1
|
Chang YM, Zhao XF, Liew HJ, Sun B, Wang SY, Luo L, Zhang LM, Liang LQ. Effects of Bicarbonate Stress on Serum Ions and Gill Transporters in Alkali and Freshwater Forms of Amur Ide ( Leuciscus waleckii). Front Physiol 2021; 12:676096. [PMID: 34594232 PMCID: PMC8476968 DOI: 10.3389/fphys.2021.676096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
The Amur ide (Leuciscus waleckii) is a fish in the Cyprinidae family. Compared with other Amur ide living in freshwater ecosystems, the Amur ide population in Lake Dali Nor of China is famous for its high tolerance to the alkaline conditions of 54 mM (pH 9.6). Yet, surprisingly, the ionoregulatory mechanism responsible for this remarkable alkaline adaptation remains unclear. Therefore, this study sought to investigate how bicarbonate affects the acid-base balancing and ionoregulatory responses of this animal. Here, using a comparative approach, the alkali form of Amur ide and its ancestral freshwater form living in other freshwater basins were each exposed to 50 mM (pH 9.59 ± 0.09), a level close to the alkalinity of Lake Dali Nor, and their physiological (AE1) adjustment of ions and acid-base regulation were investigated. This study highlighted differences in blood pH and serum ions (e.g., Na+, K+, Cl−, and Ca2+), Na+/K+ ATPase (NKA) activity and its mRNA level, and mRNA expression of gill transporters (Na+/H+ exchanger member 2 and/or 3, Na+/HCO3- cotransporter (NBC1), Cl−/HCO3- exchanger, Na+/Cl− cotransporter (NCC), Na+/K+/2Cl− (NKCC1), SLC26A5, and SLC26A6) for alkalinity adaptation between the two forms of Amur ide differing in alkalinity tolerance. Specifically, close relationships among the serum Na+ and mRNA levels of NCC, NKCC1, and NHE, and also NKA and NBC1, in addition to serum Cl− and bicarbonate transporters (e.g., SLC26A5 and SLC26A6), characterized the alkali form of Amur ide. We propose that this ecotype can ensure its transepithelial Cl− and Na+ uptake/base secretions are highly functional, by its basolateral NKA with NBC1 and apical ionic transporters, and especially NCC incorporated with other transporters (e.g., SLC26). This suggests an evolved strong ability to maintain an ion osmotic and acid-base balance for more effectively facilitating its adaptability to the high alkaline environment. This study provides new insights into the physiological responses of the alkaline form of the Amur ide fish for adapting to extreme alkaline conditions. This information could be used as a reference to cultivating alkaline-tolerant fish species in abandoned alkaline waters.
Collapse
Affiliation(s)
- Yu Mei Chang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Xue Fei Zhao
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Hon Jung Liew
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,Higher Institution of Center Excellence, Institute of Tropical Aquaculture and Fisheries, Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Bo Sun
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shuang Yi Wang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Liang Luo
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Li Min Zhang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Li Qun Liang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
2
|
Small CD, Davis JP, Crawford BD, Benfey TJ. Early, nonlethal ploidy and genome size quantification using confocal microscopy in zebrafish embryos. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2021; 336:496-510. [PMID: 34254444 DOI: 10.1002/jez.b.23069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 11/07/2022]
Abstract
Ploidy transitions through whole genome duplication have shaped evolution by allowing the sub- and neo-functionalization of redundant copies of highly conserved genes to express novel traits. The nuclear:cytoplasmic (n:c) ratio is maintained in polyploid vertebrates resulting in larger cells, but body size is maintained by a concomitant reduction in cell number. Ploidy can be manipulated easily in most teleosts, and the zebrafish, already well established as a model system for biomedical research, is therefore an excellent system in which to study the effects of increased cell size and reduced cell numbers in polyploids on development and physiology. Here we describe a novel technique using confocal microscopy to measure genome size and determine ploidy non-lethally at 48 h post-fertilization (hpf) in transgenic zebrafish expressing fluorescent histones. Volumetric analysis of myofiber nuclei using open-source software can reliably distinguish diploids and triploids from a mixed-ploidy pool of embryos for subsequent experimentation. We present an example of this by comparing heart rate between confirmed diploid and triploid embryos at 54 hpf.
