1
|
Rennert ME, Kneitel JM. Variable effects of a fire-retardant gradient on seasonal wetland communities. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02855-2. [PMID: 39826000 DOI: 10.1007/s10646-025-02855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 01/20/2025]
Abstract
Wildfires have become larger and more severe in recent decades. Fire retardant is one of the most common wildfire response tools to protect against loss of life and property. Previous studies have documented various effects of fire retardant, which commonly contains chemicals used in fertilizers, on plant and invertebrate community composition. This mesocosm study investigated the effects of fire retardant on water quality and plant and invertebrate communities in California vernal pools. This study found that fire retardant caused water quality conditions to shift from oligotrophic to eutrophic with strong correlations between fire retardant and phosphates, nitrates, conductivity, and chlorophyll-a. Algal cover increased with added fire-retardant concentration. Shifts in invertebrate and plant communities occurred even at relatively low fire-retardant concentrations. Abundance of passive dispersers (crustaceans) peaked at medium concentrations of fire retardant, but time also influenced the relationship between fire retardant and passive invertebrate abundance. Active disperser (insects) abundance increased with increasing fire-retardant concentration and invertebrate richness peaked at medium concentrations. This study informs land managers, government agencies, and the public of the side-effects of fire-retardant use on populations, communities, and water quality of freshwater ecosystems.
Collapse
Affiliation(s)
- Monica E Rennert
- Department of Biological Sciences, California State University, Sacramento, CA, 95819, USA.
| | - Jamie M Kneitel
- Department of Biological Sciences, California State University, Sacramento, CA, 95819, USA
| |
Collapse
|
2
|
Cowan ZL, Green L, Clark TD, Blewett TA, De Bonville J, Gagnon T, Hoots E, Kuchenmüller L, Leeuwis RHJ, Navajas Acedo J, Rowsey LE, Scheuffele H, Skeeles MR, Silva-Garay L, Jutfelt F, Binning SA. Global change and premature hatching of aquatic embryos. GLOBAL CHANGE BIOLOGY 2024; 30:e17488. [PMID: 39238185 DOI: 10.1111/gcb.17488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Anthropogenically induced changes to the natural world are increasingly exposing organisms to stimuli and stress beyond that to which they are adapted. In aquatic systems, it is thought that certain life stages are more vulnerable than others, with embryos being flagged as highly susceptible to environmental stressors. Interestingly, evidence from across a wide range of taxa suggests that aquatic embryos can hatch prematurely, potentially as an adaptive response to external stressors, despite the potential for individual costs linked with underdeveloped behavioural and/or physiological functions. However, surprisingly little research has investigated the prevalence, causes and consequences of premature hatching, and no compilation of the literature exists. Here, we review what is known about premature hatching in aquatic embryos and discuss how this phenomenon is likely to become exacerbated with anthropogenically induced global change. Specifically, we (1) review the mechanisms of hatching, including triggers for premature hatching in experimental and natural systems; (2) discuss the potential implications of premature hatching at different levels of biological organisation from individuals to ecosystems; and (3) outline knowledge gaps and future research directions for understanding the drivers and consequences of premature hatching. We found evidence that aquatic embryos can hatch prematurely in response to a broad range of abiotic (i.e. temperature, oxygen, toxicants, light, pH, salinity) and biotic (i.e. predators, pathogens) stressors. We also provide empirical evidence that premature hatching appears to be a common response to rapid thermal ramping across fish species. We argue that premature hatching represents a fascinating yet untapped area of study, and the phenomenon may provide some additional resilience to aquatic communities in the face of ongoing global change.
