1
|
Xu SY, Yin SS, Wang L, Zhong H, Wang H, Yu HY. Insights into emerging mechanisms of ferroptosis: new regulators for cancer therapeutics. Cell Biol Toxicol 2025; 41:63. [PMID: 40131564 PMCID: PMC11937073 DOI: 10.1007/s10565-025-10010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Ferroptosis is an iron-dependent form of regulated cell death characterized by the accumulation of iron-dependent lipid peroxides, which has been implicated in the pathogenesis of various diseases, and therapeutic agents targeting ferroptosis are emerging as promising tools for cancer treatment. Current research reveals that ferroptosis-targeted therapies can effectively inhibit tumor progression or delay cancer development. Notably, natural product-derived compounds-such as artemisinin, baicalin, puerarin, quercetin, kaempferol, and apigenin-have demonstrated the ability to modulate ferroptosis, offering potential anti-cancer benefits. Mechanistically, ferroptosis exhibits negative glutathione peroxidase 4 (GPX4) regulation and demonstrates a positive correlation with plasma membrane polyunsaturated fatty acid (PUFA) abundance. Moreover, the labile iron pool (LIP) serves as the redox engine of ferroptosis. This review systematically analyzes the hallmarks, signaling pathways, and molecular mechanisms of ferroptosis, with a focus on how natural product-derived small molecules regulate this process. It further evaluates their potential as ferroptosis inducers or inhibitors in anti-tumor therapy, providing a foundation for future clinical translation.
Collapse
Affiliation(s)
- Si-Yi Xu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuang-Shuang Yin
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Lei Wang
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Hao Zhong
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Hong Wang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Hai-Yang Yu
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
2
|
Wang M, Liu J, Yu W, Shao J, Bao Y, Jin M, Huang Q, Huang G. Gambogenic Acid Suppresses Malignant Progression of Non-Small Cell Lung Cancer via GCH1-Mediated Ferroptosis. Pharmaceuticals (Basel) 2025; 18:374. [PMID: 40143150 PMCID: PMC11944504 DOI: 10.3390/ph18030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction: Non-small cell lung cancer (NSCLC) is a lethal type of lung cancer (LC) with a 5-year survival rate of 19%. Because drug resistance typically develops following chemotherapy, radiotherapy, and immunotherapy, a novel NSCLC therapeutic strategy is urgently demanded. Gambogenic acid (GNA), a major bioactive ingredient isolated from gamboge, has multipotent antitumor effects, although activity against NSCLC is unknown. Methods: CCK8, ethynyl deoxyuridine (EdU), the plate colony formation assay, and the transwell and wound healing (WH) assay were used to study the effect of GNA on the proliferation and migration ability of NSCLC. Flow cytometry was used to detect apoptosis and the cell cycle. Proteomic analysis and LiP-SMap were used to detect the downstream target of GNA. Ferroptosis inhibitor ferrostatin-1 was used to detect the effect of GNA on NSCLC ferroptosis. Overexpressing GCH1 was used for a rescue experiment. Subcutaneous tumor and pulmonary metastasis in a mouse model were used to study the effect of GNA on NSCLC growth and metastasis. Results: The results of the present study showed that GNA inhibited the proliferation and migration of NSCLC cells in a dose- and time-dependent manner, which arrested the cell cycle in the G0/G1 phase. In vivo data revealed that GNA inhibited tumor growth and lung metastasis. Proteomic analysis found that GNA significantly inhibited the expression of GTP cyclohydrolase 1 (GCH1). LiP-SMap analysis showed that GNA interacted with ILE248 and ARG249 of GCH1. GCH1 overexpression had a similar role to the ferroptosis inhibitor ferrostatin-1 and restored cell proliferation and migration after GNA treatment. Also, GNA promoted reactive oxygen species (ROS) accumulation, which reduced mitochondrial membrane potential. GCH1 overexpression or ferrostatin-1 treatment reversed GNA regulation of ROS accumulation and mitochondrial membrane potential inhibition. Conclusions: Taken together, these findings confirmed that GNA suppressed the malignant progression of NSCLC by inducing GCH1-mediated ferroptosis.
Collapse
Affiliation(s)
- Menghan Wang
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (M.W.)
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jiao Liu
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (M.W.)
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Wenxi Yu
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (M.W.)
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jiancang Shao
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yang Bao
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Qingqing Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Gang Huang
- Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (M.W.)