Collapse
Affiliation(s)
| | - James P Davis
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Bryan D Crawford
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| | - Tillmann J Benfey
- Department of Biology, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
3
|
Effects of seawater acclimation on two Na +/K +-ATPase α-subunit isoforms in the gills of the marble goby, Oxyeleotris marmorata. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110853. [PMID: 33249144 DOI: 10.1016/j.cbpa.2020.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 11/23/2022]
Abstract
The marble goby, Oxyeleotris marmorata, is a freshwater teleost, but can acclimate progressively to survive in seawater (salinity 30). As an obligatory air-breather, it can also survive long periods of emersion. Two isoforms of Na+/K+-ATPase (nka) α-subunit, nkaα1 and nkaα3, but not nkaα2, had been cloned from the gills of O. marmorata. The cDNA sequence of nkaα1 consisted of 3069 nucleotides, coding for 1023 amino acids (112.5 kDa), whereas nkaα3 consisted of 2976 nucleotides, coding for 992 amino acids (109.5 kDa). As only one form of branchial Nkaα1 was identified using molecular cloning in this study, O. marmorata lacks specific freshwater- and seawater-type Nkaα isoforms as demonstrated by some other euryhaline fish species. The nkaα1 transcript level was about 2.5-fold higher than that of nkaα3 in the gills of freshwater O. marmorata. During exposure to seawater, the branchial transcript level of nkaα1 increased significantly on day 1 (~3.3-fold) and day 6 (~2.6-fold). By contrast, the branchial transcript level of nkaα3 increased significantly on day 1 (~2.6-fold), but not on day 6, of seawater exposure. Six days of exposure to seawater also led to significant increases in protein abundances of Nkaα1 (~6.9-fold) and Nkaα3 (~2.8-fold) in the gills of O. marmorata. Hence, the mRNA and protein expressions of both nkaα1/Nkaα1 and nkaα3/Nkaα3 were up-regulated in O. marmorata during seawater acclimation. This could explain why Vmax increases but Km for Na+ and K+ remain unchanged in Nka extracted from the gills of O. marmorata acclimated to seawater as reported previously.
Collapse
|
4
|
Harris LN, Swanson HK, Gilbert MJH, Malley BK, Fisk AT, Moore JS. Anadromy and marine habitat use of Lake trout (Salvelinus namaycush) from the central Canadian Arctic. JOURNAL OF FISH BIOLOGY 2020; 96:1489-1494. [PMID: 32128819 DOI: 10.1111/jfb.14305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Anadromy was documented in 16 lake trout, Salvelinus namaycush, from Canada's central Arctic using capture data and otolith microchemistry. For the first time, estuarine/marine habitat use was described for five individuals using acoustic telemetry. Age-at-first-migration to sea was variable (10-39 years) among individuals and most S. namaycush undertook multiple anadromous migrations within their lifetime. Telemetry data suggested that S. namaycush do not travel far into marine habitats and prefer surface waters (<2 m). These results further our collective understanding of the marine ecology of Arctic S. namaycush.
Collapse
Affiliation(s)
| | - Heidi K Swanson
- Department of Biology, University of Waterloo, Waterloo, Canada
| | | | | | - Aaron T Fisk
- Great Lakes Institute of Environmental Research, University of Windsor, Windsor, Canada
| | - Jean-Sébastien Moore
- Institut de Biologie Intégrative et des Systèmes and Département de Biologie, Université Laval, Québec, Canada
| |
Collapse
|
5
|
Bystriansky J, Clarke W, Alonge M, Judd S, Schulte P, Devlin R. Salinity acclimation and advanced parr–smolt transformation in growth-hormone transgenic coho salmon (Oncorhynchus kisutch). CAN J ZOOL 2017. [DOI: 10.1139/cjz-2016-0201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth hormone (GH) is involved in the parr–smolt transformation of salmonid fishes and is known to improve salinity tolerance. This study compared the capacity for seawater acclimation of GH transgenic coho salmon (Oncorhynchus kisutch (Walbaum, 1792)) to that of wild-type fish, allowing examination of responses to sustained (chronic) exposure to elevated GH. GH transgenic fish (GH TG) smolted 1 year in advance of wild-type salmon and showed a greater capacity to hypo-osmoregulate in seawater. As GH TG fish were much larger than the wild-type fish, a second experiment was conducted with three size-matched groups of coho salmon (a 1+-year-old wild-type group, a 1+-year-old ration-restricted GH TG group, and a 0+-year-old fully fed GH TG group). When size-matched, the effect of GH transgenesis was not as dramatic, but the feed-rationed TG1+ group exhibited smaller deviations in plasma ion and osmolality levels following seawater exposure than did the other groups, suggesting a somewhat improved hypo-osmoregulatory ability. These results support a role for GH in the development of seawater tolerance by salmonid fishes independent of fish size.