Collapse
Affiliation(s)
- Zara-Louise Cowan
- Natural Resources Institute Finland (Luke), Oulu, Finland
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Leon Green
- Department of Biology and Environmental Sciences, Faculty of Natural Sciences, Kristineberg Center, University of Gothenburg, Fiskebäckskil, Sweden
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jeremy De Bonville
- Département de Sciences Biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Thomas Gagnon
- Département de Sciences Biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Elizabeth Hoots
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Luis Kuchenmüller
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Robine H J Leeuwis
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Lauren E Rowsey
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick, Canada
| | - Hanna Scheuffele
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | | | - Lorena Silva-Garay
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Fredrik Jutfelt
- Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biological and Environmental Sciences, Faculty of Science, University of Gothenburg, Gothenburg, Sweden
| | - Sandra A Binning
- Département de Sciences Biologiques, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Hashimshony T, Levin L, Fröbius AC, Dahan N, Chalifa-Caspi V, Hamo R, Gabai-Almog O, Blais I, Assaraf YG, Lubzens E. A transcriptomic examination of encased rotifer embryos reveals the developmental trajectory leading to long-term dormancy; are they "animal seeds"? BMC Genomics 2024; 25:119. [PMID: 38281016 PMCID: PMC10821554 DOI: 10.1186/s12864-024-09961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Organisms from many distinct evolutionary lineages acquired the capacity to enter a dormant state in response to environmental conditions incompatible with maintaining normal life activities. Most studied organisms exhibit seasonal or annual episodes of dormancy, but numerous less studied organisms enter long-term dormancy, lasting decades or even centuries. Intriguingly, many planktonic animals produce encased embryos known as resting eggs or cysts that, like plant seeds, may remain dormant for decades. Herein, we studied a rotifer Brachionus plicatilis as a model planktonic species that forms encased dormant embryos via sexual reproduction and non-dormant embryos via asexual reproduction and raised the following questions: Which genes are expressed at which time points during embryogenesis? How do temporal transcript abundance profiles differ between the two types of embryos? When does the cell cycle arrest? How do dormant embryos manage energy? RESULTS As the molecular developmental kinetics of encased embryos remain unknown, we employed single embryo RNA sequencing (CEL-seq) of samples collected during dormant and non-dormant embryogenesis. We identified comprehensive and temporal transcript abundance patterns of genes and their associated enriched functional pathways. Striking differences were uncovered between dormant and non-dormant embryos. In early development, the cell cycle-associated pathways were enriched in both embryo types but terminated with fewer nuclei in dormant embryos. As development progressed, the gene transcript abundance profiles became increasingly divergent between dormant and non-dormant embryos. Organogenesis was suspended in dormant embryos, concomitant with low transcript abundance of homeobox genes, and was replaced with an ATP-poor preparatory phase characterized by very high transcript abundance of genes encoding for hallmark dormancy proteins (e.g., LEA proteins, sHSP, and anti-ROS proteins, also found in plant seeds) and proteins involved in dormancy exit. Surprisingly, this period appeared analogous to the late maturation phase of plant seeds. CONCLUSIONS The study highlights novel divergent temporal transcript abundance patterns between dormant and non-dormant embryos. Remarkably, several convergent functional solutions appear during the development of resting eggs and plant seeds, suggesting a similar preparatory phase for long-term dormancy. This study accentuated the broad novel molecular features of long-term dormancy in encased animal embryos that behave like "animal seeds".
Collapse
Affiliation(s)
- Tamar Hashimshony
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liron Levin
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Andreas C Fröbius
- Molecular Andrology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Gießen, Gießen, Germany.
| | - Nitsan Dahan
- Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Vered Chalifa-Caspi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Reini Hamo
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Oshri Gabai-Almog
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Idit Blais
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and IVF, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Esther Lubzens
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- (Retired) Israel Oceanographic and Limnological Research, Haifa, Israel.