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
3
|
Yan Y, Yang N, Qin F, Hao Y. Echinacoside Alleviates Metabolic Dysfunction-Associated Steatotic Liver Disease by Inhibiting Ferroptosis via Nrf2/HMOX1 Pathway. Biomedicines 2024; 12:2728. [PMID: 39767635 PMCID: PMC11726887 DOI: 10.3390/biomedicines12122728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/12/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic lipid accumulation, and echinacoside (ECH) has demonstrated antioxidant and anti-inflammatory effects across multiple conditions, it has demonstrated hepatoprotective effects. Ferroptosis represents a novel mechanism of cell demise, differing from apoptosis and autophagy. Emerging research indicates that ferroptosis in hepatocytes plays a role in the development of alcoholic liver disease. This study aimed to reveal the effect and potential mechanism of ECH on MASLD. Methods: The effect of ECH on the viability, lipid deposition, lipid peroxidation, mitochondrial of OA/PA-treated HepG2 cells were evaluated by Cell Counting Kit-8 assay, JC-1 and immunofluorescence assay. Meanwhile, the mechanism of ECH was assessed using transmission electron microscopy and immunofluorescence analysis. Moreover, db/db mice, a spontaneous type 2 diabetes mode, were intragastrically administered ECH by 300 mg/kg or an equivalent volume of saline. Body weight, lipids, and liver function were measured. liver pathology was performed. The mechanism of ECH in vivo was analyzed using Western blot and immunofluorescence analysis in db/db mice. Results: ECH attenuated lipid deposition, lipid peroxidation and ferroptosis induced by OA/PA in HepG2 cells. Mitochondrial morphology and function in HepG2 cells were also preserved by ECH. In db/db mice model of MASLD, ECH markedly ameliorated liver hepatocellular ballooning, inflammatory cell infiltration in the portal area, and fibrous tissue proliferation. ECH also increased the expression of Nrf2, HMOX-1, SLC7A11, and GPX4, and decreased the expression of ACSL4 in liver tissues. Mechanically, ECH repressed ferroptosis by activating the Nrf2/HO-1 signaling pathway. Conclusions: Our research revealed that ECH has the capability to modulate ferroptosis via the Nrf2-HMOX1pathway, consequently mitigating the progression of MASLD. This suggests that ECH has a potential role in the treatment of MASLD.
Collapse
Affiliation(s)
| | | | | | - Yarong Hao
- Department of Geriatric, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China; (Y.Y.); (N.Y.); (F.Q.)
| |
Collapse
|
4
|
Zhou L, Zhu J, Liu Y, Zhou P, Gu Y. Mechanisms of radiation-induced tissue damage and response. MedComm (Beijing) 2024; 5:e725. [PMID: 39309694 PMCID: PMC11413508 DOI: 10.1002/mco2.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Radiation-induced tissue injury (RITI) is the most common complication in clinical tumor radiotherapy. Due to the heterogeneity in the response of different tissues to radiation (IR), radiotherapy will cause different types and degrees of RITI, which greatly limits the clinical application of radiotherapy. Efforts are continuously ongoing to elucidate the molecular mechanism of RITI and develop corresponding prevention and treatment drugs for RITI. Single-cell sequencing (Sc-seq) has emerged as a powerful tool in uncovering the molecular mechanisms of RITI and for identifying potential prevention targets by enhancing our understanding of the complex intercellular relationships, facilitating the identification of novel cell phenotypes, and allowing for the assessment of cell heterogeneity and spatiotemporal developmental trajectories. Based on a comprehensive review of the molecular mechanisms of RITI, we analyzed the molecular mechanisms and regulatory networks of different types of RITI in combination with Sc-seq and summarized the targeted intervention pathways and therapeutic drugs for RITI. Deciphering the diverse mechanisms underlying RITI can shed light on its pathogenesis and unveil new therapeutic avenues to potentially facilitate the repair or regeneration of currently irreversible RITI. Furthermore, we discuss how personalized therapeutic strategies based on Sc-seq offer clinical promise in mitigating RITI.