Collapse
Affiliation(s)
- J.S. Bystriansky
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, IL 60614, USA
| | - W.C. Clarke
- Pacific Biological Station, Fisheries and Oceans Canada, 3190 Hammond Bay Road, Nanaimo, BC V9R 5K6, Canada
| | - M.M. Alonge
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, IL 60614, USA
| | - S.M. Judd
- Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, IL 60614, USA
| | - P.M. Schulte
- Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - R.H. Devlin
- Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC V7V 1N6, Canada
| |
Collapse
|
6
|
González-Félix ML, Perez-Velazquez M, Cañedo-Orihuela H. The effects of environmental salinity on the growth and physiology of totoaba Totoaba macdonaldi and shortfin corvina Cynoscion parvipinnis. JOURNAL OF FISH BIOLOGY 2017; 91:510-527. [PMID: 28653372 DOI: 10.1111/jfb.13358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Totoaba Totoaba macdonaldi and shortfin corvina Cynoscion parvipinnis, were acclimated and reared together at salinities of 0, 2, 5, 10, 20 and 35 for 56 days. Initial overall mean ± s.d. body masses of 67·6 ± 7·1 g T. macdonaldi and 37·3 ± 3·1 g C. parvipinnis increased to final overall masses of 217·4 ± 30·3 and 96·5 ± 16·5 g, respectively, at the end of the study. Totoaba macdonaldi was not able to tolerate salinities of 0 and 2 and C. parvipinnis of 0. In contrast, both species had 100% survival at salinities ≥ 10. Somatic growth was highest not at natural seawater salinity of 35, but at 10. Plasma osmolality ranged from 172·5 to 417·0 mOsmol kg-1 for T. macdonaldi and from 207·0 to 439·5 mOsmol kg-1 for C. parvipinnis and varied in direct proportion to salinity. The estimated isosmotic salinities of T. macdonaldi and C. parvipinnis were 12·3 and 13·4, respectively. Cynoscion parvipinnis reared at two had significantly lower plasma lysozyme activity (95·0 Units ml-1 ) than fish held at salinities from 5 to 35 (ranging from 215·0 to 355·0 Units ml-1 ), but without clear trends over this range. Blood neutrophil oxidative radical production (NBT) (ranging from 3·9 to 6·7 mg ml-1 ) had some significant differences among salinities, but these did not follow a clear pattern. For T. macdonaldi, neither lysozyme activity nor NBT was affected by salinity. Ash content of whole fishes varied directly and moisture content inversely, with salinity for both species.
Collapse
Affiliation(s)
- M L González-Félix
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Edificio 7-G, Blvd. Luis Donaldo Colosio s/n, e/Sahuaripa y Reforma, Col. Centro, C.P. 83000, Hermosillo, Sonora, Mexico
| | - M Perez-Velazquez
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Edificio 7-G, Blvd. Luis Donaldo Colosio s/n, e/Sahuaripa y Reforma, Col. Centro, C.P. 83000, Hermosillo, Sonora, Mexico
| | - H Cañedo-Orihuela
- Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Sonora, Edificio 7-G, Blvd. Luis Donaldo Colosio s/n, e/Sahuaripa y Reforma, Col. Centro, C.P. 83000, Hermosillo, Sonora, Mexico
| |
Collapse
|
7
|
Similarity of osmoregulatory capacity in coastal and inland alligator gar. Comp Biochem Physiol A Mol Integr Physiol 2017; 209:16-24. [PMID: 28400249 DOI: 10.1016/j.cbpa.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 11/24/2022]
Abstract
The alligator gar Atractosteus spatula is a primitive fish species, occupying a wide range of temperature and salinity habitats. Long-distance movements are limited, leading to genetic differentiation between inland and coastal populations. Unknown is whether physiological capacity differs between geographically separated populations, particularly for traits important to osmoregulation in saline environments. Alligator gar from inland and coastal populations were reared in a similar environment and exposed to temperature (10, 30°C) and salinity (0, 20ppt) extremes to determine whether iono- and osmoregulatory ability differed between populations. There were few differences in osmoregulatory ability between populations, with similar gill, blood and gastrointestinal tract osmoregulatory parameters. Blood plasma osmolality, ion concentrations, intestinal pH and bicarbonate base concentrations, intestinal fluid osmolality, ion concentrations and gill Na+, K+-ATPase (NKA) activity were similar between populations. Notably, gar from both populations did not osmoregulate well at low temperature and high salinity, with elevated plasma osmolality and ion concentrations, low gill NKA, and little evidence of gastrointestinal tract contribution to ionic and base regulation based on a lack of intestinal fluid and low base content. Therefore, the hypothesis that coastal gar would have improved osmotic regulatory ability in saline environments as compared to inland alligator gar was not supported, suggesting physiological capacity may be retained in primitive species possibly due to its importance to their persistence through time.
Collapse
|
8
|
Weaver PF, Tello O, Krieger J, Marmolejo A, Weaver KF, Garcia JV, Cruz A. Hypersalinity drives physiological and morphological changes in Limia perugiae (Poeciliidae). Biol Open 2016; 5:1093-101. [PMID: 27402966 PMCID: PMC5004605 DOI: 10.1242/bio.017277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/22/2016] [Indexed: 11/20/2022] Open
Abstract
A fundamental question in biology is how an organism's morphology and physiology are shaped by its environment. Here, we evaluate the effects of a hypersaline environment on the morphology and physiology of a population of livebearing fish in the genus Limia (Poeciliidae). We sampled from two populations of Limia perugiae (one freshwater and one hypersaline) in the southwest Dominican Republic. We evaluated relative abundance of osmoregulatory proteins using western blot analyses and used a geometric morphometric approach to evaluate fine-scale changes to size and shape. Our data show that gill tissue isolated from hypersaline fish contained approximately two and a half times higher expression of Na(+)/K(+) ATPase proteins. We also show evidence for mitochondrial changes within the gills, with eight times more complex I and four times higher expression of ATP synthase within the gill tissue from the hypersaline population. The energetic consequences to Limia living in saline and hypersaline environments may be a driver for phenotypic diversity, reducing the overall body size and changing the relative size and shape of the head, as well as impeding the growth of secondary sex features among the males.