| |
Collapse
|
4
|
Parolini M, Ghilardi A, De Felice B, Del Giacco L. Environmental concentration of fluoxetine disturbs larvae behavior and increases the defense response at molecular level in zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34943-34952. [PMID: 31659707 DOI: 10.1007/s11356-019-06619-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Fluoxetine (FLX) is one of the main antidepressants used worldwide. After human use, FLX enters the aquatic ecosystems, where it has commonly detected in the high ng/L concentration range. Several investigations have shown that exposure to different concentrations of FLX caused different adverse effects towards a number of aquatic species. However, the information on the onset and the relationship between molecular and behavioral FLX-induced effects remains scant. The aim of this study was to assess the effects induced by two FLX concentrations, namely 50 ng/L and 500 ng/L, on swimming activity of zebrafish (Danio rerio) larvae at 96-h post-fertilization (hpf) and to investigate if such behavioral effects were related to modulation of the expression of oxidative stress-related (sod1, sod2, cat, gpxa, and gst), stress- and anxiety-related (oxtl, prl2, npy, and ucn3l) genes, and genes encoding for the transporters of the main neurotransmitters (slc6a3, slc6a4a, slc6a4b, slc6a11). Fluoxetine exposure altered the swimming behavior of larvae, as shown by the reduction of the distance traveled by treated larvae in response to an external stimulus. Such behavioral change was related, at molecular level, to an enhanced expression of sod1, cat, and gpxa, suggesting an overproduction of pro-oxidant molecules. In addition, FLX modulated the expression of oxtl, slc6a4a, slc6a4b, and slc6a11, suggesting its capability to affect anxiety- and neurotransmitter-related genes.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 2, 20133, Milan, Italy.
| | - Anna Ghilardi
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 2, 20133, Milan, Italy
| | - Luca Del Giacco
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
5
|
Sukiato F, Wasserman RJ, Foo SC, Wilson RF, Cuthbert RN. The effects of temperature and shading on mortality and development rates of Aedes aegypti (Diptera: Culicidae). JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2019; 44:264-270. [PMID: 31729799 DOI: 10.1111/jvec.12358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Urbanization has caused an increase in favorable habitats for Aedes aegypti (Diptera: Culicidae), given their ability to reproduce in small and often non-degradable artificial water-containers. While much work has been done on Ae. aegypti biology and ecology in urban landscapes, the role of shading on immature stages as an independent factor from temperature, and any possible interactions between these factors, remains unexamined. We assessed how temperature and shading affected egg hatch-rate, larval/pupal mortality, and larval development to adult stage under different factorial temperature (28; 31; 34; 37; 40° C) and shade (0%, 3,100 lux; 40%, 1,860 lux; 75%, 775 lux; 100%, 0 lux) regimes. Hatch-rate was significantly lower at 37° C (57 %), and no eggs hatched at 40° C. There was no significant effect caused by shading on hatchability. Larval and pupal mortality at 37° C was significantly higher (35%) compared to lower temperature groups, while the effects of shading were emergent at low temperatures. Developmental times from hatching to adult emergence were significantly reduced with increasing temperatures and with greater light exposures. The eco-physiological response of Ae. aegypti larvae to temperature and light regimes suggest a photosensitivity previously unstudied in this species.
Collapse
Affiliation(s)
- Febrianne Sukiato
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ryan J Wasserman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Department of Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Su Chern Foo
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
- Monash University Malaysia, Tropical Medicine and Biology Multidisciplinary Platform, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Robyn F Wilson
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ross N Cuthbert
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, Northern Ireland, UK
| |
Collapse
|
6
|
García-Roger EM, Lubzens E, Fontaneto D, Serra M. Facing Adversity: Dormant Embryos in Rotifers. THE BIOLOGICAL BULLETIN 2019; 237:119-144. [PMID: 31714860 DOI: 10.1086/705701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An in-depth look at the basic aspects of dormancy in cyclic parthenogenetic organisms is now possible thanks to research efforts conducted over the past two decades with rotifer dormant embryos. In this review, we assemble and compose the current knowledge on four central themes: (1) distribution of dormancy in animals, with an overview on the phylogenetic distribution of embryo dormancy in metazoans, and (2) physiological and cellular processes involved in dormancy, with a strong emphasis on the dormant embryos of cyclically parthenogenetic monogonont rotifers; and discussions of (3) the selective pressures and (4) the evolutionary and population implications of dormancy in these animals. Dormancy in metazoans is a widespread phenomenon with taxon-specific features, and rotifers are among the animals in which dormancy is an intrinsic feature of their life cycle. Our review shows that embryo dormancy in rotifers shares common functional pathways with other taxa at the molecular and cellular level, despite the independent evolution of dormancy across phyla. These pathways include the arrest of similar metabolic routes and the usage of common metabolites for the stabilization of cellular structures and to confer stress resistance. We conclude that specific features of recurrent harsh environmental conditions are a powerful selective pressure for the fine-tuning of dormancy patterns in rotifers. We hypothesize that similar mechanisms at the organism level will lead to similar adaptive consequences at the population level across taxa, among which the formation of egg banks, the coexistence of species, and the possibility of differentiation among populations and local adaptation stand out. Our review shows how studies of rotifers have contributed to improved knowledge of all of these aspects.
