1
|
Kavková M, Šulcová M, Dumková J, Zahradníček O, Kaiser J, Tucker AS, Zikmund T, Buchtová M. Coordinated labio-lingual asymmetries in dental and bone development create a symmetrical acrodont dentition. Sci Rep 2020; 10:22040. [PMID: 33328503 PMCID: PMC7745041 DOI: 10.1038/s41598-020-78939-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/26/2020] [Indexed: 11/09/2022] Open
Abstract
Organs throughout the body develop both asymmetrically and symmetrically. Here, we assess how symmetrical teeth in reptiles can be created from asymmetrical tooth germs. Teeth of lepidosaurian reptiles are mostly anchored to the jaw bones by pleurodont ankylosis, where the tooth is held in place on the labial side only. Pleurodont teeth are characterized by significantly asymmetrical development of the labial and lingual sides of the cervical loop, which later leads to uneven deposition of hard tissue. On the other hand, acrodont teeth found in lizards of the Acrodonta clade (i.e. agamas, chameleons) are symmetrically ankylosed to the jaw bone. Here, we have focused on the formation of the symmetrical acrodont dentition of the veiled chameleon (Chamaeleo calyptratus). Intriguingly, our results revealed distinct asymmetries in morphology of the labial and lingual sides of the cervical loop during early developmental stages, both at the gross and ultrastructural level, with specific patterns of cell proliferation and stem cell marker expression. Asymmetrical expression of ST14 was also observed, with a positive domain on the lingual side of the cervical loop overlapping with the SOX2 domain. In contrast, micro-CT analysis of hard tissues revealed that deposition of dentin and enamel was largely symmetrical at the mineralization stage, highlighting the difference between cervical loop morphology during early development and differentiation of odontoblasts throughout later odontogenesis. In conclusion, the early asymmetrical development of the enamel organ seems to be a plesiomorphic character for all squamate reptiles, while symmetrical and precisely orchestrated deposition of hard tissue during tooth formation in acrodont dentitions probably represents a novelty in the Acrodonta clade.
Collapse
Affiliation(s)
- M Kavková
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - M Šulcová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.,Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic
| | - J Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - O Zahradníček
- Department of Radiation Dosimetry, Nuclear Physics Institute, Czech Academy of Sciences, Prague, Czech Republic
| | - J Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - A S Tucker
- Centre for Craniofacial and Regenerative Biology, King's College London, Floor 27 Guy's Tower, Guy's Hospital, London Bridge, London, UK
| | - T Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - M Buchtová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic. .,Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Veveri 97, 602 00, Brno, Czech Republic.
| |
Collapse
|
2
|
Hampl M, Dumkova J, Kavkova M, Dosedelova H, Bryjova A, Zahradnicek O, Pyszko M, Macholan M, Zikmund T, Kaiser J, Buchtova M. Polarized Sonic Hedgehog Protein Localization and a Shift in the Expression of Region-Specific Molecules Is Associated With the Secondary Palate Development in the Veiled Chameleon. Front Cell Dev Biol 2020; 8:572. [PMID: 32850780 PMCID: PMC7399257 DOI: 10.3389/fcell.2020.00572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
Secondary palate development is characterized by the formation of two palatal shelves on the maxillary prominences, which fuse in the midline in mammalian embryos. However, in reptilian species, such as turtles, crocodilians, and lizards, the palatal shelves of the secondary palate develop to a variable extent and morphology. While in most Squamates, the palate is widely open, crocodilians develop a fully closed secondary palate. Here, we analyzed developmental processes that underlie secondary palate formation in chameleons, where large palatal shelves extend horizontally toward the midline. The growth of the palatal shelves continued during post-hatching stages and closure of the secondary palate can be observed in several adult animals. The massive proliferation of a multilayered oral epithelium and mesenchymal cells in the dorsal part of the palatal shelves underlined the initiation of their horizontal outgrowth, and was decreased later in development. The polarized cellular localization of primary cilia and Sonic hedgehog protein was associated with horizontal growth of the palatal shelves. Moreover, the development of large palatal shelves, supported by the pterygoid and palatine bones, was coupled with the shift in Meox2, Msx1, and Pax9 gene expression along the rostro-caudal axis. In conclusion, our results revealed distinctive developmental processes that contribute to the expansion and closure of the secondary palate in chameleons and highlighted divergences in palate formation across amniote species.