Collapse
Affiliation(s)
- Pablo F Weaver
- Department of Biology, University of La Verne, 1950 3rd St., La Verne, CA 91750, USA
| | - Oscar Tello
- Department of Biology, University of La Verne, 1950 3rd St., La Verne, CA 91750, USA
| | - Jonathan Krieger
- Herbarium, Library, Art & Archives Directorate, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, UK
| | - Arlen Marmolejo
- Instituto de Investigaciones Botánicas y Zoológicas Prof. Rafael M. Moscoso, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Kathleen F Weaver
- Department of Biology, University of La Verne, 1950 3rd St., La Verne, CA 91750, USA
| | - Jerome V Garcia
- Department of Biology, University of La Verne, 1950 3rd St., La Verne, CA 91750, USA
| | - Alexander Cruz
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| |
Collapse
|
9
|
Dietary salt loading and ion-poor water exposure provide insight into the molecular physiology of the rainbow trout gill epithelium tight junction complex. J Comp Physiol B 2016; 186:739-57. [DOI: 10.1007/s00360-016-0987-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/28/2016] [Accepted: 04/02/2016] [Indexed: 01/11/2023]
|
10
|
Blair SD, Matheson D, He Y, Goss GG. Reduced salinity tolerance in the Arctic grayling (Thymallus arcticus) is associated with rapid development of a gill interlamellar cell mass: implications of high-saline spills on native freshwater salmonids. CONSERVATION PHYSIOLOGY 2016; 4:cow010. [PMID: 27382473 PMCID: PMC4922264 DOI: 10.1093/conphys/cow010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/05/2016] [Accepted: 02/19/2016] [Indexed: 05/03/2023]
Abstract
Arctic grayling (Thymallus arcticus) are salmonids that have a strict freshwater existence in post-glacial North America. Oil and gas development is associated with production of high volumes of hypersaline water. With planned industrial expansion into northern areas of Canada and the USA that directly overlap grayling habitat, the threat of accidental saline water release poses a significant risk. Despite this, we understand little about the responses of grayling to hypersaline waters. We compared the physiological responses and survivability of Arctic grayling and rainbow trout (Oncorhynchus mykiss) to tolerate an acute transfer to higher saline waters. Arctic grayling and rainbow trout were placed directly into 17 ppt salinity and sampled at 24 and 96 h along with control animals in freshwater at 24 h. Serum sodium, chloride and osmolality levels increased significantly in grayling at both 24 and 96 h time points, whereas trout were able to compensate for the osmoregulatory disturbance by 96 h. Sodium-potassium ATPase mRNA expression responses to salinity were also compared, demonstrating the inability of the grayling to up-regulate the seawater isoform nkaα1b. Our results demonstrated a substantially lower salinity tolerance in grayling. We also found a significant salinity-induced morphological gill remodelling by Arctic grayling, as demonstrated by the rapid growth of an interlamellar cell mass by 24 h that persisted at 96 h. We visualized and quantified the appearance of the interlamellar cell mass as a response to high salinity, although the functional significance remains to be understood fully. Compared with rainbow trout, which are used as an environmental regulatory species, Arctic grayling are unable to compensate for the osmotic stressors that would result from a highly saline produced water spill. Given these new data, collaboration between fisheries and the oil and gas industry will be vital in the long-term conservation strategies with regard to the Arctic grayling in their native habitat.
Collapse
Affiliation(s)
- Salvatore D. Blair
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Derrick Matheson
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Yuhe He
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Greg G. Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| |
Collapse
|
11
|
Ituarte RB, Lignot JH, Charmantier G, Spivak E, Lorin-Nebel C. Immunolocalization and expression of Na(+)/K(+) -ATPase in embryos, early larval stages and adults of the freshwater shrimp Palaemonetes argentinus (Decapoda, Caridea, Palaemonidae). Cell Tissue Res 2016; 364:527-541. [PMID: 26796205 DOI: 10.1007/s00441-015-2351-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/15/2015] [Indexed: 11/29/2022]
Abstract
The euryhaline shrimp Palaemonetes argentinus exemplifies an evolutionary transition from brackish to freshwater habitats that requires adequate osmoregulatory capacities. Hyperosmoregulation is functional at hatching and it likely begins during the embryonic phase allowing this species to develop entirely in fresh water. Here, we investigated the Na(+)/K(+)-ATPase α-subunit gene (nka-α) expression using quantitative real-time PCR and localized Na(+)/K(+)-ATPase (NKA) in ion-transporting epithelia through immunofluorescence microscopy. We reared shrimps from spawning to juvenile stages at two salinities (1, 15 ‰) and maintained adults for 3 weeks at three salinity treatments (1, 15, 25 ‰). nka-α gene expression was measured in: (1) embryos at an early (SI), intermediate (SII) and late (SIII) stage of embryonic development; (2) newly hatched larvae (Zoea I, ZI); and (3) isolated gill tissue of adults. The nka-α expression was low in SI and SII embryos and reached maximum levels prior to hatching (SIII), which were similar to expression levels detected in the ZI. The nka-α expression in SIII and ZI was highest at 15 ‰, whereas salinity did not affect expression in earlier embryos. In SIII, in ZI and in a later zoeal stage ZIV, NKA was localized in epithelial cells of pleurae, in the inner-side epithelium of branchiostegite and in the antennal glands. Gills appeared in the ZIV but NKA immunolabeling of the cells of the gill shaft occurred in a subsequent developmental larval stage, the decapodid. Extrabranchial organs constitute the main site of osmoregulation in early ontogenetic stages of this freshwater shrimp.
