1
|
Rajendran R, Krishnan R, Oh MJ. Establishment and validation of a 2D primary gill cell culture of the sevenband grouper (Hyporthodus septemfasciatus). J Virol Methods 2024; 327:114922. [PMID: 38556175 DOI: 10.1016/j.jviromet.2024.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
A 2D primary gill cell culture system of the sevenband grouper (Hyporthodus septemfasciatus) was established to validate the pathogenesis of nervous necrosis virus (NNV) as observed in previous studies. This system, developed using the double-seeded insert (DSI) technique, yielded confluent cell layers. Upon challenge with NNV in a setup containing both autoclaved salt water and L15 media in the apical compartment, viral replication akin to that anticipated based on previous studies was observed. Consequently, we advocate for the utilization of primary gill cell culture as a viable alternative to conventional methodologies for investigating host pathogen interactions.
Collapse
Affiliation(s)
- Rahul Rajendran
- Department of Aqualife Medicine, Chonnam National University, Yeosu 50626, Republic of Korea
| | - Rahul Krishnan
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kerala 682506, India
| | - Myung-Joo Oh
- Department of Aqualife Medicine, Chonnam National University, Yeosu 50626, Republic of Korea.
| |
Collapse
|
2
|
He L, Zhao C, Xiao Q, Zhao J, Liu H, Jiang J, Cao Q. Profiling the Physiological Roles in Fish Primary Cell Culture. BIOLOGY 2023; 12:1454. [PMID: 38132280 PMCID: PMC10741176 DOI: 10.3390/biology12121454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Fish primary cell culture has emerged as a valuable tool for investigating the physiological roles and responses of various cell types found in fish species. This review aims to provide an overview of the advancements and applications of fish primary cell culture techniques, focusing on the profiling of physiological roles exhibited by fish cells in vitro. Fish primary cell culture involves the isolation and cultivation of cells directly derived from fish tissues, maintaining their functional characteristics and enabling researchers to study their behavior and responses under controlled conditions. Over the years, significant progress has been made in optimizing the culture conditions, establishing standardized protocols, and improving the characterization techniques for fish primary cell cultures. The review highlights the diverse cell types that have been successfully cultured from different fish species, including gonad cells, pituitary cells, muscle cells, hepatocytes, kidney and immune cells, adipocyte cells and myeloid cells, brain cells, primary fin cells, gill cells, and other cells. Each cell type exhibits distinct physiological functions, contributing to vital processes such as metabolism, tissue regeneration, immune response, and toxin metabolism. Furthermore, this paper explores the pivotal role of fish primary cell culture in elucidating the mechanisms underlying various physiological processes. Researchers have utilized fish primary cell cultures to study the effects of environmental factors, toxins, pathogens, and pharmaceutical compounds on cellular functions, providing valuable insights into fish health, disease pathogenesis, and drug development. The paper also discusses the application of fish primary cell cultures in aquaculture research, particularly in investigating fish growth, nutrition, reproduction, and stress responses. By mimicking the in vivo conditions in vitro, primary cell culture has proven instrumental in identifying key factors influencing fish health and performance, thereby contributing to the development of sustainable aquaculture practices.
Collapse
Affiliation(s)
- Lingjie He
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Cheng Zhao
- College of Marine Science and Engineering, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing Normal University, Nanjing 210023, China;
| | - Qi Xiao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Ju Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Haifeng Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Jun Jiang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| | - Quanquan Cao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (L.H.); (Q.X.); (J.Z.); (H.L.)
