1
|
Niphakis MJ, Cravatt BF. Ligand discovery by activity-based protein profiling. Cell Chem Biol 2024; 31:1636-1651. [PMID: 39303700 DOI: 10.1016/j.chembiol.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Genomic technologies have led to massive gains in our understanding of human gene function and disease relevance. Chemical biologists are a primary beneficiary of this information, which can guide the prioritization of proteins for chemical probe and drug development. The vast functional and structural diversity of disease-relevant proteins, however, presents challenges for conventional small molecule screening libraries and assay development that in turn raise questions about the broader "druggability" of the human proteome. Here, we posit that activity-based protein profiling (ABPP), by generating global maps of small molecule-protein interactions in native biological systems, is well positioned to address major obstacles in human biology-guided chemical probe and drug discovery. We will support this viewpoint with case studies highlighting a range of small molecule mechanisms illuminated by ABPP that include the disruption and stabilization of biomolecular (protein-protein/nucleic acid) interactions and underscore allostery as a rich source of chemical tools for historically "undruggable" protein classes.
Collapse
|
2
|
Kumar V, Chunchagatta Lakshman PK, Prasad TK, Manjunath K, Bairy S, Vasu AS, Ganavi B, Jasti S, Kamariah N. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening. Heliyon 2024; 10:e23864. [PMID: 38226204 PMCID: PMC10788520 DOI: 10.1016/j.heliyon.2023.e23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Target-based discovery of first-in-class therapeutics demands an in-depth understanding of the molecular mechanisms underlying human diseases. Precise measurements of cellular and biochemical activities are critical to gain mechanistic knowledge of biomolecules and their altered function in disease conditions. Such measurements enable the development of intervention strategies for preventing or treating diseases by modulation of desired molecular processes. Fluorescence-based techniques are routinely employed for accurate and robust measurements of in-vitro activity of molecular targets and for discovering novel chemical molecules that modulate the activity of molecular targets. In the current review, the authors focus on the applications of fluorescence-based high throughput screening (HTS) and fragment-based ligand discovery (FBLD) techniques such as fluorescence polarization (FP), Förster resonance energy transfer (FRET), fluorescence thermal shift assay (FTSA) and microscale thermophoresis (MST) for the discovery of chemical probe to exploring target's role in disease biology and ultimately, serve as a foundation for drug discovery. Some recent advancements in these techniques for compound library screening against important classes of drug targets, such as G-protein-coupled receptors (GPCRs) and GTPases, as well as phosphorylation- and acetylation-mediated protein-protein interactions, are discussed. Overall, this review presents a landscape of how these techniques paved the way for the discovery of small-molecule modulators and biologics against these targets for therapeutic benefits.
Collapse
Affiliation(s)
| | | | - Thazhe Kootteri Prasad
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Kavyashree Manjunath
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Sneha Bairy
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Akshaya S. Vasu
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - B. Ganavi
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Subbarao Jasti
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Neelagandan Kamariah
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| |
Collapse
|
3
|
Jiang Y, Wu Y, Wang J, Ma Y, Yu H, Wang Z. Fragment-based Drug Discovery Strategy and its Application to the Design of SARS-CoV-2 Main Protease Inhibitor. Curr Med Chem 2024; 31:6204-6226. [PMID: 38529602 DOI: 10.2174/0109298673294251240229070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/14/2024] [Indexed: 03/27/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) emerged at the end of 2019, causing a highly infectious and pathogenic disease known as 2019 coronavirus disease. This disease poses a serious threat to human health and public safety. The SARS-CoV-2 main protease (Mpro) is a highly sought-after target for developing drugs against COVID-19 due to its exceptional specificity. Its crystal structure has been extensively documented. Numerous strategies have been employed in the investigation of Mpro inhibitors. This paper is primarily concerned with Fragment-based Drug Discovery (FBDD), which has emerged as an effective approach to drug design in recent times. Here, we summarize the research on the approach of FBDD and its application in developing inhibitors for SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Yu Jiang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yingnan Wu
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jing Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yuheng Ma
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Hui Yu
- School of Basic Medicine, Baotou Medical College, Baotou, China
| | - Zhanli Wang
- Inner Mongolia Key Laboratory of Disease-Related Biomarkers, The Second Affiliated Hospital, Baotou Medical College, Baotou, China
| |
Collapse
|
4
|
Hardie A, Cossins BP, Lovera S, Michel J. Deconstructing allostery by computational assessment of the binding determinants of allosteric PTP1B modulators. Commun Chem 2023; 6:125. [PMID: 37322137 PMCID: PMC10272186 DOI: 10.1038/s42004-023-00926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Fragment-based drug discovery is an established methodology for finding hit molecules that can be elaborated into lead compounds. However it is currently challenging to predict whether fragment hits that do not bind to an orthosteric site could be elaborated into allosteric modulators, as in these cases binding does not necessarily translate into a functional effect. We propose a workflow using Markov State Models (MSMs) with steered molecular dynamics (sMD) to assess the allosteric potential of known binders. sMD simulations are employed to sample protein conformational space inaccessible to routine equilibrium MD timescales. Protein conformations sampled by sMD provide starting points for seeded MD simulations, which are combined into MSMs. The methodology is demonstrated on a dataset of protein tyrosine phosphatase 1B ligands. Experimentally confirmed allosteric inhibitors are correctly classified as inhibitors, whereas the deconstructed analogues show reduced inhibitory activity. Analysis of the MSMs provide insights into preferred protein-ligand arrangements that correlate with functional outcomes. The present methodology may find applications for progressing fragments towards lead molecules in FBDD campaigns.
Collapse
Affiliation(s)
- Adele Hardie
- EaStChem School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Benjamin P Cossins
- UCB Pharma, 216 Bath Road, Slough, UK
- Exscientia, The Schrödinger Building, Oxford Science Park, Oxford, UK
| | - Silvia Lovera
- UCB Pharma, Chemin du Foriest 1, 1420, Braine-l'Alleud, Belgium
| | - Julien Michel
- EaStChem School of Chemistry, Joseph Black Building, University of Edinburgh, Edinburgh, EH9 3FJ, UK.
| |
Collapse
|
5
|
Cui M, Nguyen D, Gaillez MP, Heiden S, Lin W, Thompson M, Reddavide FV, Chen Q, Zhang Y. Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers. Nat Commun 2023; 14:1481. [PMID: 36932079 PMCID: PMC10023787 DOI: 10.1038/s41467-023-37071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
The split-and-pool method has been widely used to synthesize chemical libraries of a large size for early drug discovery, albeit without the possibility of meaningful quality control. In contrast, a self-assembled DNA-encoded chemical library (DEL) allows us to construct an m x n-member library by mixing an m-member and an n-member pre-purified sub-library. Herein, we report a trio-pharmacophore DEL (T-DEL) of m x l x n members through assembling three pre-purified and validated sub-libraries. The middle sub-library is synthesized using DNA-templated synthesis with different reaction mechanisms and designed as a linkage connecting the fragments displayed on the flanking two sub-libraries. Despite assembling three fragments, the resulting compounds do not exceed the up-to-date standard of molecular weight regarding drug-likeness. We demonstrate the utility of T-DEL in linker optimization for known binding fragments against trypsin and carbonic anhydrase II and by de novo selections against matrix metalloprotease-2 and -9.
Collapse
Affiliation(s)
- Meiying Cui
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Michelle Patino Gaillez
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Weilin Lin
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | | | - Qinchang Chen
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, China.