Collapse
Affiliation(s)
- Romina Belén Ituarte
- Grupo Zoología Invertebrados, Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Dean Funes 3250, 7600, Mar del Plata, Argentina.
| | - Jehan-Hervé Lignot
- Groupe Fonctionnel Adaptation Ecophysiologique et Ontogenèse, UMR 9190 MARBEC, UM-CNRS-IRD-Ifremer, Université Montpellier, cc 092, Place E. Bataillon, 34095, Montpellier cedex 05, France
| | - Guy Charmantier
- Groupe Fonctionnel Adaptation Ecophysiologique et Ontogenèse, UMR 9190 MARBEC, UM-CNRS-IRD-Ifremer, Université Montpellier, cc 092, Place E. Bataillon, 34095, Montpellier cedex 05, France
| | - Eduardo Spivak
- Grupo Zoología Invertebrados, Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Dean Funes 3250, 7600, Mar del Plata, Argentina
| | - Catherine Lorin-Nebel
- Groupe Fonctionnel Adaptation Ecophysiologique et Ontogenèse, UMR 9190 MARBEC, UM-CNRS-IRD-Ifremer, Université Montpellier, cc 092, Place E. Bataillon, 34095, Montpellier cedex 05, France
| |
Collapse
|
12
|
Velotta JP, McCormick SD, Schultz ET. Trade-offs in osmoregulation and parallel shifts in molecular function follow ecological transitions to freshwater in the Alewife. Evolution 2015; 69:2676-88. [DOI: 10.1111/evo.12774] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 08/30/2015] [Accepted: 09/04/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Jonathan P. Velotta
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs Connecticut 06269-3043
| | | | - Eric T. Schultz
- Department of Ecology and Evolutionary Biology; University of Connecticut; Storrs Connecticut 06269-3043
| |
Collapse
|
13
|
Dalziel AC, Bittman J, Mandic M, Ou M, Schulte PM. Origins and functional diversification of salinity-responsive Na(+) , K(+) ATPase α1 paralogs in salmonids. Mol Ecol 2014; 23:3483-503. [PMID: 24917532 DOI: 10.1111/mec.12828] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 01/17/2023]
Abstract
The Salmoniform whole-genome duplication is hypothesized to have facilitated the evolution of anadromy, but little is known about the contribution of paralogs from this event to the physiological performance traits required for anadromy, such as salinity tolerance. Here, we determined when two candidate, salinity-responsive paralogs of the Na(+) , K(+) ATPase α subunit (α1a and α1b) evolved and studied their evolutionary trajectories and tissue-specific expression patterns. We found that these paralogs arose during a small-scale duplication event prior to the Salmoniform, but after the teleost, whole-genome duplication. The 'freshwater paralog' (α1a) is primarily expressed in the gills of Salmoniformes and an unduplicated freshwater sister species (Esox lucius) and experienced positive selection in the freshwater ancestor of Salmoniformes and Esociformes. Contrary to our predictions, the 'saltwater paralog' (α1b), which is more widely expressed than α1a, did not experience positive selection during the evolution of anadromy in the Coregoninae and Salmonine. To determine whether parallel mutations in Na(+) , K(+) ATPase α1 may contribute to salinity tolerance in other fishes, we studied independently evolved salinity-responsive Na(+) , K(+) ATPase α1 paralogs in Anabas testudineus and Oreochromis mossambicus. We found that a quarter of the mutations occurring between salmonid α1a and α1b in functionally important sites also evolved in parallel in at least one of these species. Together, these data argue that paralogs contributing to salinity tolerance evolved prior to the Salmoniform whole-genome duplication and that strong selection and/or functional constraints have led to parallel evolution in salinity-responsive Na(+) , K(+) ATPase α1 paralogs in fishes.