| |
Collapse
|
3
|
Bawa-Allah KA, Otitoloju A, Hogstrand C. Cultured rainbow trout gill epithelium as an in vitro method for marine ecosystem toxicological studies. Heliyon 2021; 7:e08018. [PMID: 34604559 PMCID: PMC8473545 DOI: 10.1016/j.heliyon.2021.e08018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 11/19/2022] Open
Abstract
Accurate assessment of the toxic potential of waterborne chemicals is vital to pollution control and management in aquatic ecosystems. However, there is a global advocacy for the reduction, replacement, and refinement of the use of whole organisms in chemical screening studies. This has encouraged the development of alternative in vitro and computer-based techniques. In this study we investigated the possibility of optimising cultured rainbow trout gill epithelium to tolerate seawater and its use to assess toxicity of waterborne chemicals. Gill cells were obtained from rainbow trout acclimated to freshwater or to artificial seawater and were cultured in L-15 culture medium supplemented with or without cortisol. Intact gill epithelia were subjected to 20‰, 25‰ or 30‰ artificial seawater for 24 h and cell viability was assessed. The viability of gill cells obtained from freshwater or artificial seawater acclimated fish and grown without cortisol reduced to less than 80% compared to controls. The addition of cortisol to culture medium improved cell viability in seawater with 94%–95% viability compared to controls. The optimised gill cell epithelium was exposed to trace elements at concentrations previously reported as causing 50% response or mortality (EC/LC50) using other cell-based and in vivo studies. Viability of the gill cells were compared to the 50% response or survival reported. The gill cells were found to be more sensitive than other isolated primary seawater-fish cells, having 5%, 16% and 37% survival on exposure to arsenic, cadmium, and lead, respectively. Results from this study has shown that cultured rainbow trout gill epithelia can be optimised to tolerate seawater and can be used in toxicological evaluations of pollutants resuspended in seawater, mimicking marine ecosystem conditions. The optimised gill cell system can serve as a viable in vitro method for marine ecosystem toxicological studies which would facilitate effective pollution control and management.
Collapse
Affiliation(s)
- Kafilat Adebola Bawa-Allah
- Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
- Corresponding author.
| | - Adebayo Otitoloju
- Department of Zoology, Faculty of Science, University of Lagos, Akoka, Lagos, Nigeria
| | - Christer Hogstrand
- Department of Nutritional Sciences, Faculty of Life Sciences & Medicine, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
4
|
Kropf C, Fent K, Fischer S, Casanova A, Segner H. ABC transporters in gills of rainbow trout ( Oncorhynchus mykiss). J Exp Biol 2020; 223:jeb221069. [PMID: 32532865 DOI: 10.1242/jeb.221069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023]
Abstract
Fish gills are a structurally and functionally complex organ at the interface between the organism and the aquatic environment. Gill functions include the transfer of organic molecules, both natural ones and xenobiotic compounds. Whether the branchial exchange of organic molecules involves active transporters is currently not known. Here, we investigated the presence, diversity and functional activity of ATP-binding cassette (ABC) transporters in gills of juvenile rainbow trout. By means of RT-qPCR, gene transcripts of members from the abcb, abcc and abcg subfamilies were identified. Comparisons with mRNA profiles from trout liver and kidney revealed that ABC transporters known to have an apical localization in polarized epithelia, especially abcc2 and abcb1, were under-represented in the gills. In contrast, ABC transporters with mainly basolateral localization showed comparable gene transcript levels in the three organs. The most prominent ABC transporter in gills was an abcb subfamily member, which was annotated as abcb5 based on the synteny and phylogeny. Functional in vivo assays pointed to a role of branchial ABC transporters in branchial solute exchange. We further assessed the utility of primary gill cell cultures to characterize transporter-mediated branchial exchange of organic molecules, by examining ABC transporter gene transcript patterns and functional activity in primary cultures. The gill cultures displayed functional transport activity, but the ABC mRNA expression patterns were different to those of the intact gills. Overall, the findings of this study provide evidence for the presence of functional ABC transporter activity in gills of fish.
Collapse
Affiliation(s)
- Christian Kropf
- Centre for Fish and Wildlife Health, University of Bern, 3012 Bern, Switzerland
- University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, 4132 Muttenz, Switzerland
- Swiss Federal Institute of Technology, ETH Zürich, Institute of Biogeochemistry and Pollution Dynamics, 8092 Zürich, Switzerland
| | - Stephan Fischer
- aQuaTox-Solutions GmbH, 8304 Wallisellen, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Ayako Casanova
- Centre for Fish and Wildlife Health, University of Bern, 3012 Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
5
|
Mardones JI, Shabala L, Shabala S, Dorantes-Aranda JJ, Seger A, Hallegraeff GM. Fish gill damage by harmful microalgae newly explored by microelectrode ion flux estimation techniques. HARMFUL ALGAE 2018; 80:55-63. [PMID: 30502812 DOI: 10.1016/j.hal.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 06/09/2023]
Abstract
Harmful algal blooms (HAB) are responsible for massive mortalities of wild and aquacultured fish due to noticeable gill damage, but the precise fish-killing mechanisms remain poorly understood. A non-invasive microelectrode ion flux estimation (MIFE) technique was successfully applied to assess changes in membrane-transport processes in a model fish gill cell line exposed to harmful microplankton. Net Ca2+, H+, K+ ion fluxes in the rainbow trout cell line RTgill-W1 were monitored before and after addition of lysed cells of this Paralytic Shellfish Toxins (PST) producer along with purified endocellular dinoflagellate PST. It was demonstrated that PST alone do not play a role in fish gill damage during A. catenella outbreaks as previously thought, but that other ichthyotoxic metabolites from lysed algal cells (i.e. lipid peroxidation products or other unknown metabolites) result in net K+ efflux from fish gill cells and thereby gill cell death.