- School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Yixin Zhang
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
6
|
Cheung E, Xia Y, Caporini MA, Gilmore JL. Tools shaping drug discovery and development. BIOPHYSICS REVIEWS 2022; 3:031301. [PMID: 38505278 PMCID: PMC10903431 DOI: 10.1063/5.0087583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 03/21/2024]
Abstract
Spectroscopic, scattering, and imaging methods play an important role in advancing the study of pharmaceutical and biopharmaceutical therapies. The tools more familiar to scientists within industry and beyond, such as nuclear magnetic resonance and fluorescence spectroscopy, serve two functions: as simple high-throughput techniques for identification and purity analysis, and as potential tools for measuring dynamics and structures of complex biological systems, from proteins and nucleic acids to membranes and nanoparticle delivery systems. With the expansion of commercial small-angle x-ray scattering instruments into the laboratory setting and the accessibility of industrial researchers to small-angle neutron scattering facilities, scattering methods are now used more frequently in the industrial research setting, and probe-less time-resolved small-angle scattering experiments are now able to be conducted to truly probe the mechanism of reactions and the location of individual components in complex model or biological systems. The availability of atomic force microscopes in the past several decades enables measurements that are, in some ways, complementary to the spectroscopic techniques, and wholly orthogonal in others, such as those related to nanomechanics. As therapies have advanced from small molecules to protein biologics and now messenger RNA vaccines, the depth of biophysical knowledge must continue to serve in drug discovery and development to ensure quality of the drug, and the characterization toolbox must be opened up to adapt traditional spectroscopic methods and adopt new techniques for unraveling the complexities of the new modalities. The overview of the biophysical methods in this review is meant to showcase the uses of multiple techniques for different modalities and present recent applications for tackling particularly challenging situations in drug development that can be solved with the aid of fluorescence spectroscopy, nuclear magnetic resonance spectroscopy, atomic force microscopy, and small-angle scattering.
Collapse
Affiliation(s)
- Eugene Cheung
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Yan Xia
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Marc A. Caporini
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jamie L. Gilmore
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Singh AK, Martinez SE, Gu W, Nguyen H, Schols D, Herdewijn P, De Jonghe S, Das K. Sliding of HIV-1 reverse transcriptase over DNA creates a transient P pocket - targeting P-pocket by fragment screening. Nat Commun 2021; 12:7127. [PMID: 34880240 PMCID: PMC8654897 DOI: 10.1038/s41467-021-27409-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/17/2021] [Indexed: 11/09/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) slides over an RNA/DNA or dsDNA substrate while copying the viral RNA to a proviral DNA. We report a crystal structure of RT/dsDNA complex in which RT overstepped the primer 3'-end of a dsDNA substrate and created a transient P-pocket at the priming site. We performed a high-throughput screening of 300 drug-like fragments by X-ray crystallography that identifies two leads that bind the P-pocket, which is composed of structural elements from polymerase active site, primer grip, and template-primer that are resilient to drug-resistance mutations. Analogs of a fragment were synthesized, two of which show noticeable RT inhibition. An engineered RT/DNA aptamer complex could trap the transient P-pocket in solution, and structures of the RT/DNA complex were determined in the presence of an inhibitory fragment. A synthesized analog bound at P-pocket is further analyzed by single-particle cryo-EM. Identification of the P-pocket within HIV RT and the developed structure-based platform provide an opportunity for the design new types of polymerase inhibitors.
Collapse
Affiliation(s)
- Abhimanyu K Singh
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sergio E Martinez
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Weijie Gu
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Hoai Nguyen
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Piet Herdewijn
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Kalyan Das
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Crystallographic approach to fragment-based hit discovery against Schistosoma mansoni purine nucleoside phosphorylase. Biochem J 2021; 478:3655-3670. [PMID: 34529035 DOI: 10.1042/bcj20210041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
Several Schistosoma species cause Schistosomiasis, an endemic disease in 78 countries that is ranked second amongst the parasitic diseases in terms of its socioeconomic impact and human health importance. The drug recommended for treatment by the WHO is praziquantel (PZQ), but there are concerns associated with PZQ, such as the lack of information about its exact mechanism of action, its high price, its effectiveness - which is limited to the parasite's adult form - and reports of resistance. The parasites lack the de novo purine pathway, rendering them dependent on the purine salvage pathway or host purine bases for nucleotide synthesis. Thus, the Schistosoma purine salvage pathway is an attractive target for the development of necessary and selective new drugs. In this study, the purine nucleotide phosphorylase II (PNP2), a new isoform of PNP1, was submitted to a high-throughput fragment-based hit discovery using a crystallographic screening strategy. PNP2 was crystallized and crystals were soaked with 827 fragments, a subset of the Maybridge 1000 library. X-ray diffraction data was collected and structures were solved. Out of 827-screened fragments we have obtained a total of 19 fragments that show binding to PNP2. Fourteen of these fragments bind to the active site of PNP2, while five were observed in three other sites. Here we present the first fragment screening against PNP2.
Collapse
|
9
|
Emwas AH, Szczepski K, Poulson BG, Chandra K, McKay RT, Dhahri M, Alahmari F, Jaremko L, Lachowicz JI, Jaremko M. NMR as a "Gold Standard" Method in Drug Design and Discovery. Molecules 2020; 25:E4597. [PMID: 33050240 PMCID: PMC7594251 DOI: 10.3390/molecules25204597] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
Studying disease models at the molecular level is vital for drug development in order to improve treatment and prevent a wide range of human pathologies. Microbial infections are still a major challenge because pathogens rapidly and continually evolve developing drug resistance. Cancer cells also change genetically, and current therapeutic techniques may be (or may become) ineffective in many cases. The pathology of many neurological diseases remains an enigma, and the exact etiology and underlying mechanisms are still largely unknown. Viral infections spread and develop much more quickly than does the corresponding research needed to prevent and combat these infections; the present and most relevant outbreak of SARS-CoV-2, which originated in Wuhan, China, illustrates the critical and immediate need to improve drug design and development techniques. Modern day drug discovery is a time-consuming, expensive process. Each new drug takes in excess of 10 years to develop and costs on average more than a billion US dollars. This demonstrates the need of a complete redesign or novel strategies. Nuclear Magnetic Resonance (NMR) has played a critical role in drug discovery ever since its introduction several decades ago. In just three decades, NMR has become a "gold standard" platform technology in medical and pharmacology studies. In this review, we present the major applications of NMR spectroscopy in medical drug discovery and development. The basic concepts, theories, and applications of the most commonly used NMR techniques are presented. We also summarize the advantages and limitations of the primary NMR methods in drug development.
Collapse
Affiliation(s)
- Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Kacper Szczepski
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Benjamin Gabriel Poulson
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Kousik Chandra
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Ryan T. McKay
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2W2, Canada;
| | - Manel Dhahri
- Biology Department, Faculty of Science, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Fatimah Alahmari
- Nanomedicine Department, Institute for Research and Medical, Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441, Saudi Arabia;
| | - Lukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (B.G.P.); (K.C.); (L.J.)
| |
Collapse
|
10
|
Coyle J, Walser R. Applied Biophysical Methods in Fragment-Based Drug Discovery. SLAS DISCOVERY 2020; 25:471-490. [PMID: 32345095 DOI: 10.1177/2472555220916168] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fragment-based drug discovery (FBDD) has come of age in the last decade with the FDA approval of four fragment-derived drugs. Biophysical methods are at the heart of hit discovery and validation in FBDD campaigns. The three most commonly used methods, thermal shift, surface plasmon resonance, and nuclear magnetic resonance, can be daunting for the novice user. We aim here to provide the nonexpert user of these methods with a summary of problems and challenges that might be faced, but also highlight the potential gains that each method can contribute to an FBDD project. While our view on FBDD is slightly biased toward enabling structure-guided drug discovery, most of the points we address in this review are also valid for non-structure-focused FBDD.