Collapse
Affiliation(s)
- Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunanChina
- College of Life SciencesHebei UniversityBaodingChina
| |
Collapse
|
5
|
Zhang F, Wan J, Zhong J, Mo J. ANK1 inhibits malignant progression of osteosarcoma by promoting ferroptosis. BMC Cancer 2024; 24:1075. [PMID: 39217322 PMCID: PMC11365275 DOI: 10.1186/s12885-024-12836-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
PURPOSE Osteosarcoma (OS) is a primary bone tumor with high malignancy and poor prognosis. Ferroptosis plays a crucial role in OS. This study aimed to evaluate the effects of Ankyrin 1 (ANK1) on OS and to investigate its specific mechanisms. METHODS Microarray datasets related to "osteosarcoma" were selected for this study. Relevant hub genes in OS were identified through bioinformatics analysis. Transfected U-2OS and MG-63 cells were used for in vitro experiments. The effects of ANK1 overexpression on cell viability, migration, and invasion were determined through CCK-8, wound healing, and transwell assays. An OS mouse model was established for the in vivo experiments. Hematoxylin-eosin staining and immunohistochemistry were conducted to observe the histological effects of ANK1 overexpression on mouse tumors. TUNEL staining was performed to evaluate apoptosis in mouse. RESULTS There were 159 common differentially expressed genes in the GSE16088 and GSE19276 datasets. The hub genes ANK1, AHSP, GYPB, GYPA, KEL, and ALAS2 were identified. Pan-cancer analysis verified that ANK1 was closely associated with cancer prognosis and immune infiltration. Furthermore, ANK1 overexpression inhibited the proliferation, migration, and invasion of OS cells and promoted ferroptosis, while ferroptosis inhibitor (fer-1) weakened these effects. Moreover, ANK1 overexpression suppressed tumor growth, promoted apoptosis, reduced the number of Ki67 positive cells, and elevated the number of caspase-3 positive cells in vivo. CONCLUSIONS ANK1 is a prognosis biomarker of OS that can alleviate the progression of OS by promoting ferroptosis.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China
| | - Junming Wan
- Department of Orthopaedics, The Seventh Affiliated Hospital of Sun Yat-sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen City, 518107, Guangdong Province, China
| | - Jinghua Zhong
- Department of Medical oncology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City City, 341000, Jiangxi Province, China
| | - Jianwen Mo
- Department of Orthopaedics, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Zhanggong District, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
6
|
Cheng X, Feng M, Zhang A, Guo J, Gong Y, Hu X, Han Q, Li S, Yu X. Gambogenic acid induces apoptosis via upregulation of Noxa in oral squamous cell carcinoma. Chin J Nat Med 2024; 22:632-642. [PMID: 39059832 DOI: 10.1016/s1875-5364(24)60578-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Indexed: 07/28/2024]
Abstract
Gambogenic acid (GNA), a bioactive compound derived from the resin of Garcinia hanburyi, has demonstrated significant antitumor properties. However, its mechanisms of action in oral squamous cell carcinoma (OSCC) remain largely unclear. This study aimed to elucidate the apoptotic effects of GNA on OSCC cell lines CAL-27 and SCC-15. Our results indicated that GNA induced apoptosis by upregulating the pro-apoptotic protein Noxa. Mechanistic investigations revealed that GNA treatment led to the generation of reactive oxygen species (ROS), which activated endoplasmic reticulum (ER) stress, culminating in cell apoptosis. Inhibition of ROS production and ER stress pathways significantly mitigated GNA-induced Noxa upregulation and subsequent apoptosis. Furthermore, in vivo studies using a murine xenograft model demonstrated that GNA administration effectively inhibited the growth of CAL-27 tumors. Collectively, these findings underscore GNA's potential as a therapeutic agent for the treatment of OSCC.
Collapse
Affiliation(s)
- Xinran Cheng
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan 442000, China; Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei University of Medicine, Shiyan 442000, China
| | - Mengyuan Feng
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan 442000, China; Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei University of Medicine, Shiyan 442000, China
| | - Anjie Zhang
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan 442000, China; Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei University of Medicine, Shiyan 442000, China
| | - Jian Guo
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan 442000, China
| | - Yunlai Gong
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan 442000, China; Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei University of Medicine, Shiyan 442000, China
| | - Xiaohui Hu
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan 442000, China; Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei University of Medicine, Shiyan 442000, China
| | - Quanbin Han
- Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei University of Medicine, Shiyan 442000, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Shengbao Li
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei University of Medicine, Shiyan 442000, China.
| | - Xianjun Yu
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China; Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine, Shiyan 442000, China; Inflammation-Cancer Transformation and Wudang Chinese Medicine Research, Hubei Talent Introduction and Innovation Demonstration Base, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
7
|
Yan C, Dou Y, Xia R, Liu S, Fu J, Li D, Wang R, Tie F, Li L, Jin H, An F. Research progress on the role of lncRNA, circular RNA, and microRNA networks in regulating ferroptosis in osteosarcoma. Biomed Pharmacother 2024; 176:116924. [PMID: 38876052 DOI: 10.1016/j.biopha.2024.116924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024] Open
Abstract
Noncoding RNAs (ncRNAs) do not participate in protein-coding. Ferroptosis is a newly discovered form of cell death mediated by reactive oxygen species and lipid peroxidation. Recent studies have shown that ncRNAs such as microRNAs, long noncoding RNAs, circular RNAs, and ferroptosis are involved in the occurrence and development of osteosarcoma (OS). Studies have confirmed that ncRNAs participate in the development of OS by regulating the ferroptosis. However, systematic summary on this topic are still lacking. This review summarises the potential role of ncRNAs in the diagnosis, treatment, drug resistance, and prognosis of OS and the basis for diagnosing, preventing, and treating clinical OS and developing effective drugs. This review summarises the latest research progress on ncRNAs that regulate ferroptosis in OS, attempts to clarify the molecular mechanisms by which ncRNAs regulate ferroptosis in the pathogenesis of OS, and elaborates on the involvement of ferroptosis in OS from the perspective of ncRNAs.