Collapse
Affiliation(s)
- Jorge I Mardones
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia; Centro de Estudios de Algas Nocivas (CREAN), Instituto de Fomento Pesquero (IFOP), Puerto Montt, Chile.
| | - Lana Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
| | - Juan José Dorantes-Aranda
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - Andreas Seger
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| | - Gustaaf M Hallegraeff
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 129, Hobart, Tasmania 7001, Australia
| |
Collapse
|
6
|
Maunder RJ, Baron MG, Owen SF, Jha AN. Investigations to extend viability of a rainbow trout primary gill cell culture. ECOTOXICOLOGY (LONDON, ENGLAND) 2017; 26:1314-1326. [PMID: 29127661 DOI: 10.1007/s10646-017-1856-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The primary culture of fish gill cells can provide functional, cell diverse, model in vitro platforms able to tolerate an aqueous exposure analogous to in vivo tissues. The utility of such models could be extended to a variety of longer term exposure scenarios if a method could be established to extend culture viability when exposed to water for longer periods. Here we report findings of a series of experiments to establish increased longevity, as monitored by culture transepithelial electrical resistance (TEER) and concurrent histological developments. Experimental cultures improved TEER during apical freshwater exposure for a mean of twelve days, compared to previous viabilities of up to 3 days. Cultures with larger surface areas and the use of trout serum rather than foetal bovine serum (FBS) contributed to the improvement, while perfusion of the intact gill prior to cell harvest resulted in a significantly faster preparation. Detailed scanning electron microscopy analysis of cultures revealed diverse surface structures that changed with culture age. Cultures grown on membranes with an increased porosity, collagen coating or 3D structure were of no benefit compared to standard membranes. Increased culture longevity, achieved in this study and reported for the first time, is a significant breakthrough and opens up a variety of future experimentation that has previously not been possible. The extended viability facilitates exploration of in vitro chronic or pulse-exposure test paradigms, longer term physiological and environmental monitoring studies and the potential for interactive co-culture with other organoid micro-tissues.
Collapse
Affiliation(s)
- Richard J Maunder
- School of Biological and Marine Sciences, University of Plymouth, Devon, PL4 8AA, UK
| | - Matthew G Baron
- School of Biological and Marine Sciences, University of Plymouth, Devon, PL4 8AA, UK
| | - Stewart F Owen
- AstraZeneca, Alderley Park, Macclesfield, Cheshire, SK10 4TF, UK
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Devon, PL4 8AA, UK.
| |
Collapse
|
7
|
Ohkubo N, Tomaru Y, Yamaguchi H, Kitatsuji S, Mochida K. Development of a method to assess the ichthyotoxicity of the harmful marine microalgae Karenia spp. using gill cell cultures from red sea bream (Pagrus major ). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1603-1612. [PMID: 28695381 DOI: 10.1007/s10695-017-0396-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
The present study reports the development of a method to investigate ichthyotoxicity of harmful marine microalgae using cultured red sea bream (Pagrus major) gill cells. The cultured gill cells formed adherent 1-2 layers on the bottom of the culture plate and could tolerate seawater exposure for 4 h without significant alteration in cell survival. The microalgae Karenia mikimotoi, Karenia papilionacea, K. papilionacea phylotype-I, and Heterosigma akashiwo were cultured, then directly exposed to gill cells. After K. mikimotoi and K. papilionacea phylotype-I exposure, live cell coverage was significantly lower than in the cells exposed to a seawater-based medium (control cells; P < 0.05). Toxicity of K. mikimotoi cells was weakened when cells were ruptured, and was almost inexistent when the algal cells were removed from the culture by filtration. Significant cytotoxicity was detected in the concentrated ruptured cells, and in the concentrated of ruptured cells after freezing and thawing though cytotoxicity was weakened; whereas, cytotoxicity almost disappeared after heat treatment. In addition, examination of the distribution of toxic substances from the ruptured cells showed that cytotoxicity mainly occurred in the fraction with the resuspended pellet after centrifugation at 3000×g.