Collapse
Affiliation(s)
- Anne C Dalziel
- Department of Zoology, Biodiversity Research Center, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada, V6T 1Z4; Department of Biology, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 Avenue de la Médecine, Québec City, Québec, Canada, G1V 0A6
| | | | | | | | | |
Collapse
|
14
|
Watson CJ, Nordi WM, Esbaugh AJ. Osmoregulation and branchial plasticity after acute freshwater transfer in red drum, Sciaenops ocellatus. Comp Biochem Physiol A Mol Integr Physiol 2014; 178:82-9. [PMID: 25152533 DOI: 10.1016/j.cbpa.2014.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/21/2014] [Accepted: 08/13/2014] [Indexed: 11/27/2022]
Abstract
Red drum, Sciaenops ocellatus, is an estuarine-dependent fish species commonly found in the Gulf of Mexico and along the coast of the southeastern United States. This economically important species has demonstrated freshwater tolerance; however, the physiological mechanisms and costs related to freshwater exposure remain poorly understood. The current study therefore investigated the physiological response of red drum using an acute freshwater transfer protocol. Plasma osmolality, Cl⁻, Mg²⁺ and Ca²⁺ were all significantly reduced by 24h post-transfer; Cl⁻ and Mg²⁺ recovered to control levels by 7days post-transfer. No effect of transfer was observed on muscle water content; however, muscle Cl⁻ was significantly reduced. Interestingly, plasma and muscle Na⁺ content was unaffected by freshwater transfer. Intestinal fluid was absent by 24h post-transfer indicating cessation of drinking. Branchial gene expression analysis showed that both CFTR and NKCC1 exhibited significant down-regulation at 8 and 24h post-transfer, respectively, although transfer had no impact on NHE2, NHE3 or Na⁺, K⁺ ATPase (NKA) activity. These general findings are supported by immunohistochemical analysis, which revealed no apparent NKCC containing cells in the gills at 7days post transfer while NKA cells localization was unaffected. The results of the current study suggest that red drum can effectively regulate Na⁺ balance upon freshwater exposure using already present Na⁺ uptake pathways while also down-regulating ion excretion mechanisms.
Collapse
Affiliation(s)
| | - Wiolene M Nordi
- University of Texas Marine Science Institute, Austin, TX 78373, USA
| | - Andrew J Esbaugh
- University of Texas Marine Science Institute, Austin, TX 78373, USA.
| |
Collapse
|
15
|
Perez-Velazquez M, Urquidez-Bejarano P, González-Félix ML, Minjarez-Osorio C. Evidence of euryhalinity of the Gulf corvina (Cynoscion othonopterus). Physiol Res 2014; 63:659-66. [PMID: 24908084 DOI: 10.33549/physiolres.932654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The effects of environmental salinity on physiological responses, growth, and survival of the Gulf corvina, C. othonopterus, were evaluated in a 6-week completely randomized design experiment. Corvina (17.2+/-2.3 g mean initial body weight) were subjected to salinities of 5, 15, 25, and 35 ‰ and fed a commercial feed with protein and lipid contents of 46 and 14 %, respectively. Plasma osmolality increased significantly with salinity, ranging from 335.1+/-5.3 mOsm/kg in fish maintained at 5 ‰, to 354.8+/-6.8 mOsm/kg in fish kept in seawater, while a significant inverse relationship was observed between salinity and moisture content of whole fish, ranging from 73.8+/-0.7 (measured at 5 ‰) to 76.9+/-1.0 % (measured at 35 ‰). In spite of this, growth indices (final weight, weight gain, specific growth rate, condition factor, survival) were not altered, suggesting that, like other members of the family Sciaenidae, the Gulf corvina is a strong osmoregulator. The isosmotic point for this species was estimated to correspond to a salinity of 9.8 ‰. The present study represents the first set of experimental data on salinity tolerance of C. othonopterus and confirms the euryhalinity of this species.
Collapse
Affiliation(s)
- M Perez-Velazquez
- Department of Scientific and Technological Research, University of Sonora, Hermosillo, Sonora, Mexico.
| | | | | | | |
Collapse
|
16
|
Breves JP, Seale AP, Moorman BP, Lerner DT, Moriyama S, Hopkins KD, Grau EG. Pituitary control of branchial NCC, NKCC and Na+, K+-ATPase α-subunit gene expression in Nile tilapia, Oreochromis niloticus. J Comp Physiol B 2014; 184:513-23. [DOI: 10.1007/s00360-014-0817-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
17
|
Ip YK, Loong AM, Kuah JS, Sim EWL, Chen XL, Wong WP, Lam SH, Delgado ILS, Wilson JM, Chew SF. Roles of three branchial Na(+)-K(+)-ATPase α-subunit isoforms in freshwater adaptation, seawater acclimation, and active ammonia excretion in Anabas testudineus. Am J Physiol Regul Integr Comp Physiol 2012; 303:R112-25. [PMID: 22621969 DOI: 10.1152/ajpregu.00618.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three Na(+)-K(+)-ATPase (nka) α-subunit isoforms, nka α1a, nka α1b, and nka α1c, were identified from gills of the freshwater climbing perch Anabas testudineus. The cDNA sequences of nka α1a and nka α1b consisted of 3,069 bp, coding for 1,023 amino acids, whereas nka α1c was shorter by 22 nucleotides at the 5' end. In freshwater, the quantity of nka α1c mRNA transcripts present in the gills was the highest followed by nka α1a and nka α1b that was almost undetectable. The mRNA expression of nka α1a was downregulated in the gills of fish acclimated to seawater, indicating that it could be involved in branchial Na(+) absorption in a hypoosmotic environment. By contrast, seawater acclimation led to an upregulation of the mRNA expression of nka α1b and to a lesser extent nka α1c, indicating that they could be essential for ion secretion in a hyperosmotic environment. More importantly, ammonia exposure led to a significant upregulation of the mRNA expression of nka α1c, which might be involved in active ammonia excretion. Both seawater acclimation and ammonia exposure led to significant increases in the protein abundance and changes in the kinetic properties of branchial Na(+)-K(+)-ATPase (Nka), but they involved two different types of Nka-immunoreactive cells. Since there was a decrease in the effectiveness of NH(4)(+) to substitute for K(+) to activate branchial Nka from fish exposed to ammonia, Nka probably functioned to remove excess Na(+) and to transport K(+) instead of NH(4)(+) into the cell to maintain intracellular Na(+) and K(+) homeostasis during active ammonia excretion.