Collapse
Affiliation(s)
- Joe Coyle
- Astex Pharmaceuticals, Cambridge, UK
| | | |
Collapse
|
11
|
Lim NM, Osato M, Warren GL, Mobley DL. Fragment Pose Prediction Using Non-equilibrium Candidate Monte Carlo and Molecular Dynamics Simulations. J Chem Theory Comput 2020; 16:2778-2794. [PMID: 32167763 PMCID: PMC7325745 DOI: 10.1021/acs.jctc.9b01096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Part of early stage drug discovery involves determining how molecules may bind to the target protein. Through understanding where and how molecules bind, chemists can begin to build ideas on how to design improvements to increase binding affinities. In this retrospective study, we compare how computational approaches like docking, molecular dynamics (MD) simulations, and a non-equilibrium candidate Monte Carlo (NCMC)-based method (NCMC + MD) perform in predicting binding modes for a set of 12 fragment-like molecules, which bind to soluble epoxide hydrolase. We evaluate each method's effectiveness in identifying the dominant binding mode and finding additional binding modes (if any). Then, we compare our predicted binding modes to experimentally obtained X-ray crystal structures. We dock each of the 12 small molecules into the apo-protein crystal structure and then run simulations up to 1 μs each. Small and fragment-like molecules likely have smaller energy barriers separating different binding modes by virtue of relatively fewer and weaker interactions relative to drug-like molecules and thus likely undergo more rapid binding mode transitions. We expect, thus, to see more rapid transitions between binding modes in our study. Following this, we build Markov State Models to define our stable ligand binding modes. We investigate if adequate sampling of ligand binding modes and transitions between them can occur at the microsecond timescale using traditional MD or a hybrid NCMC+MD simulation approach. Our findings suggest that even with small fragment-like molecules, we fail to sample all the crystallographic binding modes using microsecond MD simulations, but using NCMC+MD, we have better success in sampling the crystal structure while obtaining the correct populations.
Collapse
Affiliation(s)
- Nathan M Lim
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697, United States
| | - Meghan Osato
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697, United States
| | - Gregory L Warren
- OpenEye Scientific Software, Santa Fe, New Mexico 87508, United States
| | - David L Mobley
- Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, California 92697, United States
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| |
Collapse
|
12
|
Fino R, Byrne R, Softley CA, Sattler M, Schneider G, Popowicz GM. Introducing the CSP Analyzer: A novel Machine Learning-based application for automated analysis of two-dimensional NMR spectra in NMR fragment-based screening. Comput Struct Biotechnol J 2020; 18:603-611. [PMID: 32257044 PMCID: PMC7096735 DOI: 10.1016/j.csbj.2020.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/14/2020] [Accepted: 02/22/2020] [Indexed: 11/25/2022] Open
Abstract
NMR-based screening, especially fragment-based drug discovery is a valuable approach in early-stage drug discovery. Monitoring fragment-binding in protein-detected 2D NMR experiments requires analysis of hundreds of spectra to detect chemical shift perturbations (CSPs) in the presence of ligands screened. Computational tools are available that simplify the tracking of CSPs in 2D NMR spectra. However, to the best of our knowledge, an efficient automated tool for the assessment and binning of multiple spectra for ligand binding has not yet been described. We present a novel and fast approach for analysis of multiple 2D HSQC spectra based on machine-learning-driven statistical discrimination. The CSP Analyzer features a C# frontend interfaced to a Python ML classifier. The software allows rapid evaluation of 2D screening data from large number of spectra, reducing user-introduced bias in the evaluation. The CSP Analyzer software package is available on GitHub https://github.com/rubbs14/CSP-Analyzer/releases/tag/v1.0 under the GPL license 3.0 and is free to use for academic and commercial uses.
Collapse
Affiliation(s)
- R Fino
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR, Bayerisches NMR Zentrum and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Garching, Germany
| | - R Byrne
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - C A Softley
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR, Bayerisches NMR Zentrum and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Garching, Germany
| | - M Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR, Bayerisches NMR Zentrum and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Garching, Germany
| | - G Schneider
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH), Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - G M Popowicz
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Biomolecular NMR, Bayerisches NMR Zentrum and Center for Integrated Protein Science Munich at Chemistry Department, Technical University of Munich, Garching, Germany
| |
Collapse
|
13
|
Khattri RB, Morris DL, Bilinovich SM, Manandhar E, Napper KR, Sweet JW, Modarelli DA, Leeper TC. Identifying Ortholog Selective Fragment Molecules for Bacterial Glutaredoxins by NMR and Affinity Enhancement by Modification with an Acrylamide Warhead. Molecules 2019; 25:E147. [PMID: 31905878 PMCID: PMC6983068 DOI: 10.3390/molecules25010147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/30/2022] Open
Abstract
Illustrated here is the development of a new class of antibiotic lead molecules targeted at Pseudomonas aeruginosa glutaredoxin (PaGRX). This lead was produced to (a) circumvent efflux-mediated resistance mechanisms via covalent inhibition while (b) taking advantage of species selectivity to target a fundamental metabolic pathway. This work involved four components: a novel workflow for generating protein specific fragment hits via independent nuclear magnetic resonance (NMR) measurements, NMR-based modeling of the target protein structure, NMR guided docking of hits, and synthetic modification of the fragment hit with a vinyl cysteine trap moiety, i.e., acrylamide warhead, to generate the chimeric lead. Reactivity of the top warhead-fragment lead suggests that the ortholog selectivity observed for a fragment hit can translate into a substantial kinetic advantage in the mature warhead lead, which bodes well for future work to identify potent, species specific drug molecules targeted against proteins heretofore deemed undruggable.
Collapse
Affiliation(s)
- Ram B. Khattri
- Department of Physiology and Functional genomics, University of Florida, Gainesville, FL 32610, USA;
| | - Daniel L. Morris
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA; (D.L.M.); (K.R.N.); (J.W.S.); (D.A.M.)
| | - Stephanie M. Bilinovich
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, MI 48824, USA;
| | | | - Kahlilah R. Napper
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA; (D.L.M.); (K.R.N.); (J.W.S.); (D.A.M.)
| | - Jacob W. Sweet
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA; (D.L.M.); (K.R.N.); (J.W.S.); (D.A.M.)
| | - David A. Modarelli
- Department of Chemistry and Biochemistry, The University of Akron, Akron, OH 44325, USA; (D.L.M.); (K.R.N.); (J.W.S.); (D.A.M.)
| | - Thomas C. Leeper
- Department of Chemistry and Biochemistry, Kennesaw State University, GA 30144, USA
| |
Collapse
|
14
|
Kang C. 19F-NMR in Target-based Drug Discovery. Curr Med Chem 2019; 26:4964-4983. [PMID: 31187703 DOI: 10.2174/0929867326666190610160534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/14/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023]
Abstract
Solution NMR spectroscopy plays important roles in understanding protein structures, dynamics and protein-protein/ligand interactions. In a target-based drug discovery project, NMR can serve an important function in hit identification and lead optimization. Fluorine is a valuable probe for evaluating protein conformational changes and protein-ligand interactions. Accumulated studies demonstrate that 19F-NMR can play important roles in fragment- based drug discovery (FBDD) and probing protein-ligand interactions. This review summarizes the application of 19F-NMR in understanding protein-ligand interactions and drug discovery. Several examples are included to show the roles of 19F-NMR in confirming identified hits/leads in the drug discovery process. In addition to identifying hits from fluorinecontaining compound libraries, 19F-NMR will play an important role in drug discovery by providing a fast and robust way in novel hit identification. This technique can be used for ranking compounds with different binding affinities and is particularly useful for screening competitive compounds when a reference ligand is available.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #05-01, Singapore, 138670, Singapore
| |
Collapse
|
15
|
Bergner A, Cockcroft X, Fischer G, Gollner A, Hela W, Kousek R, Mantoulidis A, Martin LJ, Mayer M, Müllauer B, Siszler G, Wolkerstorfer B, Kessler D, McConnell DB. KRAS Binders Hidden in Nature. Chemistry 2019; 25:12037-12041. [PMID: 31231840 PMCID: PMC6772028 DOI: 10.1002/chem.201902810] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 12/13/2022]
Abstract
Natural products have proven to be a rich source of molecular architectures for drugs. Here, an integrated approach to natural product screening is proposed, which uncovered eight new natural product scaffolds for KRAS-the most frequently mutated oncogenic driver in human cancers, which has remained thus far undrugged. The approach combines aspects of virtual screening, fragment-based screening, structure-activity relationships (SAR) by NMR, and structure-based drug discovery to overcome the limitations in traditional natural product approaches. By using our approach, a new "snugness of fit" scoring function and the first crystal-soaking system of the active form of KRASG12D , the protein-ligand X-ray structures of a tricyclic indolopyrrole fungal alkaloid and an indoloisoquinolinone have been successfully elucidated. The natural product KRAS hits discovered provide fruitful ground for the optimization of highly potent natural-product-based inhibitors of the active form of oncogenic RAS. This integrated approach for screening natural products also holds promise for other "undruggable" targets.