Collapse
Affiliation(s)
- Nobuyuki Ohkubo
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan.
| | - Yuji Tomaru
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Haruo Yamaguchi
- Faculty of Agriculture, Kochi University, Nankoku, Kochi, 783-8502, Japan
| | - Saho Kitatsuji
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Kazuhiko Mochida
- National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| |
Collapse
|
8
|
Watanabe S, Itoh K, Kaneko T. Prolactin and cortisol mediate the maintenance of hyperosmoregulatory ionocytes in gills of Mozambique tilapia: Exploring with an improved gill incubation system. Gen Comp Endocrinol 2016; 232:151-9. [PMID: 27118703 DOI: 10.1016/j.ygcen.2016.04.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/23/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
Endocrine control of osmoregulation is essential for teleosts to adapt to various aquatic environments. Prolactin (PRL) is known as a fundamental endocrine factor for hyperosmoregulation in teleost fishes, acting on ionocytes in the gills to maintain ion concentrations of body fluid within narrow physiological ranges in freshwater conditions. Cortisol is also known as an osmoregulation-related steroid in teleosts; however, its precise function is still controversial. Here, we investigated more detailed effects of PRL and roles of cortisol on ionocytes of Mozambique tilapia (Oreochromis mossambicus) in freshwater, using an improved gill filament incubation system. This incubation system resulted in enhanced cell viability, as evaluated using the dead cell marker propidium iodide. PRL was shown to maintain the density of freshwater-type ionocytes in isolated gill filaments; this effect of PRL is not achieved by the activation of cell proliferation, but by the maintenance of existing ionocytes. Cortisol alone did not show any distinct effect on ionocyte density in isolated gill filaments. We also assessed effects of PRL and cortisol on relative mRNA levels of NCC2, NHE3, NKAa1a, and NKAa1b. PRL maintained relative NCC2 and NKAa1a mRNA abundance, and cortisol showed a stimulatory effect on relative NCC2 and NKAa1a mRNA levels in combination with PRL, though cortisol alone exerted no effect on these genes. An increase in NKAa1b mRNA abundance was detected in cortisol-treated groups. PRL treatment also maintained normal NCC2 localization at the apical membrane of the ionocytes. These results indicate that PRL maintains freshwater-type ionocytes, and that cortisol stimulates the function of ionocytes maintained by PRL.
Collapse
Affiliation(s)
- Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan.
| | - Kohei Itoh
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
9
|
Leguen I, Le Cam A, Montfort J, Peron S, Fautrel A. Transcriptomic Analysis of Trout Gill Ionocytes in Fresh Water and Sea Water Using Laser Capture Microdissection Combined with Microarray Analysis. PLoS One 2015; 10:e0139938. [PMID: 26439495 PMCID: PMC4595143 DOI: 10.1371/journal.pone.0139938] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/18/2015] [Indexed: 12/22/2022] Open
Abstract
Fish gills represent a complex organ composed of several cell types that perform multiple physiological functions. Among these cells, ionocytes are implicated in the maintenance of ion homeostasis. However, because the ionocyte represents only a small percent of whole gill tissue, its specific transcriptome can be overlooked among the numerous cell types included in the gill. The objective of this study is to better understand ionocyte functions by comparing the RNA expression of this cell type in freshwater and seawater acclimated rainbow trout. To realize this objective, ionocytes were captured from gill cryosections using laser capture microdissection after immunohistochemistry. Then, transcriptome analyses were performed on an Agilent trout oligonucleotide microarray. Gene expression analysis identified 108 unique annotated genes differentially expressed between freshwater and seawater ionocytes, with a fold change higher than 3. Most of these genes were up-regulated in freshwater cells. Interestingly, several genes implicated in ion transport, extracellular matrix and structural cellular proteins appeared up-regulated in freshwater ionocytes. Among them, several ion transporters, such as CIC2, SLC26A6, and NBC, were validated by qPCR and/or in situ hybridization. The latter technique allowed us to localize the transcripts of these ion transporters in only ionocytes and more particularly in the freshwater cells. Genes involved in metabolism and also several genes implicated in transcriptional regulation, cell signaling and the cell cycle were also enhanced in freshwater ionocytes. In conclusion, laser capture microdissection combined with microarray analysis allowed for the determination of the transcriptional signature of scarce cells in fish gills, such as ionocytes, and aided characterization of the transcriptome of these cells in freshwater and seawater acclimated trout.
