1
|
Lin K, Wang Z, Wang E, Zhang X, Liu X, Feng F, Yu X, Yi G, Wang Y. Targeting TRPV1 signaling: Galangin improves ethanol-induced gastric mucosal injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118605. [PMID: 39047882 DOI: 10.1016/j.jep.2024.118605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Galangin, a bioactive compound extracted from Alpinia officinarum Hance (Zingiberaceae), a plant with significant ethnopharmacological importance, has been used for thousands of years as a spice, condiment, and medicinal agent for various conditions, including gastrointestinal disorders. Although there is evidence suggesting its potential to improve gastric ulcers, the molecular mechanisms underlying its anti-ulcer properties are not fully understood. OBJECTIVE of the Study: This study aimed to investigate the effects of galangin on ethanol-induced acute gastric mucosal injury (AGMI) in mice and elucidate its molecular mechanisms. MATERIALS AND METHODS Sixty BALB/c mice were randomly assigned into two main groups: a normal control group (n = 10) and an ethanol-induced group (n = 50). After establishing the AGMI model in mice using a combination of 40% ethanol and anhydrous ethanol, the ethanol-induced group was further subdivided into five subgroups (n = 10): an omeprazole control group (20 mg/kg), an untreated ethanol group, and three treatment groups receiving high-dose (50 mg/kg) or low-dose (25 mg/kg) galangin or capsazepine (CPZ, 2 mg/kg). The protective effects of galangin were evaluated through mucosal injury indices, hematoxylin and eosin staining, and quantification of inflammatory markers (IL-1β, IL-6, IL-8, and TNF-α). Oxidative stress levels and matrix metalloproteinase activity were measured using specific assay kits. Molecular docking was conducted to assess the binding affinity of galangin to key proteins within the transient receptor potential vanilloid 1 (TRPV1) pathway. Real-time fluorescence quantitative PCR (qPCR) was used to determine mRNA expression levels of TRPV1, calmodulin (CaM), substance P (SP), and CGRP in gastric tissues. Protein expression levels of TRPV1, nerve growth factor (NGF), tropomyosin receptor kinase A (TRKA), transforming growth factor beta (TGF-β), cyclooxygenase-2 (COX-2), and nuclear factor kappa B (NF-κB) were assessed through Western blot analysis. In cellular experiments, Culture of Human Gastric Epithelial Cells (GES-1) were treated with various concentrations of galangin after 7% ethanol induction. Cell proliferation, apoptosis, and migration were evaluated using Hoechst 33258 staining and transwell migration assays. TRPV1 protein expression was detected using immunofluorescence, and the expression levels of Bcl-2, BCL2-Associated X (BAX), and Caspase-3 were quantified by qPCR. Additionally, specific probe kits were used to measure intracellular calcium ions (Ca2+) and mitochondrial membrane potential. RESULTS The findings indicate that galangin significantly improved mucosal pathology by reducing ulcer indices and inflammatory levels, while enhancing superoxide dismutase (SOD) activity and decreasing malondialdehyde (MDA) concentration. Galangin also reduced matrix metalloproteinase-2 (MMP-2), m metalloproteinase-9 (MMP-9) levels, promoting mucosal repair. At the cellular level, galangin decreased intracellular calcium ion concentration and mitigated the decline in mitochondrial membrane potential, enhance the restoration of mucosal cells, increased migration and proliferation, and reduced apoptosis. Molecularly, galangin demonstrated favorable binding to TRPV1, NGF, TRKA, TGF-β, COX-2, and NF-κB, and reversed the elevated expression of these proteins. Additionally, galangin downregulated the mRNA expression of TRPV1, CaM, SP, CGRP, BAX, and Caspase-3 in gastric tissues/cells, while upregulating Bcl-2 mRNA expression. CONCLUSION Galangin mitigates AGMI by inhibiting the overactivation of the TRPV1 pathway, thereby blocking aberrant signal transduction. This study suggests that galangin has therapeutic potential against ethanol-induced AGMI and may be a viable alternative for the treatment of alcohol-induced gastric mucosal injuries.
Collapse
Affiliation(s)
- Kaiwen Lin
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Zhongtao Wang
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Erhao Wang
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Xueer Zhang
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Xiaofei Liu
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Faming Feng
- Hainan Women and Children's Medical Center, Haikou, 570312, China
| | - Xiaodan Yu
- Public Research Center of Hainan Medical University, Haikou, 571199, China
| | - Guohui Yi
- Public Research Center of Hainan Medical University, Haikou, 571199, China.
| | - Yan Wang
- Hainan Women and Children's Medical Center, Haikou, 570312, China.