Collapse
Affiliation(s)
- Marek Hampl
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Jana Dumkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Michaela Kavkova
- Laboratory of Computed Tomography, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Hana Dosedelova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Anna Bryjova
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czechia
| | - Oldrich Zahradnicek
- Department of Developmental Biology, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czechia.,Department of Radiation Dosimetry, Nuclear Physics Institute, Czech Academy of Sciences, Prague, Czechia
| | - Martin Pyszko
- Department of Anatomy, Histology, and Embryology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czechia
| | - Milos Macholan
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
| | - Tomas Zikmund
- Laboratory of Computed Tomography, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Jozef Kaiser
- Laboratory of Computed Tomography, Central European Institute of Technology, Brno University of Technology, Brno, Czechia
| | - Marcela Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
3
|
Hughes DF, Blackburn DG. Evolutionary origins of viviparity in Chamaeleonidae. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Daniel F. Hughes
- Department of Animal Sciences University of Illinois Urbana IL USA
| | - Daniel G. Blackburn
- Department of Biology, Electron Microscopy Center Trinity College Hartford CT USA
| |
Collapse
|
4
|
Iungman JL, Molinero MN, Simoncini MS, Piña CI. Embryological development of
Salvator merianae
(Squamata: Teiidae). Genesis 2019; 57:e23280. [DOI: 10.1002/dvg.23280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/28/2018] [Accepted: 01/07/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Josefina L. Iungman
- Proyecto Yacaré ‐ Laboratorio de Zoología Aplicada: Anexo VertebradosFacultad de Humanidades y Ciencias‐Universidad Nacional del Litoral/Ministerio de Medio Ambiente Santa Fe Santa Fe Argentina
- Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (Consejo Nacional de Investigaciones Científicas y Técnicas‐Provincia de Entre Ríos‐Universidad Autónoma de Entre Ríos). Facultad de Ciencia y Tecnología Diamante Entre Ríos Argentina
| | - María N. Molinero
- Proyecto Yacaré ‐ Laboratorio de Zoología Aplicada: Anexo VertebradosFacultad de Humanidades y Ciencias‐Universidad Nacional del Litoral/Ministerio de Medio Ambiente Santa Fe Santa Fe Argentina
| | - Melina S. Simoncini
- Proyecto Yacaré ‐ Laboratorio de Zoología Aplicada: Anexo VertebradosFacultad de Humanidades y Ciencias‐Universidad Nacional del Litoral/Ministerio de Medio Ambiente Santa Fe Santa Fe Argentina
- Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (Consejo Nacional de Investigaciones Científicas y Técnicas‐Provincia de Entre Ríos‐Universidad Autónoma de Entre Ríos). Facultad de Ciencia y Tecnología Diamante Entre Ríos Argentina
| | - Carlos I. Piña
- Proyecto Yacaré ‐ Laboratorio de Zoología Aplicada: Anexo VertebradosFacultad de Humanidades y Ciencias‐Universidad Nacional del Litoral/Ministerio de Medio Ambiente Santa Fe Santa Fe Argentina
- Centro de Investigaciones Científicas y Transferencia de Tecnología a la Producción (Consejo Nacional de Investigaciones Científicas y Técnicas‐Provincia de Entre Ríos‐Universidad Autónoma de Entre Ríos). Facultad de Ciencia y Tecnología Diamante Entre Ríos Argentina
| |
Collapse
|
5
|
Ollonen J, Da Silva FO, Mahlow K, Di-Poï N. Skull Development, Ossification Pattern, and Adult Shape in the Emerging Lizard Model Organism Pogona vitticeps: A Comparative Analysis With Other Squamates. Front Physiol 2018; 9:278. [PMID: 29643813 PMCID: PMC5882870 DOI: 10.3389/fphys.2018.00278] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/08/2018] [Indexed: 12/02/2022] Open
Abstract
The rise of the Evo-Devo field and the development of multidisciplinary research tools at various levels of biological organization have led to a growing interest in researching for new non-model organisms. Squamates (lizards and snakes) are particularly important for understanding fundamental questions about the evolution of vertebrates because of their high diversity and evolutionary innovations and adaptations that portrait a striking body plan change that reached its extreme in snakes. Yet, little is known about the intricate connection between phenotype and genotype in squamates, partly due to limited developmental knowledge and incomplete characterization of embryonic development. Surprisingly, squamate models have received limited attention in comparative developmental studies, and only a few species examined so far can be considered as representative and appropriate model organism for mechanistic