Collapse
Affiliation(s)
- Isabelle Leguen
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
- * E-mail:
| | - Aurélie Le Cam
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | - Sandrine Peron
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | - Alain Fautrel
- INSERM UMR991, Rennes, France
- Université de Rennes 1 Plateforme H2P2, Biosit, Rennes, France
| |
Collapse
|
10
|
Bui P, Kelly SP. Claudins in a primary cultured puffer fish (Tetraodon nigroviridis) gill epithelium model alter in response to acute seawater exposure. Comp Biochem Physiol A Mol Integr Physiol 2015; 189:91-101. [PMID: 26239219 DOI: 10.1016/j.cbpa.2015.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 11/15/2022]
Abstract
Gill epithelium permeability and qualitative/quantitative aspects of gill claudin (cldn) tight junction (TJ) protein transcriptomics were examined with a primary cultured model gill epithelium developed using euryhaline puffer fish (Tetraodon nigroviridis) gills. The model was prepared using seawater-acclimated fish gills and was cultured on permeable cell culture filter supports. The model is composed of 1-2 confluent layers of gill pavement cells (PVCs), with the outer layer exhibiting prominent apical surface microridges and TJs between adjacent cells. During development of electrophysiological characteristics, the model exhibits a sigmoidal increase in transpithelial resistance (TER) and plateaus around 30 kΩcm(2). At this point paracellular movement of [(3)H]polyethylene glycol (PEG) 4000 was low at ~1.75 cm s(-1)×10(-7). When exposed to apical seawater (SW) epithelia exhibit a marked decrease in TER while PEG flux remained unchanged for at least 6 h. In association with this, transcript encoding cldn TJ proteins cldn3c, -23b, -27a, -27c, -32a and -33b increased during the first 6 h while cldn11a decreased. This suggests that these proteins are involved in maintaining barrier properties between gill PVCs of SW fishes. Gill cldn mRNA abundance also altered 6 and 12 h following abrupt SW exposure of puffer fish, but in a manner that differed qualitatively and quantitatively from the cultured model. This most likely reflects the cellular heterogeneity of whole tissue and/or the contribution of the endocrine system in intact fish. The current study provides insight into the physiological and transcriptomic response of euryhaline fish gill cells to a hyperosmotic environment.
Collapse
Affiliation(s)
- Phuong Bui
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
11
|
Trubitt RT, Rabeneck DB, Bujak JK, Bossus MC, Madsen SS, Tipsmark CK. Transepithelial resistance and claudin expression in trout RTgill-W1 cell line: effects of osmoregulatory hormones. Comp Biochem Physiol A Mol Integr Physiol 2014; 182:45-52. [PMID: 25490293 DOI: 10.1016/j.cbpa.2014.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 01/12/2023]
Abstract
In the present study, we examined the trout gill cell line RTgill-W1 as a possible tool for in vitro investigation of epithelial gill function in fish. After seeding in transwells, transepithelial resistance (TER) increased until reaching a plateau after 1-2 days (20-80Ω⋅cm(2)), which was then maintained for more than 6 days. Tetrabromocinnamic acid, a known stimulator of TER via casein kinase II inhibition, elevated TER in the cell line to 125% of control values after 2 and 6h. Treatment with ethylenediaminetetraacetic acid induced a decrease in TER to <15% of pre-treatment level. Cortisol elevated TER after 12-72 h in a concentration-dependent manner, and this increase was antagonized by growth hormone (Gh). The effects of three osmoregulatory hormones, Gh, prolactin, and cortisol, on the mRNA expression of three tight junction proteins were examined: claudin-10e (Cldn-10e), Cldn-30, and zonula occludens-1 (Zo-1). The expression of cldn-10e was stimulated by all three hormones but with the strongest effect of Gh (50-fold). cldn-30 expression was stimulated especially by cortisol (20-fold) and also by Gh (4-fold). Finally, zo-1 was unresponsive to hormone treatment. Western blot analysis detected Cldn-10e and Cldn-30 immunoreactive proteins of expected molecular weight in samples from rainbow trout gills but not from RTgill-W1 cultures, possibly due to low expression levels. Collectively, these results show that the RTgill-W1 cell layers have tight junctions between cells, are sensitive to hormone treatments, and may provide a useful model for in vitro study of some in vivo gill phenomena.
