collagen II and MMP13, and the secretion of IL-1β and TNF-α were reversed. An increase in the mitochondrial membrane potential and a decrease in the level of intracellular ROS indicate an improvement in oxidative damage. Additionally, we determined the effect of the Nrf2/HO-1 pathway on NOX1-mediated chondrocyte injury. We found that NOX1 inhibited the expression of Nrf2/HO-1, but the activation of Nrf2 improved the oxidative damage to chondrocytes in vivo and vitro. This study revealed that NOX1-mediated oxidative stress induces chondrocyte ferroptosis by inhibiting the Nrf2/HO-1 pathway. Our findings contribute to revealing the pathogenesis of OA, providing targets for drug design and optimizing the clinical treatment of OA.
Collapse
Affiliation(s)
- Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Ke Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yan Yang
- Department of Sports Medicine and Joint Surgury/Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| |
Collapse
|
5
|
Weng L, Luo Y, Luo X, Yao K, Zhang Q, Tan J, Yin Y. The common link between sleep apnea syndrome and osteoarthritis: a literature review. Front Med (Lausanne) 2024; 11:1401309. [PMID: 39234045 PMCID: PMC11371730 DOI: 10.3389/fmed.2024.1401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Patients with Osteoarthritis (OA) often also suffer from Sleep Apnea Syndrome (SAS), and many scholars have started to notice this link, although the relationship between the two is still unclear. In this review, we aim to summarize the current literature on these two diseases, integrate evidence of the OA and OSA connection, explore and discuss their potential common mechanisms, and thus identify effective treatment methods for patients with both OA and SAS. Some shared characteristics of the two conditions have been identified, notably aging and obesity as mutual risk factors. Both diseases are associated with various biological processes or molecular pathways, including mitochondrial dysfunction, reactive oxygen species production, the NF-kB pathway, HIF, IL-6, and IL-8. SAS serves as a risk factor for OA, and conversely, OA may influence the progression of SAS. The effects of OA on SAS are underreported in the literature and require more investigation. To effectively manage these patients, timely intervention for SAS is necessary while treating OA, with weight reduction being a primary requirement, alongside combined treatments such as Continuous positive airway pressure (CPAP) and medications. Additionally, numerous studies in drug development are now aimed at inhibiting or clearing certain molecular pathways, including ROS, NF-KB, IL-6, and IL-8. Improving mitochondrial function might represent a viable new strategy, with further research into mitochondrial updates or transplants being essential.
Collapse
Affiliation(s)
- Lian Weng
- Luzhou Longmatan District People's Hospital, Luzhou, China
| | - Yuxi Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiongjunjie Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaitao Yao
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qian Zhang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Junjie Tan
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yiran Yin
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Liu W, Tian X, Gu L, Yu B, Wang Z, Chi M, Lin J, Wang Q, Liu G, Zhao G, Cui Li. Oxymatrine mitigates Aspergillus fumigatus keratitis by suppressing fungal activity and restricting pyroptosis. Exp Eye Res 2024; 240:109830. [PMID: 38364932 DOI: 10.1016/j.exer.2024.109830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Fungal keratitis (FK) is a refractory keratitis caused by excessive inflammation and fungal damage. Excessive inflammation can lead to tissue damage and corneal opacity, resulting in a poor prognosis for FK. Oxymatrine (OMT) is a natural alkaloid, which has rich pharmacological effects, such as antioxidant and anti-inflammation. However, its antifungal activity and the mechanism of action in FK have not been elucidated. This study confirmed that OMT suppressed Aspergillus fumigatus growth, biofilm formation, the integrity of fungal cell and conidial adherence. OMT not only effectively reduced corneal fungal load but also inflammation responses. OMT lessened the recruitment of neutrophils and macrophages in FK. In addition, OMT up-regulated the expression of Nrf2 and down-regulated the expression of IL-18, IL-1β, caspase-1, NLRP3 and GSDMD. Pre-treatment with Nrf2 inhibitor up-regulated the expression of IL-1β, IL-18, caspase-1, NLRP3 and GSDMD supressed by OMT. In conclusion, OMT has efficient anti-inflammatory and antifungal effects by suppressing fungal activity and restricting pyroptosis via Nrf2 pathway. OMT is considered as a potential option for the treatment of FK.
Collapse
Affiliation(s)
- Weichen Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bing Yu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ziyi Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guibo Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
7
|
Che J, Yang X, Jin Z, Xu C. Nrf2: A promising therapeutic target in bone-related diseases. Biomed Pharmacother 2023; 168:115748. [PMID: 37865995 DOI: 10.1016/j.biopha.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) plays an important role in maintaining cellular homeostasis, as it suppresses cell damage caused by external stimuli by regulating the transcription of intracellular defense-related genes. Accumulating evidence has highlighted the crucial role of reduction-oxidation (REDOX) imbalance in the development of bone-related diseases. Nrf2, a transcription factor linked to nuclear factor-erythrocyte 2, plays a pivotal role in the regulation of oxidative stress and induction of antioxidant defenses. Therefore, further investigation of the mechanism and function of Nrf2 in bone-related diseases is essential. Considerable evidence suggests that increased nuclear transcription of Nrf2 in response to external stimuli promotes the expression of intracellular antioxidant-related genes, which in turn leads to the inhibition of bone remodeling imbalance, improved fracture recovery, reduced occurrence of osteoarthritis, and greater tumor resistance. Certain natural extracts can selectively target Nrf2, potentially offering therapeutic benefits for osteogenic arthropathy. In this article, the biological characteristics of Nrf2 are reviewed, the intricate interplay between Nrf2-regulated REDOX imbalance and bone-related diseases is explored, and the potential preventive and protective effects of natural products targeting Nrf2 in these diseases are elucidated. A comprehensive understanding of the role of Nrf2 in the development of bone-related diseases provides valuable insights into clinical interventions and can facilitate the discovery of novel Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|