Evo-Devo studies. Fortunately, the agamid lizard Pogona vitticeps (central bearded dragon) is one of the most popular, domesticated reptile species with both a well-established history in captivity and key advantages for research, thus forming an ideal laboratory model system and justifying his recent use in reptile biology research. We first report here the complete post-oviposition embryonic development for P. vitticeps based on standardized staging systems and external morphological characters previously defined for squamates. Whereas the overall morphological development follows the general trends observed in other squamates, our comparisons indicate major differences in the developmental sequence of several tissues, including early craniofacial characters. Detailed analysis of both embryonic skull development and adult skull shape, using a comparative approach integrating CT-scans and gene expression studies in P. vitticeps as well as comparative embryology and 3D geometric morphometrics in a large dataset of lizards and snakes, highlights the extreme adult skull shape of P. vitticeps and further indicates that heterochrony has played a key role in the early development and ossification of squamate skull bones. Such detailed studies of embryonic character development, craniofacial patterning, and bone formation are essential for the establishment of well-selected squamate species as Evo-Devo model organisms. We expect that P. vitticeps will continue to emerge as a new attractive model organism for understanding developmental and molecular processes underlying tissue formation, morphology, and evolution.
Collapse
Affiliation(s)
- Joni Ollonen
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Filipe O. Da Silva
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Kristin Mahlow
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Nicolas Di-Poï
- Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Hypoxia and temperature: Does hypoxia affect caiman embryo differentiation rate or rate of growth only? J Therm Biol 2013. [DOI: 10.1016/j.jtherbio.2013.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
ANDREWS ROBINM, THOMPSON MICHAELB, GREENE VIRGINIAW. Does Low Gas Permeability of Rigid-Shelled Gekkotan Eggs Affect Embryonic Development? ACTA ACUST UNITED AC 2013; 319:259-67. [DOI: 10.1002/jez.1790] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 01/30/2013] [Accepted: 02/12/2013] [Indexed: 01/16/2023]
Affiliation(s)
- ROBIN M. ANDREWS
- Department of Biological Sciences; Virginia Polytechnic Institute and State University; Blacksburg, Virginia
| | - MICHAEL B. THOMPSON
- School of Biological Sciences; Heydon-Laurence Building, A08, University of Sydney; NSW; Australia
| | - VIRGINIA W. GREENE
- Department of Biological Sciences; Virginia Polytechnic Institute and State University; Blacksburg, Virginia
| |
Collapse
|
8
|
Buchtová M, Zahradníček O, Balková S, Tucker AS. Odontogenesis in the Veiled Chameleon (Chamaeleo calyptratus). Arch Oral Biol 2013. [DOI: 10.1016/j.archoralbio.2012.10.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Ecology of the Flap-Necked Chameleon Chamaeleo dilepis In Southern Africa. ACTA ACUST UNITED AC 2012. [DOI: 10.3099/532.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Murphy BF, Parker SL, Murphy CR, Thompson MB. Angiogenesis of the uterus and chorioallantois in the eastern water skink Eulamprus quoyii. J Exp Biol 2010; 213:3340-7. [DOI: 10.1242/jeb.046862] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
We have discovered a modification of the uterus that appears to facilitate maternal-fetal communication during pregnancy in the scincid lizard Eulamprus quoyii. A vessel-dense elliptical area (VDE) on the mesometrial side of the uterus expands as the embryo grows, providing a large vascular area for physiological exchange between mother and embryo. The VDE is already developed in females with newly ovulated eggs, and is situated directly adjacent to the chorioallantois of the embryo when it develops. It is likely that signals from the early developing embryo determine the position of the VDE, as the VDE is off-centre in cases where the embryo sits obliquely in the uterus. The VDE is not a modification of the uterus over the entire chorioallantoic placenta, as the VDE is smaller than the chorioallantois after embryonic stage 33, but expansion of the VDE and growth of the chorioallantois during pregnancy are strongly correlated. The expansion of the VDE is also strongly correlated with embryonic growth and increasing embryonic oxygen demand (). We propose that angiogenic stimuli are exchanged between the VDE and the chorioallantois in E. quoyii, allowing the simultaneous growth of both tissues.