Collapse
Affiliation(s)
- Andreas Bergner
- Boehringer Ingelheim RCV GmbH & Co KGDoktor-Boehringer-Gasse 5-111120ViennaAustria
| | - Xiaoling Cockcroft
- Boehringer Ingelheim RCV GmbH & Co KGDoktor-Boehringer-Gasse 5-111120ViennaAustria
| | - Gerhard Fischer
- Boehringer Ingelheim RCV GmbH & Co KGDoktor-Boehringer-Gasse 5-111120ViennaAustria
| | - Andreas Gollner
- Boehringer Ingelheim RCV GmbH & Co KGDoktor-Boehringer-Gasse 5-111120ViennaAustria
| | - Wolfgang Hela
- Boehringer Ingelheim RCV GmbH & Co KGDoktor-Boehringer-Gasse 5-111120ViennaAustria
| | - Roland Kousek
- Boehringer Ingelheim RCV GmbH & Co KGDoktor-Boehringer-Gasse 5-111120ViennaAustria
| | - Andreas Mantoulidis
- Boehringer Ingelheim RCV GmbH & Co KGDoktor-Boehringer-Gasse 5-111120ViennaAustria
| | - Laetitia J. Martin
- Boehringer Ingelheim RCV GmbH & Co KGDoktor-Boehringer-Gasse 5-111120ViennaAustria
- Present address: F. Hoffmann-La Roche Ltd.Grenzacherstrasse 1244070BaselSwitzerland
| | - Moriz Mayer
- Boehringer Ingelheim RCV GmbH & Co KGDoktor-Boehringer-Gasse 5-111120ViennaAustria
| | - Barbara Müllauer
- Boehringer Ingelheim RCV GmbH & Co KGDoktor-Boehringer-Gasse 5-111120ViennaAustria
| | - Gabriella Siszler
- Boehringer Ingelheim RCV GmbH & Co KGDoktor-Boehringer-Gasse 5-111120ViennaAustria
| | | | - Dirk Kessler
- Boehringer Ingelheim RCV GmbH & Co KGDoktor-Boehringer-Gasse 5-111120ViennaAustria
| | - Darryl B. McConnell
- Boehringer Ingelheim RCV GmbH & Co KGDoktor-Boehringer-Gasse 5-111120ViennaAustria
| |
Collapse
|
16
|
Kessler D, Gmachl M, Mantoulidis A, Martin LJ, Zoephel A, Mayer M, Gollner A, Covini D, Fischer S, Gerstberger T, Gmaschitz T, Goodwin C, Greb P, Häring D, Hela W, Hoffmann J, Karolyi-Oezguer J, Knesl P, Kornigg S, Koegl M, Kousek R, Lamarre L, Moser F, Munico-Martinez S, Peinsipp C, Phan J, Rinnenthal J, Sai J, Salamon C, Scherbantin Y, Schipany K, Schnitzer R, Schrenk A, Sharps B, Siszler G, Sun Q, Waterson A, Wolkerstorfer B, Zeeb M, Pearson M, Fesik SW, McConnell DB. Drugging an undruggable pocket on KRAS. Proc Natl Acad Sci U S A 2019; 116:15823-15829. [PMID: 31332011 PMCID: PMC6689897 DOI: 10.1073/pnas.1904529116] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The 3 human RAS genes, KRAS, NRAS, and HRAS, encode 4 different RAS proteins which belong to the protein family of small GTPases that function as binary molecular switches involved in cell signaling. Activating mutations in RAS are among the most common oncogenic drivers in human cancers, with KRAS being the most frequently mutated oncogene. Although KRAS is an excellent drug discovery target for many cancers, and despite decades of research, no therapeutic agent directly targeting RAS has been clinically approved. Using structure-based drug design, we have discovered BI-2852 (1), a KRAS inhibitor that binds with nanomolar affinity to a pocket, thus far perceived to be "undruggable," between switch I and II on RAS; 1 is mechanistically distinct from covalent KRASG12C inhibitors because it binds to a different pocket present in both the active and inactive forms of KRAS. In doing so, it blocks all GEF, GAP, and effector interactions with KRAS, leading to inhibition of downstream signaling and an antiproliferative effect in the low micromolar range in KRAS mutant cells. These findings clearly demonstrate that this so-called switch I/II pocket is indeed druggable and provide the scientific community with a chemical probe that simultaneously targets the active and inactive forms of KRAS.
Collapse
Affiliation(s)
- Dirk Kessler
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Michael Gmachl
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Andreas Mantoulidis
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Laetitia J Martin
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Andreas Zoephel
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Moriz Mayer
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Andreas Gollner
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - David Covini
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Silke Fischer
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Thomas Gerstberger
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Teresa Gmaschitz
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Craig Goodwin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37235
| | - Peter Greb
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Daniela Häring
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Wolfgang Hela
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Johann Hoffmann
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Jale Karolyi-Oezguer
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Petr Knesl
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Stefan Kornigg
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Manfred Koegl
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Roland Kousek
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Lyne Lamarre
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Franziska Moser
- Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach an der Riss, Germany
| | - Silvia Munico-Martinez
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Christoph Peinsipp
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Jason Phan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37235
| | - Jörg Rinnenthal
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Jiqing Sai
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37235
| | - Christian Salamon
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Yvonne Scherbantin
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Katharina Schipany
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Renate Schnitzer
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Andreas Schrenk
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Bernadette Sharps
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Gabriella Siszler
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Qi Sun
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37235
| | - Alex Waterson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37235
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| | - Bernhard Wolkerstorfer
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Markus Zeeb
- Discovery Research, Boehringer Ingelheim Pharma GmbH & Co KG, D-88397 Biberach an der Riss, Germany
| | - Mark Pearson
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria
| | - Stephen W Fesik
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37235
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37235
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235
| | - Darryl B McConnell
- Discovery Research, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, 1120 Vienna, Austria;
| |
Collapse
|
17
|
Tsopelas F, Tsantili-Kakoulidou A. Advances with weak affinity chromatography for fragment screening. Expert Opin Drug Discov 2019; 14:1125-1135. [DOI: 10.1080/17460441.2019.1648425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fotios Tsopelas
- Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | |
Collapse
|
18
|
Robson-Tull J. Biophysical screening in fragment-based drug design: a brief overview. ACTA ACUST UNITED AC 2019. [DOI: 10.1093/biohorizons/hzy015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jacob Robson-Tull
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
19
|
Polshakov VI, Batuev EA, Mantsyzov AB. NMR screening and studies of target–ligand interactions. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Scapin G, Potter CS, Carragher B. Cryo-EM for Small Molecules Discovery, Design, Understanding, and Application. Cell Chem Biol 2018; 25:1318-1325. [PMID: 30100349 DOI: 10.1016/j.chembiol.2018.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/11/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
We present a perspective of our view of the application of cryoelectron microscopy (cryo-EM) to structure-based drug design (SBDD). We discuss the basic needs and requirements for SBDD, the current state of cryo-EM, and the challenges that need to be overcome for this technique to reach its full potential in facilitating the process of drug discovery.