Collapse
Affiliation(s)
- Rebecca T Trubitt
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - D Brett Rabeneck
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Joanna K Bujak
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Maryline C Bossus
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Steffen S Madsen
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA; Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
12
|
Kondera E, Ługowska K, Sarnowski P. High affinity of cadmium and copper to head kidney of common carp (Cyprinus carpio L.). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:9-22. [PMID: 23756826 PMCID: PMC3901939 DOI: 10.1007/s10695-013-9819-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/03/2013] [Indexed: 06/01/2023]
Abstract
The aim of the present study was to evaluate bioaccumulation of metals in various tissues of the freshwater fish Cyprinus carpio L. exposed to cadmium and copper (a xenobiotic and a microelement). The fish were subjected to short-term (3 h, Cd-S and Cu-S) or long-term (4 weeks, Cd-L and Cu-L) exposures to 100 % 96hLC₅₀ or 10 % 96hLC₅₀, respectively. Blood, gill, liver, head and trunk kidney were isolated weekly from 5 fish of each group for 4 weeks (post-short-term exposure and during long-term exposure). Atomic absorption spectrophotometry technique was applied to measure concentrations of metals (Cd and Cu) in fish tissues. Initial concentrations of copper in fish tissues were higher than levels of cadmium. Cadmium and copper levels increased in all tissues of metal-exposed fish. After short-term exposures (at higher concentration) and during long-term exposures (at lower concentration), similar changes in metal concentrations were observed. The values of accumulation factor (ratio of final to initial metal concentration) were higher for cadmium as compared to copper. Comparison of metal levels and accumulation factors in various tissues revealed that cadmium and copper showed very high affinity to head kidney of common carp (higher than to other tissues), but accumulation factors for cadmium in trunk, head kidney and liver were much higher than for copper. The concentrations of copper in organs of Cu-exposed fish increased only slightly and quickly returned to the control level, which shows that fish organism easily buffered metal level. On the other hand, concentrations of cadmium considerably increased and remained elevated for a long time which suggests that activation of mechanisms of sequestration and elimination of cadmium required more time.
Collapse
Affiliation(s)
- Elżbieta Kondera
- Department of Animal Physiology, University of Natural Sciences and Humanities, Prusa 12, 08-110, Siedlce, Poland,
| | | | | |
Collapse
|
13
|
Trayer V, Hwang PP, Prunet P, Thermes V. Assessment of the role of cortisol and corticosteroid receptors in epidermal ionocyte development in the medaka (Oryzias latipes) embryos. Gen Comp Endocrinol 2013; 194:152-61. [PMID: 24084592 DOI: 10.1016/j.ygcen.2013.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 12/28/2022]
Abstract
Cortisol is a pleiotropic glucocorticoid hormone that acts through the intracellular glucocorticoid receptors (GR). Cortisol affects many important biological functions in mammals, including immune function, behavior, stress, metabolism, growth and organogenesis. In fishes, cortisol has an additional function in the osmoregulatory activity of ionocytes (ICs). Although much progress has been made toward understanding cortisol action at the levels of adult osmoregulatory tissues, the developmental functions of cortisol and its receptors in ICs remain to be clarified. We first analyzed the total contents of both cortisol and corticosteroid receptor mRNAs (GR1, GR2 and MR) during medaka development. Although low levels of cortisol were detected during development of the medaka embryo, maternal GR1, GR2 and MR transcripts were detected at higher levels than zygotic transcripts. We investigated the effect of exogenous cortisol on IC number during medaka embryogenesis. We observed that cortisol treatment induced an earlier expansion of the IC population but did not modify the final IC number. Using functional genomic approaches, we also tested the involvement of GR1, GR2 and mineralocorticoid receptor (MR) in IC development by systematic knock-down with translation-blocking morpholinos. Only GR2 knock-down led to a reduction of the total number of ICs in the epidermis. In addition, a GR2 splice-blocking morpholino did not have any effect on the biogenesis of ICs, underscoring the importance of maternally inherited GR2 mRNAs. We propose that maternal GR2, but not GR1 or MR, is a major pathway in the IC biogenesis in medaka most likely through cortisol activation, and that cortisol exposition fine-tunes their developmental timing. These findings provide a framework for future research on the regulatory functions of corticosteroids in euryhaline fishes and provide medaka as an advantageous model to further elucidate the underlying molecular regulatory mechanisms of IC development.