Collapse
Affiliation(s)
- Yuen K Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, Republic of Singapore.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Water balance trumps ion balance for early marine survival of juvenile pink salmon (Oncorhynchus gorbuscha). J Comp Physiol B 2012; 182:781-92. [DOI: 10.1007/s00360-012-0660-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/15/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
|
19
|
Bystriansky JS, Schulte PM. Changes in gill H+-ATPase and Na+/K+-ATPase expression and activity during freshwater acclimation of Atlantic salmon (Salmo salar). ACTA ACUST UNITED AC 2011; 214:2435-42. [PMID: 21697436 DOI: 10.1242/jeb.050633] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Few studies have examined changes in salmon gill ion transporter expression during the transition from seawater to freshwater, a pivotal moment in the salmonid life cycle. Seawater-acclimated Atlantic salmon were transferred to freshwater and blood and gill tissue were sampled over 30 days of acclimation. Salmon held in seawater had stable plasma osmolality and sodium and chloride levels throughout the experiment. Following freshwater exposure, plasma sodium and chloride levels and total osmolality decreased significantly before returning towards control levels over time. Gill H(+)-ATPase activity increased by more than 45% 14 days after exposure to freshwater, whereas H(+)-ATPase mRNA levels were not affected by the salinity change. Within 4 days of freshwater exposure, gill Na(+)/K(+)-ATPase activity increased ∼43% over control levels, remaining significantly higher until the 30 day sampling group when it declined back to control levels. This increase in activity was associated with a more than 7-fold increase in Na(+)/K(+)-ATPase isoform α1a mRNA level and a ∼60% decrease in Na(+)/K(+)-ATPase isoform β1b mRNA level. The mRNA levels of Na(+)/K(+)-ATPase isoforms α1c and α3 did not change as a result of freshwater exposure. The time courses for mRNA expression of the small membrane protein FXYD 11 and the β1-subunit were very similar, with levels increasing significantly 7 days following freshwater exposure before subsiding back to control levels at 30 days. Taken together, these data suggest an important role for Na(+)/K(+)-ATPase in freshwater acclimation in Atlantic salmon.
Collapse
Affiliation(s)
- Jason S Bystriansky
- Department of Biological Sciences, 2325 N. Clifton Avenue, DePaul University, Chicago, IL 60614, USA.
| | | |
Collapse
|
20
|
Physiological Characterization of Hatchery-Origin Juvenile Steelhead Oncorhynchus mykiss Adopting Divergent Life-History Strategies. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2011. [DOI: 10.3996/092010-jfwm-032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
Smoltification by juvenile Pacific salmonids has been described as a developmental conflict whereby individuals face several life-history decisions. Smoltification occurs as a result of interactions between organismal condition and environmental cues, although some fish may forgo ocean migration and remain in freshwater streams for some time (residualize). We compared the physiological profiles of steelhead that were actively migrating to the ocean (migratory fish) and those that remained in fresh water (residuals) for at least a period of between 2 wk and 3 mo after release from a hatchery facility. In addition, we investigated the physiological characterization of residuals that further differentiated into precocial freshwater residents or parr that will either precocially mature in fresh water or migrate to the ocean in the future. Residuals had higher condition factors and gonadosomatic index than migratory fish and were characterized as less prepared for saltwater due to low levels of gill Na+,K+-ATPase activity and Na+,K+-ATPase α1b-subunit expression. Residuals tended to be males with the highest condition factors. Sex-specific differences are probably reflective of male fish adopting an alternative life-history strategy foregoing outmigration as a result of condition at the time of release. Collection of residuals throughout the fall suggested that residual hatchery fish further diversify into precocially mature fish that will presumably attempt to spawn without ever migrating to the ocean or into parr that will precocially mature or migrate in a future year.
Collapse
|
21
|
Evans TG. Co-ordination of osmotic stress responses through osmosensing and signal transduction events in fishes. JOURNAL OF FISH BIOLOGY 2010; 76:1903-1925. [PMID: 20557646 DOI: 10.1111/j.1095-8649.2010.02590.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This review centres upon the molecular regulation of osmotic stress responses in fishes, focusing on how osmosensing and signal transduction events co-ordinate changes in the activity and abundance of effector proteins during osmotic stress and how these events integrate into osmotic stress responses of varying magnitude. The concluding sections discuss the relevance of osmosensory signal transduction to the evolution of euryhalinity and present experimental approaches that may best stimulate future research. Iterating the importance of osmosensing and signal transduction during fish osmoregulation may be pertinent amidst the increased use of genomic technologies that typically focus solely on changes in the abundances of gene products, and may limit insight into critical upstream events that occur mainly through post-translational mechanisms.