Collapse
Affiliation(s)
- Giovanna Scapin
- Department of Biochemical Engineering & Structure, Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Clinton S Potter
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York NY 10027, USA; NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, National Resource for Automated Molecular Microscopy, New York Structural Biology Center, 89 Convent Avenue, New York NY 10027, USA; NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA.
| |
Collapse
|
21
|
Protein‐protein interactions as antibiotic targets: A medicinal chemistry perspective. Med Res Rev 2018; 40:469-494. [DOI: 10.1002/med.21519] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 05/28/2018] [Accepted: 06/03/2018] [Indexed: 12/27/2022]
|
22
|
Dahal GP, Viola RE. A Fragment Library Screening Approach to Identify Selective Inhibitors against an Essential Fungal Enzyme. SLAS DISCOVERY 2018; 23:520-531. [PMID: 29608391 DOI: 10.1177/2472555218767844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pathogenic fungi represent a growing threat to human health, with an increase in the frequency of drug-resistant fungal infections. Identifying targets from among the selected metabolic pathways that are unique to microbial species presents an opportunity to develop new antifungal agents against new and untested targets to combat this growth threat. Aspartate semialdehyde dehydrogenase (ASADH) catalyzes a key step in a uniquely microbial amino acid biosynthetic pathway and is essential for microbial viability. This enzyme, purified from four pathogenic fungal organisms ( Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, and Blastomyces dermatitidis), has been screened against fragment libraries to identify initial enzyme inhibitors. The binding of structural analogs of the most promising lead compounds was measured against these fungal ASADHs to establish important structure-activity relationships among these different inhibitor classes. The most potent of these inhibitors have been docked into structures of this fungal enzyme target to identify important structural elements that serve as critical binding determinants. Several inhibitors with low micromolar inhibition constants have been identified that showed selectivity against these related enzymes from different fungal species. Subsequent screening against a library of drugs and drug candidates identified some additional inhibitors containing a consistent set of functional groups required for fungal ASADH inhibition. Additional elaboration of these core structures will likely lead to more potent and selective inhibitors.
Collapse
Affiliation(s)
- Gopal P Dahal
- 1 Department of Chemistry and Biochemistry, University of Toledo, OH, USA
| | - Ronald E Viola
- 1 Department of Chemistry and Biochemistry, University of Toledo, OH, USA
| |
Collapse
|
23
|
NMR-Fragment Based Virtual Screening: A Brief Overview. Molecules 2018; 23:molecules23020233. [PMID: 29370102 PMCID: PMC6017141 DOI: 10.3390/molecules23020233] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/23/2023] Open
Abstract
Fragment-based drug discovery (FBDD) using NMR has become a central approach over the last twenty years for development of small molecule inhibitors against biological macromolecules, to control a variety of cellular processes. Yet, several considerations should be taken into account for obtaining a therapeutically relevant agent. In this review, we aim to list the considerations that make NMR fragment screening a successful process for yielding potent inhibitors. Factors that may govern the competence of NMR in fragment based drug discovery are discussed, as well as later steps that involve optimization of hits obtained by NMR-FBDD.
Collapse
|
24
|
Li Y, Kang C. Solution NMR Spectroscopy in Target-Based Drug Discovery. Molecules 2017; 22:E1399. [PMID: 28832542 PMCID: PMC6151424 DOI: 10.3390/molecules22091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Solution NMR spectroscopy is a powerful tool to study protein structures and dynamics under physiological conditions. This technique is particularly useful in target-based drug discovery projects as it provides protein-ligand binding information in solution. Accumulated studies have shown that NMR will play more and more important roles in multiple steps of the drug discovery process. In a fragment-based drug discovery process, ligand-observed and protein-observed NMR spectroscopy can be applied to screen fragments with low binding affinities. The screened fragments can be further optimized into drug-like molecules. In combination with other biophysical techniques, NMR will guide structure-based drug discovery. In this review, we describe the possible roles of NMR spectroscopy in drug discovery. We also illustrate the challenges encountered in the drug discovery process. We include several examples demonstrating the roles of NMR in target-based drug discoveries such as hit identification, ranking ligand binding affinities, and mapping the ligand binding site. We also speculate the possible roles of NMR in target engagement based on recent processes in in-cell NMR spectroscopy.
Collapse
Affiliation(s)
- Yan Li
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| | - Congbao Kang
- Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos, #03-01, Singapore 138669, Singapore.
| |
Collapse
|
25
|
Göth M, Badock V, Weiske J, Pagel K, Kuropka B. Critical Evaluation of Native Electrospray Ionization Mass Spectrometry for Fragment-Based Screening. ChemMedChem 2017; 12:1201-1211. [PMID: 28618179 DOI: 10.1002/cmdc.201700177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/19/2017] [Indexed: 12/24/2022]
Abstract
Fragment-based screening presents a promising alternative to high-throughput screening and has gained great attention in recent years. So far, only a few studies have discussed mass spectrometry as a screening technology for fragments. Herein, we report the application of native electrospray ionization mass spectrometry (MS) for screening defined sets of fragments against four different target proteins. Fragments were selected from a primary screening conducted with a thermal shift assay (TSA) and represented different binding categories. Our data indicated that, beside specific complex formation, many fragments show extensive multiple binding and also charge-state shifts. Both of these factors complicate automated data analysis and decrease the attractiveness of native MS as a primary screening tool for fragments. A comparison of the hits identified by native MS and TSA showed good agreement for two of the proteins. Furthermore, we discuss general challenges, including the determination of an optimal fragment concentration and the question of how to rank fragment hits according to their affinity. In conclusion, we consider native MS to be a highly valuable tool for the validation and deeper investigation of promising fragment hits rather than a method for primary screening.
Collapse
Affiliation(s)
- Melanie Göth
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany.,Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Volker Badock
- Protein Technologies, Lead Discovery Berlin, Bayer AG, Müllerstraße 178, 13353, Berlin, Germany
| | - Jörg Weiske
- Protein Technologies, Lead Discovery Berlin, Bayer AG, Müllerstraße 178, 13353, Berlin, Germany
| | - Kevin Pagel
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany.,Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195, Berlin, Germany
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany.,Protein Technologies, Lead Discovery Berlin, Bayer AG, Müllerstraße 178, 13353, Berlin, Germany
| |
Collapse
|
26
|
Grixti JM, O'Hagan S, Day PJ, Kell DB. Enhancing Drug Efficacy and Therapeutic Index through Cheminformatics-Based Selection of Small Molecule Binary Weapons That Improve Transporter-Mediated Targeting: A Cytotoxicity System Based on Gemcitabine. Front Pharmacol 2017; 8:155. [PMID: 28396636 PMCID: PMC5366350 DOI: 10.3389/fphar.2017.00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 12/23/2022] Open
Abstract
The transport of drug molecules is mainly determined by the distribution of influx and efflux transporters for which they are substrates. To enable tissue targeting, we sought to develop the idea that we might affect the transporter-mediated disposition of small-molecule drugs via the addition of a second small molecule that of itself had no inhibitory pharmacological effect but that influenced the expression of transporters for the primary drug. We refer to this as a “binary weapon” strategy. The experimental system tested the ability of a molecule that on its own had no cytotoxic effect to increase the toxicity of the nucleoside analog gemcitabine to Panc1 pancreatic cancer cells. An initial phenotypic screen of a 500-member polar drug (fragment) library yielded three “hits.” The structures of 20 of the other 2,000 members of this library suite had a Tanimoto similarity greater than 0.7 to those of the initial hits, and each was itself a hit (the cheminformatics thus providing for a massive enrichment). We chose the top six representatives for further study. They fell into three clusters whose members bore reasonable structural similarities to each other (two were in fact isomers), lending strength to the self-consistency of both our conceptual and experimental strategies. Existing literature had suggested that indole-3-carbinol might play a similar role to that of our fragments, but in our hands it was without effect; nor was it structurally similar to any of our hits. As there was no evidence that the fragments could affect toxicity directly, we looked for effects on transporter transcript levels. In our hands, only the ENT1-3 uptake and ABCC2,3,4,5, and 10 efflux transporters displayed measurable transcripts in Panc1 cultures, along with a ribonucleoside reductase RRM1 known to affect gemcitabine toxicity. Very strikingly, the addition of gemcitabine alone increased the expression of the transcript for ABCC2 (MRP2) by more than 12-fold, and that of RRM1 by more than fourfold, and each of the fragment “hits” served to reverse this. However, an inhibitor of ABCC2 was without significant effect, implying that RRM1 was possibly the more significant player. These effects were somewhat selective for Panc cells. It seems, therefore, that while the effects we measured were here mediated more by efflux than influx transporters, and potentially by other means, the binary weapon idea is hereby fully confirmed: it is indeed possible to find molecules that manipulate the expression of transporters that are involved in the bioactivity of a pharmaceutical drug. This opens up an entirely new area, that of chemical genomics-based drug targeting.