Collapse
|
14
|
Kelly SP, Chasiotis H. Glucocorticoid and mineralocorticoid receptors regulate paracellular permeability in a primary cultured gill epithelium. ACTA ACUST UNITED AC 2011; 214:2308-18. [PMID: 21697422 DOI: 10.1242/jeb.055962] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The role of corticosteroid receptors (CRs) in the regulation of gill permeability was examined using a primary cultured trout gill epithelium. The epithelium expressed both glucocorticoid receptors (GR1 and GR2) and a mineralocorticoid receptor (MR), and cortisol treatment significantly increased transepithelial resistance (TER) and decreased paracellular [(3)H]PEG-4000 flux. Epithelial permeability was unaffected by deoxycorticosterone or aldosterone. The GR antagonist RU486 as well as MR antagonists spironolactone and RU26752 significantly reduced, but did not completely block, the effects of cortisol. The MR antagonist eplerenone was without effect. Only RU486 + spironolactone or RU486 + RU26752 treatment completely suppressed the effects of cortisol. On its own, RU486 had cortisol-like effects which could be blocked by spironolactone, suggesting that although RU486 is a GR antagonist, in this system it may also have agonistic properties that are mediated through the MR. The GR agonist dexamethasone increased TER and reduced [(3)H]PEG-4000 flux across cultured epithelia and was unaffected by MR antagonists. Therefore, alterations in transcript abundance of select tight junction (TJ) proteins were examined in response to cortisol, dexamethasone (a GR agonist) and RU486 (as a MR agonist). Occludin and claudin-7, -8d, -12 and -31 mRNA were significantly elevated in response to cortisol, dexamethasone or RU486 treatment. Claudin-3a mRNA was significantly elevated in response to cortisol or dexamethasone only, and claudin-28b and -30 mRNA were significantly altered following cortisol or RU486 treatment only. The data support a role for the GRs and MR in regulating gill permeability and suggest that TJ proteins are responsive to cortisol through both or individual CR types.
Collapse
Affiliation(s)
- Scott P Kelly
- Department of Biology, York University, Toronto, ON, Canada, M3J 1P3.
| | | |
Collapse
|
15
|
Sandbichler AM, Egg M, Schwerte T, Pelster B. Claudin 28b and F-actin are involved in rainbow trout gill pavement cell tight junction remodeling under osmotic stress. ACTA ACUST UNITED AC 2011; 214:1473-87. [PMID: 21490256 DOI: 10.1242/jeb.050062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Permeability of rainbow trout gill pavement cells cultured on permeable supports (single seeded inserts) changes upon exposure to freshwater or treatment with cortisol. The molecular components of this change are largely unknown, but tight junctions that regulate the paracellular pathway are prime candidates in this adaptational process. Using differential display polymerase chain reaction we found a set of 17 differentially regulated genes in trout pavement cells that had been exposed to freshwater apically for 24 h. Five genes were related to the cell-cell contact. One of these genes was isolated and identified as encoding claudin 28b, an integral component of the tight junction. Immunohistochemical reactivity to claudin 28b protein was concentrated in a circumferential ring colocalized to the cortical F-actin ring. To study the contribution of this isoform to changes in transepithelial resistance and Phenol Red diffusion under apical hypo-or hyperosmotic exposure we quantified the fluorescence signal of this claudin isoform in immunohistochemical stainings together with the fluorescence of phalloidin-probed F-actin. Upon hypo-osmotic stress claudin 28b fluorescence and epithelial tightness remained stable. Under hyperosmotic stress, the presence of claudin 28b at the junction significantly decreased, and epithelial tightness was severely reduced. Cortical F-actin fluorescence increased upon hypo-osmotic stress, whereas hyperosmotic stress led to a separation of cortical F-actin rings and the number of apical crypt-like pores increased. Addition of cortisol to the basolateral medium attenuated cortical F-actin separation and pore formation during hyperosmotic stress and reduced claudin 28b in junctions except after recovery of cells from exposure to freshwater. Our results showed that short-term salinity stress response in cultured trout gill cells was dependent on a dynamic remodeling of tight junctions, which involves claudin 28b and the supporting F-actin ring.