Collapse
Affiliation(s)
- Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Yinnan Dou
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Ruoliu Xia
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Shiqing Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Jianchao Fu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Duo Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Rong Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Feng Tie
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Linxin Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China
| | - Hua Jin
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China.
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu 730000, China.
| |
Collapse
|
8
|
Ma Y, Cong L, Shen W, Yang C, Ye K. Ferroptosis defense mechanisms: The future and hope for treating osteosarcoma. Cell Biochem Funct 2024; 42:e4080. [PMID: 38924104 DOI: 10.1002/cbf.4080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Currently, challenges such as chemotherapy resistance, resulting from preoperative and postoperative chemotherapy, postoperative recurrence, and poor bone regeneration quality, are becoming increasingly prominent in osteosarcoma (OS) treatment. There is an urgent need to find more effective ways to address these issues. Ferroptosis is a novel form of iron-dependent programmed cell death, distinct from other forms of cell death. In this paper, we summarize how, through the three major defense systems of ferroptosis, not only can substances from traditional Chinese medicine, antitumor drugs, and nano-drug carriers induce ferroptosis in OS cells, but they can also be combined with immunotherapy, differentiation therapy, and other treatment modalities to significantly enhance chemotherapy sensitivity and inhibit tumor growth. Thus, ferroptosis holds great potential in treating OS, offering more choices and possibilities for future clinical interventions.
Collapse
Affiliation(s)
- Yulong Ma
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Liming Cong
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Wenxiang Shen
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Chunwang Yang
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory of Bone and Joint Diseases of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Kaishan Ye
- Department of Orthopedics, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Mi L, Xing Z, Zhang Y, He T, Su A, Wei T, Li Z, Wu W. Unveiling Gambogenic Acid as a Promising Antitumor Compound: A Review. PLANTA MEDICA 2024; 90:353-367. [PMID: 38295847 DOI: 10.1055/a-2258-6663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Gambogenic acid is a derivative of gambogic acid, a polyprenylated xanthone isolated from Garcinia hanburyi. Compared with the more widely studied gambogic acid, gambogenic acid has demonstrated advantages such as a more potent antitumor effect and less systemic toxicity than gambogic acid according to early investigations. Therefore, the present review summarizes the effectiveness and mechanisms of gambogenic acid in different cancers and highlights the mechanisms of action. In addition, drug delivery systems to improve the bioavailability of gambogenic acid and its pharmacokinetic profile are included. Gambogenic acid has been applied to treat a wide range of cancers, such as lung, liver, colorectal, breast, gastric, bladder, and prostate cancers. Gambogenic acid exerts its antitumor effects as a novel class of enhancer of zeste homolog 2 inhibitors. It prevents cancer cell proliferation by inducing apoptosis, ferroptosis, and necroptosis and controlling the cell cycle as well as autophagy. Gambogenic acid also hinders tumor cell invasion and metastasis by downregulating metastasis-related proteins. Moreover, gambogenic acid increases the sensitivity of cancer cells to chemotherapy and has shown effects on multidrug resistance in malignancy. This review adds insights for the prevention and treatment of cancers using gambogenic acid.
Collapse
Affiliation(s)
- Li Mi
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhichao Xing
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yujie Zhang
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ting He
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Anping Su
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
11
|
Shin D, Lee J, Roh JL. Pioneering the future of cancer therapy: Deciphering the p53-ferroptosis nexus for precision medicine. Cancer Lett 2024; 585:216645. [PMID: 38280477 DOI: 10.1016/j.canlet.2024.216645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 01/29/2024]
Abstract
The TP53 gene, encoding the p53 protein, has been a focal point of research since its 1979 discovery, playing a crucial role in tumor suppression. Ferroptosis, a distinct form of cell death characterized by lipid peroxide accumulation, has gained prominence since its recognition in 2012. Recent studies have unveiled an intriguing connection between p53 and ferroptosis, with implications for cancer therapy. Recent research underscores p53 as a novel target for cancer therapy, influencing key metabolic processes in ferroptosis. Notably, p53 represses the expression of the cystine-glutamate antiporter SLC7A11, supporting p53-mediated tumor growth suppression. Furthermore, under metabolic stress, p53 mitigates ferroptosis sensitivity, aiding cancer cells in coping and delaying cell death. This dynamic interplay between p53 and ferroptosis has far-reaching implications for various diseases, particularly cancer. This review provides a comprehensive overview of ferroptosis in cancer cells, elucidating p53's role in regulating ferroptosis, and explores the potential of targeting p53 to induce ferroptosis for cancer therapy. Understanding this complex relationship between p53 and ferroptosis offers a promising avenue for developing innovative cancer treatments.
Collapse
Affiliation(s)
- Daiha Shin
- Western Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|