Collapse
Affiliation(s)
- Justine M Grixti
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Steve O'Hagan
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| | - Philip J Day
- Faculty of Biology, Medicine and Health, University of ManchesterManchester, UK; Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Douglas B Kell
- Manchester Institute of Biotechnology, University of ManchesterManchester, UK; School of Chemistry, University of ManchesterManchester, UK; Centre for Synthetic Biology of Fine and Speciality Chemicals, University of ManchesterManchester, UK
| |
Collapse
|
27
|
Ju H, Zhang J, Huang B, Kang D, Huang B, Liu X, Zhan P. Inhibitors of Influenza Virus Polymerase Acidic (PA) Endonuclease: Contemporary Developments and Perspectives. J Med Chem 2017; 60:3533-3551. [PMID: 28118010 DOI: 10.1021/acs.jmedchem.6b01227] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Influenza virus (IFV) causes periodic global influenza pandemics, resulting in substantial socioeconomic loss and burden on medical facilities. Yearly variation in the effectiveness of vaccines, slow responsiveness to vaccination in cases of pandemic IFV, and emerging resistance to available drugs highlight the need to develop additional small-molecular inhibitors that act on IFV proteins. One promising target is polymerase acidic (PA) endonuclease, which is a bridged dinuclear metalloenzyme that plays a crucial role in initiating IFV replication. During the past decade, intensive efforts have been made to develop small-molecular inhibitors of this endonuclease as candidate agents for treatment of IFV infection. Here, we review the current status of development of PA endonuclease inhibitors and we discuss the applicability of newer medicinal-chemistry strategies for the discovery more potent, selective, and safer inhibitors.
Collapse
Affiliation(s)
- Han Ju
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Bing Huang
- Poultry Institute, Shandong Academy of Agricultural Sciences , 1, Jiaoxiao Road, 250023, Jinan, Shandong, P. R. China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University , 44, West Culture Road, 250012, Jinan, Shandong, P. R. China
| |
Collapse
|
28
|
Liu J, Gao J, Li F, Ma R, Wei Q, Wang A, Wu J, Ruan K. NMR characterization of weak interactions between RhoGDI2 and fragment screening hits. Biochim Biophys Acta Gen Subj 2017; 1861:3061-3070. [DOI: 10.1016/j.bbagen.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/26/2016] [Accepted: 10/04/2016] [Indexed: 12/31/2022]
|
29
|
Recent advances on the encoding and selection methods of DNA-encoded chemical library. Bioorg Med Chem Lett 2016; 27:361-369. [PMID: 28011218 DOI: 10.1016/j.bmcl.2016.12.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/22/2022]
Abstract
DNA-encoded chemical library (DEL) has emerged as a powerful and versatile tool for ligand discovery in chemical biology research and in drug discovery. Encoding and selection methods are two of the most important technological aspects of DEL that can dictate the performance and utilities of DELs. In this digest, we have summarized recent advances on the encoding and selection strategies of DEL and also discussed the latest developments on DNA-encoded dynamic library, a new frontier in DEL research.
Collapse
|
30
|
Hetényi A, Hegedűs Z, Fajka-Boja R, Monostori É, Kövér KE, Martinek TA. Target-specific NMR detection of protein-ligand interactions with antibody-relayed 15N-group selective STD. JOURNAL OF BIOMOLECULAR NMR 2016; 66:227-232. [PMID: 27885546 DOI: 10.1007/s10858-016-0076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.
Collapse
Affiliation(s)
- Anasztázia Hetényi
- Department of Medical Chemistry, University of Szeged, Dóm t. 8., Szeged, 6720, Hungary
| | - Zsófia Hegedűs
- SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department, University of Szeged, Somogyi u. 4, Szeged, 6720, Hungary
| | - Roberta Fajka-Boja
- Lymphocyte Signal Transduction Laboratory, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Éva Monostori
- Lymphocyte Signal Transduction Laboratory, Institute of Genetics, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1., Debrecen, 4032, Hungary
| | - Tamás A Martinek
- SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department, University of Szeged, Somogyi u. 4, Szeged, 6720, Hungary.
| |
Collapse
|
31
|
Wang Y, Wach JY, Sheehan P, Zhong C, Zhan C, Harris R, Almo SC, Bishop J, Haggarty SJ, Ramek A, Berry KN, O’Herin C, Koehler AN, Hung AW, Young DW. Diversity-Oriented Synthesis as a Strategy for Fragment Evolution against GSK3β. ACS Med Chem Lett 2016; 7:852-6. [PMID: 27660690 DOI: 10.1021/acsmedchemlett.6b00230] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/14/2016] [Indexed: 11/30/2022] Open
Abstract
Traditional fragment-based drug discovery (FBDD) relies heavily on structural analysis of the hits bound to their targets. Herein, we present a complementary approach based on diversity-oriented synthesis (DOS). A DOS-based fragment collection was able to produce initial hit compounds against the target GSK3β, allow the systematic synthesis of related fragment analogues to explore fragment-level structure-activity relationship, and finally lead to the synthesis of a more potent compound.
Collapse
Affiliation(s)
- Yikai Wang
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Jean-Yves Wach
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Patrick Sheehan
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Cheng Zhong
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Chenyang Zhan
- Department
of Biochemistry, Albert Einstein College of Medicine, 1300 Morris
Park Avenue, Bronx, New York 10461, United States
| | - Richard Harris
- Department
of Biochemistry, Albert Einstein College of Medicine, 1300 Morris
Park Avenue, Bronx, New York 10461, United States
| | - Steven C. Almo
- Department
of Biochemistry, Albert Einstein College of Medicine, 1300 Morris
Park Avenue, Bronx, New York 10461, United States
| | - Joshua Bishop
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
- Department of Neurology & Psychiatry, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Stephen J. Haggarty
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
- Department of Neurology & Psychiatry, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, United States
| | - Alexander Ramek
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Kayla N. Berry
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Conor O’Herin
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Angela N. Koehler
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Alvin W. Hung
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| | - Damian W. Young
- Chemical
Biology Program, The Broad Institute of Harvard and MIT, 415
Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
32
|
Ma R, Wang P, Wu J, Ruan K. Process of Fragment-Based Lead Discovery-A Perspective from NMR. Molecules 2016; 21:molecules21070854. [PMID: 27438813 PMCID: PMC6273320 DOI: 10.3390/molecules21070854] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/22/2016] [Accepted: 05/24/2016] [Indexed: 11/23/2022] Open
Abstract
Fragment-based lead discovery (FBLD) has proven fruitful during the past two decades for a variety of targets, even challenging protein–protein interaction (PPI) systems. Nuclear magnetic resonance (NMR) spectroscopy plays a vital role, from initial fragment-based screening to lead generation, because of its power to probe the intrinsically weak interactions between targets and low-molecular-weight fragments. Here, we review the NMR FBLD process from initial library construction to lead generation. We describe technical aspects regarding fragment library design, ligand- and protein-observed screening, and protein–ligand structure model generation. For weak binders, the initial hit-to-lead evolution can be guided by structural information retrieved from NMR spectroscopy, including chemical shift perturbation, transferred pseudocontact shifts, and paramagnetic relaxation enhancement. This perspective examines structure-guided optimization from weak fragment screening hits to potent leads for challenging PPI targets.