| |
Collapse
|
2
|
Gencer S, Gür C, İleritürk M, Küçükler S, Akaras N, Şimşek H, Kandemir FM. The ameliorative effect of carvacrol on sodium arsenite-induced hepatotoxicity in rats: Possible role of Nrf2/HO-1, RAGE/NLRP3, Bax/Bcl-2/Caspase-3, and Beclin-1 pathways. J Biochem Mol Toxicol 2024; 38:e23863. [PMID: 39318027 DOI: 10.1002/jbt.23863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/02/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Arsenic is a toxic environmental pollutant heavy metal, and one of its critical target tissues in the body is the liver. Carvacrol is a natural phytocompound that stands out with its antioxidant, anti-inflammatory, and antiapoptotic properties. The current study aims to investigate the protective feature of carvacrol against sodium arsenite-induced liver toxicity. Thirty-five Sprague-Dawley male rats were divided into five groups: Control, Sodium arsenite (SA), CRV, SA + CRV25, and SA + CRV50. Sodium arsenite was administered via oral gavage at a dose of 10 mg/kg for 14 days, and 30 min later, CRV 25 or 50 mg/kg was administered via oral gavage. Oxidative stress, inflammation, apoptosis, autophagy damage pathways parameters, and liver tissue integrity were analyzed using biochemical, molecular, western blot, histological, and immunohistological methods. Carvacrol decreased sodium arsenite-induced oxidative stress by suppressing malondialdehyde levels and increasing superoxide dismutase, catalase, glutathione peroxidase activities, and glutathione levels. Carvacrol reduced inflammation damage by reducing sodium arsenite-induced increased levels of NF-κB and the cytokines (TNF-α, IL-1β, IL-6, RAGE, and NLRP3) it stimulates. Carvacrol also reduced sodium arsenite-induced autophagic (Beclin-1, LC3A, and LC3B) and apoptotic (P53, Apaf-1, Casp-3, Casp-6, Casp-9, and Bax) parameters. Carvacrol preserved sodium arsenite-induced impaired liver tissue structure. Carvacrol alleviated toxic damage by reducing sodium arsenite-induced increases in oxidative stress, inflammation, apoptosis, and autophagic damage parameters in rat liver tissues. Carvacrol was also beneficial in preserving liver tissue integrity.
Collapse
Affiliation(s)
- Selman Gencer
- Department of Internal Diseases, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cihan Gür
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Atatürk University, Erzurum, Turkey
| | - Mustafa İleritürk
- Department of Animal Science, Horasan Vocational College, Atatürk University, Erzurum, Turkey
| | - Sefa Küçükler
- Department of Veterinary Biochemistry, Faculty of Veterinary, Atatürk University, Erzurum, Turkey
| | - Nurhan Akaras
- Department of Histology and Embryology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Fatih M Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| |
Collapse
|
3
|
Côco LZ, Aires R, Carvalho GR, Belisário EDS, Yap MKK, Amorim FG, Conde-Aranda J, Nogueira BV, Vasquez EC, Pereira TDMC, Campagnaro BP. Unravelling the Gastroprotective Potential of Kefir: Exploring Antioxidant Effects in Preventing Gastric Ulcers. Cells 2023; 12:2799. [PMID: 38132119 PMCID: PMC10742242 DOI: 10.3390/cells12242799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
The present study was conducted to evaluate the protective effect of milk kefir against NSAID-induced gastric ulcers. Male Swiss mice were divided into three groups: control (Vehicle; UHT milk at a dose of 0.3 mL/100 g), proton pump inhibitor (PPI; lansoprazole 30 mg/kg), and 4% milk kefir (Kefir; 0.3 mL/100 g). After 14 days of treatment, gastric ulcer was induced by oral administration of indomethacin (40 mg/kg). Reactive oxygen species (ROS), nitric oxide (NO), DNA content, cellular apoptosis, IL-10 and TNF-α levels, and myeloperoxidase (MPO) enzyme activity were determined. The interaction networks between NADPH oxidase 2 and kefir peptides 1-35 were determined using the Residue Interaction Network Generator (RING) webserver. Pretreatment with kefir for 14 days prevented gastric lesions. In addition, kefir administration reduced ROS production, DNA fragmentation, apoptosis, and TNF-α systemic levels. Simultaneously, kefir increased NO bioavailability in gastric cells and IL-10 systemic levels. A total of 35 kefir peptides showed affinity with NADPH oxidase 2. These findings suggest that the gastroprotective effect of kefir is due to its antioxidant and anti-inflammatory properties. Kefir could be a promising natural therapy for gastric ulcers, opening new perspectives for future research.
Collapse
Affiliation(s)
- Larissa Zambom Côco
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Rafaela Aires
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Glaucimeire Rocha Carvalho
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Eduarda de Souza Belisário
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | | | - Fernanda Gobbi Amorim
- Laboratory of Mass Spectrometry, Department of Chemistry, University of Liège, 4000 Liège, Belgium;
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain;
| | - Breno Valentim Nogueira
- Department of Morphology, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitoria 29047-105, ES, Brazil;
| | - Elisardo Corral Vasquez
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Thiago de Melo Costa Pereira
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| | - Bianca Prandi Campagnaro
- Laboratory of Translational Physiology and Pharmacology, Pharmaceutical Sciences Graduate Program, Vila Velha University (UVV), Vila Velha 29102-920, ES, Brazil; (L.Z.C.); (R.A.); (G.R.C.); (E.d.S.B.); (E.C.V.); (T.d.M.C.P.)