Collapse
Affiliation(s)
- Adolf Michael Sandbichler
- Institute of Zoology, and Center for Molecular Biosciences, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
16
|
Cortisol affects tight junction morphology between pavement cells of rainbow trout gills in single-seeded insert culture. J Comp Physiol B 2011; 181:1023-34. [DOI: 10.1007/s00360-011-0586-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
|
17
|
Effects of iron on rainbow trout gill cells in primary culture. Cell Biol Toxicol 2011; 27:311-9. [DOI: 10.1007/s10565-011-9189-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 04/05/2011] [Indexed: 01/01/2023]
|
18
|
Badonnel K, Durieux D, Monnerie R, Grébert D, Salesse R, Caillol M, Baly C. Leptin-sensitive OBP-expressing mucous cells in rat olfactory epithelium: a novel target for olfaction-nutrition crosstalk? Cell Tissue Res 2009; 338:53-66. [PMID: 19688223 DOI: 10.1007/s00441-009-0846-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Accepted: 07/10/2009] [Indexed: 01/22/2023]
Abstract
Although odorant-binding proteins (OBP) are one of the most abundant classes of proteins in the mammalian olfactory mucus, they have only recently been ascribed a functional role in the detection of odorants by olfactory neurons. Among the three OBPs described in the rat, OBP-1f is mainly secreted by the lateral nasal glands (LNG) and Bowman's glands, and its expression is transcriptionally regulated by food deprivation in the olfactory mucosa, but not in LNG. Therefore, mucus composition might be locally regulated by hormones or molecules relevant to nutritional status. Our aim has been to investigate the mechanisms of such physiological regulation at the cellular level, through both the examination of OBP-1f synthesis sites in the olfactory mucosa and their putative regulation by leptin, a locally acting satiety hormone. Immunohistochemical observations have allowed the identification of a novel population of OBP-1f-secreting cells displaying morphological and functional characteristics similar to those of epithelial mucous cells. Ultrastructural analyses by both transmission and scanning electron microscopy has enabled a more complete cytoarchitectural characterization of these specialized olfactory mucous cells in their tissue environment. These globular cells are localized in discrete zones of the olfactory epithelium, mainly in the fourth turbinate, and are often scattered from the basal to the apical surface of the epithelium. They contain numerous small droplets of mucosubstances. Using an in-vitro-derived model of olfactory mucosa primary culture, we have been able to demonstrate that leptin increases the production of mucus by these cells, so that they constitute potential targets for the physiological modulation of mucus composition by nutritional cues.
Collapse
Affiliation(s)
- Karine Badonnel
- INRA, UMR1197 Neurobiologie de l'Olfaction et de la Prise Alimentaire, Jouy en Josas, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Applications and potential uses of fish gill cell lines: examples with RTgill-W1. In Vitro Cell Dev Biol Anim 2009; 45:127-34. [DOI: 10.1007/s11626-008-9173-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
|
20
|
Mauger PE, Labbé C, Bobe J, Cauty C, Leguen I, Baffet G, Le Bail PY. Characterization of goldfish fin cells in culture: some evidence of an epithelial cell profile. Comp Biochem Physiol B Biochem Mol Biol 2008; 152:205-15. [PMID: 19068235 DOI: 10.1016/j.cbpb.2008.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 11/06/2008] [Accepted: 11/12/2008] [Indexed: 12/20/2022]
Abstract
Comprehensive characterization of cultured cells in fish was little explored and cell origin is often deduced from morphological analogies with either epithelial of fibroblastic cells. This study aims to characterize cell origin in goldfish fin culture using morphological, immunochemical, and molecular approaches. Time lapse analysis revealed that cultured cell morphology changed within minutes. Therefore, cell morphology cannot predict whether cells are from fibroblastic or epithelial origin. The labeling pattern of heterologous anti-cytokeratin and anti-vimentin antibodies against goldfish epithelial cells and fibroblasts was first tested on skin sections and the corresponding labeling of the cultured cells was analyzed. No cell origin specificity could be obtained with the chosen antibodies. In the molecular approach, detection levels of three cytokeratin (CauK8-IIS, CauK49-IE and CauK50-Ie) and one vimentin transcripts were assessed on skin and fin samples. Specificity for epithelial cells of the most abundant mRNA, CauK49-Ie, was thereafter validated on skin sections by in situ hybridization. The selected markers were used afterwards to characterize fin cultures. CauK49-IE riboprobe labeled every cell in young cultures whereas no labeling was observed in older cultures. Accordingly, CauK49-IE transcript levels decreased after 15 days culture while CauK8-IIS ones increased. The use of homologous marker gave evidence that young cultured cells from goldfish fin are homogeneously of epithelial type and that cell characteristics may change over culture time.
Collapse
Affiliation(s)
- P-E Mauger
- Institut National de la Recherche Agronomique, UR 1037 SCRIBE, Campus de Beaulieu, Rennes cedex, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Galvez F, Tsui T, Wood CM. Cultured trout gill epithelia enriched in pavement cells or in mitochondria-rich cells provides insights into Na+ and Ca2+ transport. In Vitro Cell Dev Biol Anim 2008; 44:415-25. [DOI: 10.1007/s11626-008-9131-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Accepted: 06/10/2008] [Indexed: 11/24/2022]
|