Collapse
Affiliation(s)
- Rongsheng Ma
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Pengchao Wang
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Jihui Wu
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| | - Ke Ruan
- Hefei National Laboratory for Physical Science at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, Anhui, China.
| |
Collapse
|
33
|
Abstract
After 20 years of sometimes quiet growth, fragment-based drug discovery (FBDD) has become mainstream. More than 30 drug candidates derived from fragments have entered the clinic, with two approved and several more in advanced trials. FBDD has been widely applied in both academia and industry, as evidenced by the large number of papers from universities, non-profit research institutions, biotechnology companies and pharmaceutical companies. Moreover, FBDD draws on a diverse range of disciplines, from biochemistry and biophysics to computational and medicinal chemistry. As the promise of FBDD strategies becomes increasingly realized, now is an opportune time to draw lessons and point the way to the future. This Review briefly discusses how to design fragment libraries, how to select screening techniques and how to make the most of information gleaned from them. It also shows how concepts from FBDD have permeated and enhanced drug discovery efforts.
Collapse
|
34
|
Ramírez D, Caballero J. Is It Reliable to Use Common Molecular Docking Methods for Comparing the Binding Affinities of Enantiomer Pairs for Their Protein Target? Int J Mol Sci 2016; 17:ijms17040525. [PMID: 27104528 PMCID: PMC4848981 DOI: 10.3390/ijms17040525] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/22/2016] [Accepted: 04/01/2016] [Indexed: 12/05/2022] Open
Abstract
Molecular docking is a computational chemistry method which has become essential for the rational drug design process. In this context, it has had great impact as a successful tool for the study of ligand–receptor interaction modes, and for the exploration of large chemical datasets through virtual screening experiments. Despite their unquestionable merits, docking methods are not reliable for predicting binding energies due to the simple scoring functions they use. However, comparisons between two or three complexes using the predicted binding energies as a criterion are commonly found in the literature. In the present work we tested how wise is it to trust the docking energies when two complexes between a target protein and enantiomer pairs are compared. For this purpose, a ligand library composed by 141 enantiomeric pairs was used, including compounds with biological activities reported against seven protein targets. Docking results using the software Glide (considering extra precision (XP), standard precision (SP), and high-throughput virtual screening (HTVS) modes) and AutoDock Vina were compared with the reported biological activities using a classification scheme. Our test failed for all modes and targets, demonstrating that an accurate prediction when binding energies of enantiomers are compared using docking may be due to chance. We also compared pairs of compounds with different molecular weights and found the same results.
Collapse
Affiliation(s)
- David Ramírez
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca. 2 Norte 685, Casilla 721, Talca, Chile.
| | - Julio Caballero
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca. 2 Norte 685, Casilla 721, Talca, Chile.
| |
Collapse
|
35
|
|
36
|
Schiebel J, Radeva N, Köster H, Metz A, Krotzky T, Kuhnert M, Diederich WE, Heine A, Neumann L, Atmanene C, Roecklin D, Vivat-Hannah V, Renaud JP, Meinecke R, Schlinck N, Sitte A, Popp F, Zeeb M, Klebe G. One Question, Multiple Answers: Biochemical and Biophysical Screening Methods Retrieve Deviating Fragment Hit Lists. ChemMedChem 2015; 10:1511-21. [DOI: 10.1002/cmdc.201500267] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 12/12/2022]
|
37
|
Chen X, Qin S, Chen S, Li J, Li L, Wang Z, Wang Q, Lin J, Yang C, Shui W. A ligand-observed mass spectrometry approach integrated into the fragment based lead discovery pipeline. Sci Rep 2015; 5:8361. [PMID: 25666181 PMCID: PMC4322365 DOI: 10.1038/srep08361] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/19/2015] [Indexed: 02/07/2023] Open
Abstract
In fragment-based lead discovery (FBLD), a cascade combining multiple orthogonal technologies is required for reliable detection and characterization of fragment binding to the target. Given the limitations of the mainstream screening techniques, we presented a ligand-observed mass spectrometry approach to expand the toolkits and increase the flexibility of building a FBLD pipeline especially for tough targets. In this study, this approach was integrated into a FBLD program targeting the HCV RNA polymerase NS5B. Our ligand-observed mass spectrometry analysis resulted in the discovery of 10 hits from a 384-member fragment library through two independent screens of complex cocktails and a follow-up validation assay. Moreover, this MS-based approach enabled quantitative measurement of weak binding affinities of fragments which was in general consistent with SPR analysis. Five out of the ten hits were then successfully translated to X-ray structures of fragment-bound complexes to lay a foundation for structure-based inhibitor design. With distinctive strengths in terms of high capacity and speed, minimal method development, easy sample preparation, low material consumption and quantitative capability, this MS-based assay is anticipated to be a valuable addition to the repertoire of current fragment screening techniques.
Collapse
Affiliation(s)
- Xin Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Shanshan Qin
- College of Life Sciences, Nankai University, Tianjin 300071, China
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Shuai Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Jinlong Li
- College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical and Department of Pharmacy, Nankai University, Tianjin 300071, China
| | - Lixin Li
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Zhongling Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Quan Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Jianping Lin
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
- State Key Laboratory of Medicinal Chemical and Department of Pharmacy, Nankai University, Tianjin 300071, China
| | - Cheng Yang
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
- State Key Laboratory of Medicinal Chemical and Department of Pharmacy, Nankai University, Tianjin 300071, China
| | - Wenqing Shui
- College of Life Sciences, Nankai University, Tianjin 300071, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
38
|
Szőllősi E, Bobok A, Kiss L, Vass M, Kurkó D, Kolok S, Visegrády A, Keserű GM. Cell-based and virtual fragment screening for adrenergic α2C receptor agonists. Bioorg Med Chem 2015; 23:3991-9. [PMID: 25648685 DOI: 10.1016/j.bmc.2015.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/21/2014] [Accepted: 01/07/2015] [Indexed: 12/21/2022]
Abstract
Fragment-based drug discovery has emerged as an alternative to conventional lead identification and optimization strategies generally supported by biophysical detection techniques. Membrane targets like G protein-coupled receptors (GPCRs), however, offer challenges in lack of generic immobilization or stabilization methods for the dynamic, membrane-bound supramolecular complexes. Also modeling of different functional states of GPCRs proved to be a challenging task. Here we report a functional cell-based high concentration screening campaign for the identification of adrenergic α2C receptor agonists compared with the virtual screening of the same ligand set against an active-like homology model of the α2C receptor. The conventional calcium mobilization-based assay identified active fragments with a similar incidence to several other reported fragment screens on GPCRs. 16 out of 3071 screened fragments turned out as specific ligands of α2C, two of which were identified by virtual screening as well and several of the hits possessed surprisingly high affinity and ligand efficiency. Our results indicate that in vitro biological assays can be utilized in the fragment hit identification process for GPCR targets.
Collapse
Affiliation(s)
- Edit Szőllősi
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Amrita Bobok
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - László Kiss
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Márton Vass
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Dalma Kurkó
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | - Sándor Kolok
- Gedeon Richter Plc., Gyömrői út 19-21, Budapest H-1103, Hungary
| | | | - György M Keserű
- Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| |
Collapse
|
39
|
Abstract
Fragment-based drug design has become an important strategy for drug design and development over the last decade. It has been used with particular success in the development of kinase inhibitors, which are one of the most widely explored classes of drug targets today. The application of fragment-based methods to discovering and optimizing kinase inhibitors can be a complicated and daunting task; however, a general process has emerged that has been highly fruitful. Here a practical outline of the fragment process used in kinase inhibitor design and development is laid out with specific examples. A guide to the overall process from initial discovery through fragment screening, including the difficulties in detection, to the computational methods available for use in optimization of the discovered fragments is reported.