Collapse
Affiliation(s)
- Bridget F. Murphy
- Integrative Physiology Research Group, School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Scott L. Parker
- Department of Biology, Coastal Carolina University, Conway, SC 25926, USA
| | - Christopher R. Murphy
- Discipline of Anatomy and Histology, School of Medical Science and Bosch Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Michael B. Thompson
- Integrative Physiology Research Group, School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
ANDREWS ROBINM, KARSTEN KRISTOPHERB. Evolutionary innovations of squamate reproductive and developmental biology in the family Chamaeleonidae. Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01442.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Adams G, Andrews R, Noble L. Eggs under Pressure: Components of Water Potential of Chameleon Eggs during Incubation. Physiol Biochem Zool 2010; 83:207-14. [DOI: 10.1086/648565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Crossley DA, Burggren WW. Development of cardiac form and function in ectothermic sauropsids. J Morphol 2009; 270:1400-12. [PMID: 19551708 DOI: 10.1002/jmor.10764] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Evolutionary morphologists and physiologists have long recognized the phylogenetic significance of the ectothermic sauropsids. Sauropids have been classically considered to bridge between early tetrapods, ectotherms, and the evolution of endotherms. This transition has been associated with many modifications in cardiovascular form and function, which have changed dramatically during the course of vertebrate evolution. Most cardiovascular studies have focused upon adults, leaving the development of this critical system largely unexplored. In this essay, we attempt a synthesis of sauropsid cardiovascular development based on the limited literature and indicate fertile regions for future studies. Early morphological cardiovascular development, i.e., the basic formation of the tube heart and the major pulmonary and systemic vessels, is similar across tetrapods. Subsequent cardiac chamber development, however, varies considerably between developing chelonians, squamates, crocodilians, and birds, reflected in the diversity of adult ventricular structure across these taxa. The details of how these differences in morphology develop, including the molecular regulation of cardiac and vascular growth and differentiation, are still poorly understood. In terms of the functional maturation of the cardiovascular system, reflected in physiological mechanisms for regulating heart rate and cardiac output, recent work has illustrated that changes during ontogeny in parameters such as heart rate and arterial blood pressure are somewhat species-dependent. However, there are commonalities, such as a beta-adrenergic receptor tone on the embryonic heart appearing prior to 60% of development. Differential gross morphological responses to environmental stressors (oxygen, hydration, temperature) have been investigated interspecifically, revealing that cardiac development is relatively plastic, especially, with respect to change in heart growth. Collectively, the data assembled here reflects the current limited morphological and physiological understanding of cardiovascular development in sauropsids and identifies key areas for future studies of this diverse vertebrate lineage.
Collapse
Affiliation(s)
- Dane A Crossley
- Department of Biology, University of North Dakota, Grand Forks, North Dakota 58202, USA.
| | | |
Collapse
|
14
|
Andrews RM. Effects of incubation temperature on growth and performance of the veiled chameleon (Chamaeleo calyptratus). ACTA ACUST UNITED AC 2008; 309:435-46. [DOI: 10.1002/jez.470] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Andrews R, Díaz‐Paniagua C, Marco A, Portheault A. Developmental Arrest during Embryonic Development of the Common Chameleon (Chamaeleo chamaeleon) in Spain. Physiol Biochem Zool 2008; 81:336-44. [DOI: 10.1086/529449] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|