| |
Collapse
|
4
|
Li L, Wang N, Fan X, He N, Zhang T. A preparation technology of volatile components in Linggui Zhugan decoction based on the transfer of cinnamaldehyde and its anti-gastric ulcer effect. Saudi Pharm J 2023; 31:101833. [PMID: 38028222 PMCID: PMC10651668 DOI: 10.1016/j.jsps.2023.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/15/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose This study aims to preserve the volatile components of Linggui Zhugan (LGZG) decoction, offering an experimental foundation for subsequent preparations efforts. Methods Two modern sample preparation processes were compared with the traditional method approach using HPLC fingerprints. After identifying the main volatile components in LGZG aqueous decoction, the inclusion method of inclusion compounds (IC-LGZG) was established and optimized at laboratory, pilot and production scales. Characterization, stability testing of IC-LGZG, and experiments on gastric ulcer rats were conducted to validate the transferability of chemical composition and pharmaceutical efficacy. Results The study focused on preserving the volatile components in LGZG modern preparations. HPLC analysis revealed cinnamaldehyde (CA) as the main volatile component in LGZG decoction. The optimized IC-LGZG preparation involved heating aromatic water to 40 °C, adding 20 g/L of β-Cyclodextrin (β-CD), keeping warm and stirring at 300 r for 30 min. This process exhibited good repeatability across different verification tests at varying scales. IC-LGZG obtained effectively transferred CA molecules into the β-CD molecules via encapsulation, remaining stable when stored in sealed and dark conditions. Finally, CA, IC-LGZG and M-LGZG (a mixture of IC-LGZG and water-soluble extract powder) effectively prevented the formation of gastric ulcer by mitigating reductions in IL-10, SOD and the increase of TNF-α, NO, MDA in serum. Conclusion The IC-LGZG prepared using this process successfully transfers volatile components, both chemically and pharmacologically, making it suitable for modern preparations of LGZG.
Collapse
Affiliation(s)
- Ling Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230000, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nan Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaolong Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ning He
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230000, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
5
|
Mahran YF, Al-Kharashi LA, Atawia RT, Alanazi RT, Dhahi AMB, Alsubaie R, Badr AM. Radioprotective Effects of Carvacrol and/or Thymol against Gamma Irradiation-Induced Acute Nephropathy: In Silico and In Vivo Evidence of the Involvement of Insulin-like Growth Factor-1 (IGF-1) and Calcitonin Gene-Related Peptide. Biomedicines 2023; 11:2521. [PMID: 37760962 PMCID: PMC10526293 DOI: 10.3390/biomedicines11092521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Radiotherapy (RT) is an effective curative cancer treatment. However, RT can seriously damage kidney tissues resulting in radiotherapy nephropathy (RN) where oxidative stress, inflammation, and apoptosis are among the common pathomechanisms. Carvacrol and thymol are known for their antioxidative, anti-inflammatory, and radioprotective activities. Therefore, this study investigated the nephroprotective potentials of carvacrol and/or thymol against gamma (γ) irradiation-induced nephrotoxicity in rats along with the nephroprotection mechanisms, particularly the involvement of insulin-like growth factor-1 (IGF-1) and calcitonin gene-related peptide (CGRP). Methods: Male rats were injected with carvacrol and/or thymol (80 and 50 mg/kg BW in the vehicle, respectively) for five days and exposed to a single dose of irradiation (6 Gy). Then, nephrotoxicity indices, oxidative stress, inflammatory, apoptotic biomarkers, and the histopathological examination were assessed. Also, IGF-1 and CGRP renal expressions were measured. Results: Carvacrol and/or thymol protected kidneys against γ-irradiation-induced acute RN which might be attributed to their antioxidative, anti-inflammatory, and antiapoptotic activities. Moreover, both reserved the γ -irradiation-induced downregulation of CGRP- TNF-α loop in acute RN that might be involved in the pathomechanisms of acute RN. Additionally, in Silico molecular docking simulation of carvacrol and thymol demonstrated promising fitting and binding with CGRP, IGF-1, TNF-α and NF-κB through the formation of hydrogen, hydrophobic and alkyl bonds with binding sites of target proteins which supports the reno-protective properties of carvacrol and thymol. Collectively, our findings open a new avenue for using carvacrol and/or thymol to improve the therapeutic index of γ-irradiation.
Collapse
Affiliation(s)
- Yasmen F. Mahran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (R.T.A.); (A.M.B.)
| | - Layla A. Al-Kharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| | - Reem T. Atawia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (R.T.A.); (A.M.B.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Southwestern Oklahoma State University, Weatherford, OK 73096, USA
| | - Rawan Turki Alanazi
- Student, Pharmacy College, King Saud University, Riyadh 11211, Saudi Arabia; (R.T.A.); (A.M.B.D.); (R.A.)
| | - Amal M. Bin Dhahi
- Student, Pharmacy College, King Saud University, Riyadh 11211, Saudi Arabia; (R.T.A.); (A.M.B.D.); (R.A.)
| | - Rawd Alsubaie
- Student, Pharmacy College, King Saud University, Riyadh 11211, Saudi Arabia; (R.T.A.); (A.M.B.D.); (R.A.)
| | - Amira M. Badr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; (R.T.A.); (A.M.B.)
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia;
| |
Collapse
|