Collapse
Affiliation(s)
- Jon A Erickson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46285, USA,
| |
Collapse
|
40
|
Wilson CG, Arkin MR. Probing structural adaptivity at PPI interfaces with small molecules. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e501-8. [PMID: 24451641 DOI: 10.1016/j.ddtec.2012.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is strong interest in developing small molecules that modulate protein-protein interactions (PPI), since such compounds could serve as drug leads or as probes of protein function. Fragment-based ligand discovery has been a particularly useful approach for modulating PPI. Fragments are typically <250 Da compounds that bind to proteins with weak affinity but high ligand efficiency. Here, we review a method for fragment- based ligand discovery using covalent disulfide trapping (Tethering). Tethering uses a native or engineered cysteine residue to select thiol-containing fragments that bind to the protein near the tethering cysteine. Taking advantage of the site-directed nature of Tethering, one can investigate the 'druggability' of particular binding sites on a protein surface; furthermore, Tethering has been used to find new binding sites and to stabilize allosteric conformations. We review the principles of Tethering and discuss two examples where disulfide trapping has expanded our understanding of PPI. For the cytokine interleukin-2 (IL2), Tethering identified a binding site adjacent to the IL2/IL2- receptor and a new site allosterically coupled to this PPI. For the kinase PDK1, Tethering identified ligands that activated or inhibited enzymatic activity by bind-ing to a single allosteric site. These examples provide a context for successful fragment-discovery projects, in which complementary technologies work together to identify starting points for chemical biology and drug discovery.
Collapse
|
41
|
Barile E, Pellecchia M. NMR-based approaches for the identification and optimization of inhibitors of protein-protein interactions. Chem Rev 2014; 114:4749-63. [PMID: 24712885 PMCID: PMC4027952 DOI: 10.1021/cr500043b] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Elisa Barile
- Sanford-Burnham Medical
Research Institute, 10901
North Torrey Pines Road, La Jolla, California 92037, United States
| | - Maurizio Pellecchia
- Sanford-Burnham Medical
Research Institute, 10901
North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
42
|
Ono K, Takeuchi K, Ueda H, Morita Y, Tanimura R, Shimada I, Takahashi H. Structure-Based Approach To Improve a Small-Molecule Inhibitor by the Use of a Competitive Peptide Ligand. Angew Chem Int Ed Engl 2014; 53:2597-601. [DOI: 10.1002/anie.201310749] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Indexed: 11/08/2022]
|
43
|
Ono K, Takeuchi K, Ueda H, Morita Y, Tanimura R, Shimada I, Takahashi H. Structure-Based Approach To Improve a Small-Molecule Inhibitor by the Use of a Competitive Peptide Ligand. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201310749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Ley NB, Rowe ML, Williamson RA, Howard MJ. Optimising selective excitation pulses to maximise saturation transfer difference NMR spectroscopy. RSC Adv 2014; 4:7347-7351. [PMID: 27182436 DOI: 10.1039/c3ra46246c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple method is presented that optimizes the STD NMR Gaussian pulse to deliver significant increases in STD amplification factors with minimal perturbation of the ligand. This approach is practically demonstrated using the wheat-germ agglutinin/N-acetyl-D-glucosamine protein-ligand system.
Collapse
Affiliation(s)
- Nathan B Ley
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Michelle L Rowe
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | - Mark J Howard
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| |
Collapse
|
45
|
Abstract
Crystallography is a major tool for structure-driven drug design, as it allows knowledge of the 3D structure of protein targets and protein-ligand complexes. However, the route for crystal structure determination involves many steps, some of which may hamper its high-throughput use. Recent efforts have produced significant advances in experimental and computational tools and protocols. They include automatic crystallization tools, faster data collection devices, more efficient phasing methods and improved ligand-fitting procedures. The timescales of drug-discovery processes have been also reduced by using a fragment-based screening approach. Herein, the achievements in protein crystallography over the last 5 years are reviewed, and advantages and disadvantages of the fragment-based approaches to drug discovery that make use of x-ray crystallography as a primary screening method are examined. In particular, in some detail, five recent case studies pertaining to the development of new hits or leads in relevant therapeutic areas, such as cancer, immune response, inflammation, metabolic syndrome and neurology are described.
Collapse
|
46
|
Abstract
This protocol describes the screening of a library of low-molecular-weight compounds (fragments) using a series of biophysical ligand-binding assays. Fragment-based drug discovery (FBDD) has emerged as a successful method to design high-affinity ligands for biomacromolecules of therapeutic interest. It involves detecting relatively weak interactions between the fragments and a target macromolecule using sensitive biophysical techniques. These weak binders provide a starting point for the development of inhibitors with submicromolar affinity. Here we describe an efficient fragment screening cascade that can identify binding fragments (hits) within weeks. It is divided into three stages: (i) preliminary screening using differential scanning fluorimetry (DSF), (ii) validation by NMR spectroscopy and (iii) characterization of binding fragments by isothermal titration calorimetry (ITC) and X-ray crystallography. Although this protocol is readily applicable in academic settings because of its emphasis on low cost and medium-throughput early-stage screening technologies, the core principle of orthogonal validation makes it robust enough to meet the quality standards of an industrial laboratory.
Collapse
|
47
|
Ligand efficiency as a guide in fragment hit selection and optimization. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 7:e147-202. [PMID: 24103767 DOI: 10.1016/j.ddtec.2010.11.003] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery. Proc Natl Acad Sci U S A 2013; 110:12984-9. [PMID: 23872845 DOI: 10.1073/pnas.1304045110] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In fragment-based drug discovery, the weak affinities exhibited by fragments pose significant challenges for screening. Biophysical techniques are used to address this challenge, but there is no clear consensus on which cascade of methods is best suited to identify fragment hits that ultimately translate into bound X-ray structures and provide bona fide starting points for synthesis. We have benchmarked an integrated biophysical approach for fragment screening and validation against Mycobacterium tuberculosis pantothenate synthetase. A primary screen of 1,250 fragments library was performed by thermal shift, followed by secondary screen using one-dimensional NMR spectroscopy (water ligand observed gradient spectroscopy and saturation transfer difference binding experiments) and ultimate hit validation by isothermal titration calorimetry and X-ray crystallography. Our multibiophysical approach identified three distinct binding sites for fragments and laid a solid foundation for successful structure-based elaboration into potent inhibitors.
Collapse
|
49
|
Egger J, Weckerle C, Cutting B, Schwardt O, Rabbani S, Lemme K, Ernst B. Nanomolar E-selectin antagonists with prolonged half-lives by a fragment-based approach. J Am Chem Soc 2013; 135:9820-8. [PMID: 23742188 DOI: 10.1021/ja4029582] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selectins, a family of C-type lectins, play a key role in inflammatory diseases (e.g., asthma and arthritis). However, the only millimolar affinity of sialyl Lewis(x) (sLe(x)), which is the common tetrasaccharide epitope of all physiological selectin ligands, has been a major obstacle to the development of selectin antagonists for therapeutic applications. In a fragment-based approach guided by NMR, ligands binding to a second site in close proximity to a sLe(x) mimic were identified. A library of antagonists obtained by connecting the sLe(x) mimic to the best second-site ligand via triazole linkers of different lengths was evaluated by surface plasmon resonance. Detailed analysis of the five most promising candidates revealed antagonists with K(D) values ranging from 30 to 89 nM. In contrast to carbohydrate-lectin complexes with typical half-lives (t(1/2)) in the range of one second or even less, these fragment-based selectin antagonists show t1/2 of several minutes. They exhibit a promising starting point for the development of novel anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jonas Egger
- Institute of Molecular Pharmacy, Pharmacenter, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
50
|
Harner MJ, Frank AO, Fesik SW. Fragment-based drug discovery using NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2013; 56:65-75. [PMID: 23686385 PMCID: PMC3699969 DOI: 10.1007/s10858-013-9740-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/03/2013] [Indexed: 05/04/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy has evolved into a powerful tool for fragment-based drug discovery over the last two decades. While NMR has been traditionally used to elucidate the three-dimensional structures and dynamics of biomacromolecules and their interactions, it can also be a very valuable tool for the reliable identification of small molecules that bind to proteins and for hit-to-lead optimization. Here, we describe the use of NMR spectroscopy as a method for fragment-based drug discovery and how to most effectively utilize this approach for discovering novel therapeutics based on our experience.
Collapse
Affiliation(s)
- Mary J Harner
- Department of Biochemistry, Vanderbilt University School of Medicine, 2215 Garland Ave, 607 Light Hall, Nashville, TN 37232-0146, USA
| | | | | |
Collapse
|