Collapse
Affiliation(s)
- T G Evans
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA.
| |
Collapse
|
22
|
Chew SF, Tng YYM, Wee NLJ, Tok CY, Wilson JM, Ip YK. Intestinal osmoregulatory acclimation and nitrogen metabolism in juveniles of the freshwater marble goby exposed to seawater. J Comp Physiol B 2009; 180:511-20. [PMID: 20024567 DOI: 10.1007/s00360-009-0436-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 10/28/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
The objective of this study was to elucidate the role of the intestine from juveniles of the marble goby, Oxyeleotris marmorata, during seawater (SW) exposure. It has been reported elsewhere that SW-exposed juvenile O. marmorata exhibits hypoosmotic and hypoionic regulation, with the induction of branchial Na(+)/K(+)-ATPase (NKA), Na(+):K(+):2Cl(-) cotransporter (NKCC), and cystic fibrosis transmembrane receptor-like chloride channels. Here, we report that SW exposure also led to significant increases in the activity and protein abundance of NKA in, and probably an increase in Na(+) uptake through, its intestine. Additionally, there was an increase in apical NKCC immunoreactivity in the intestinal epithelium, indicating that there could be increased Cl(-) uptake through the intestine. These results suggest that absorption of ions, and hence water, from the intestinal lumen could be an essential part of the osmoregulatory process in juvenile O. marmorata during exposure to SW. Furthermore, there were significant increases in the glutamate content, and the aminating activity and protein abundance of glutamate dehydrogenase (GDH) in the intestine of fish exposed to SW. Since the intestinal glutamine synthetase activity and protein abundance decreased significantly, and the intestinal glutamine content remained unchanged, in the SW-exposed fish, excess glutamate formed via increased GDH activity in the intestine could be channeled to other organs to facilitate the increased synthesis of amino acids. Taken together, our results indicate for the first time that, besides absorbing ions and water during SW exposure, the intestine of juvenile O. marmorata also participated in altered nitrogen metabolism in response to salinity changes.
Collapse
Affiliation(s)
- Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore.
| | | | | | | | | | | |
Collapse
|
23
|
Ojima D, Pettersen RJ, Wolkers J, Johnsen HK, Jørgensen EH. Growth hormone and cortisol treatment stimulate seawater tolerance in both anadromous and landlocked Arctic charr. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:378-85. [DOI: 10.1016/j.cbpa.2009.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/20/2009] [Accepted: 03/23/2009] [Indexed: 10/21/2022]
|
24
|
Tang CH, Chiu YH, Tsai SC, Lee TH. Relative changes in the abundance of branchial Na+/K+-ATPase α-isoform-like proteins in marine euryhaline milkfish (Chanos chanos) acclimated to environments of different salinities. ACTA ACUST UNITED AC 2009; 311:521-9. [DOI: 10.1002/jez.547] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
25
|
Hyndman KA, Evans DH. Short-term low-salinity tolerance by the longhorn sculpin, Myoxocephalus octodecimspinosus. ACTA ACUST UNITED AC 2009; 311:45-56. [PMID: 18831058 DOI: 10.1002/jez.494] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The bottom-dwelling, longhorn sculpin, Myoxocephalus octodecimspinosus, is traditionally viewed as a stenohaline marine fish, but fishermen have described finding this sculpin in estuaries during high tide. Little is known about the salinity tolerance of the longhorn sculpin; thus, the purposes of these experiments were to explore the effects of low environmental salinity on ion transporter expression and distribution in the longhorn sculpin gill. Longhorn sculpin were acclimated to either 100% seawater (SW, sham), 20% SW, or 10% SW for 24 or 72 hr. Plasma osmolality, sodium, potassium, and chloride concentrations were not different between the 20 and 100% treatments; however, they were 20-25% lower with exposure to 10% SW at 24 and 72 hr. In the teleost gill, regulation of Na(+), K(+)-ATPase (NKA), Na(+)-K(+)-2Cl(-) cotransporter (NKCC1), and the chloride channel, cystic fibrosis transmembrane conductance regulator (CFTR) are necessary for ion homeostasis. We immunolocalized these proteins to the mitochondrion-rich cell of the gill and determined that acclimation to low salinity does not affect their localization. Also, there was not a downregulation of gill NKA, NKCC1, and CFTR mRNA or protein during acclimation to low salinities. Collectively, these results suggest that down to 20% SW longhorn sculpin are capable of completely regulating ion levels over a 72-hr period, whereas 10% SW exposure results in a significant loss of ions and no change in ion transporter density or localization in the gill. We conclude that longhorn sculpin can tolerate low-salinity environments for days but, because they cannot regulate ion transporter density, they are unable to tolerate low salinity for longer periods or enter freshwater (FW). The genus Myoxocephalus has three FW species, making this group an excellent model to test evolutionary and physiological mechanisms that allow teleosts to invade new low salinities successfully.
Collapse
Affiliation(s)
- Kelly A Hyndman
- Department of Zoology, University of Florida, Gainesville, Florida 32608, USA.
| | | |
Collapse
|