Collapse
|
7
|
Pasquali V, Calizza E, Setini A, Hazlerigg D, Christoffersen KS. Preliminary observations on the effect of light and temperature on the hatching success and rate of Lepidurus arcticus eggs. ETHOL ECOL EVOL 2019. [DOI: 10.1080/03949370.2019.1609093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Vittorio Pasquali
- Neuroscience Section, Department of Psychology, Sapienza University of Rome, Via dei Marsi 78, 00185 Roma, Italy
| | - Edoardo Calizza
- Department of Environmental Biology, Sapienza University of Rome, Via dei Sardi 70, 00185 Roma, Italy
| | - Andrea Setini
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, Piazzale Aldo Moro 1, 00185 Roma, Italy
| | - David Hazlerigg
- Department of Arctic and Marine Biology, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Kirsten Seestern Christoffersen
- Freshwater Biological Laboratory, University of Copenhagen, 2100 Copenhagen Ø, Denmark
- Department of Biology, University Centre in Svalbard, Longyearbyen, Norway
| |
Collapse
|
8
|
Sellers GS, Griffin LR, Hänfling B, Gómez A. A new molecular diagnostic tool for surveying and monitoring Triops cancriformis populations. PeerJ 2017; 5:e3228. [PMID: 28507815 PMCID: PMC5429740 DOI: 10.7717/peerj.3228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/25/2017] [Indexed: 11/20/2022] Open
Abstract
The tadpole shrimp, Triops cancriformis, is a freshwater crustacean listed as endangered in the UK and Europe living in ephemeral pools. Populations are threatened by habitat destruction due to land development for agriculture and increased urbanisation. Despite this, there is a lack of efficient methods for discovering and monitoring populations. Established macroinvertebrate monitoring methods, such as net sampling, are unsuitable given the organism's life history, that include long lived diapausing eggs, benthic habits and ephemerally active populations. Conventional hatching methods, such as sediment incubation, are both time consuming and potentially confounded by bet-hedging hatching strategies of diapausing eggs. Here we develop a new molecular diagnostic method to detect viable egg banks of T. cancriformis, and compare its performance to two conventional monitoring methods involving diapausing egg hatching. We apply this method to a collection of pond sediments from the Wildfowl & Wetlands Trust Caerlaverock National Nature Reserve, which holds one of the two remaining British populations of T. cancriformis. DNA barcoding of isolated eggs, using newly designed species-specific primers for a large region of mtDNA, was used to estimate egg viability. These estimates were compared to those obtained by the conventional methods of sediment and isolation hatching. Our method outperformed the conventional methods, revealing six ponds holding viable T. cancriformis diapausing egg banks in Caerlaverock. Additionally, designed species-specific primers for a short region of mtDNA identified degraded, inviable eggs and were used to ascertain the levels of recent mortality within an egg bank. Together with efficient sugar flotation techniques to extract eggs from sediment samples, our molecular method proved to be a faster and more powerful alternative for assessing the viability and condition of T. cancriformis diapausing egg banks.
Collapse
Affiliation(s)
- Graham S Sellers
- School of Environmental Sciences, University of Hull, Hull, United Kingdom
| | - Larry R Griffin
- Conservation Programmes Directorate, Wildfowl & Wetlands Trust, Slimbridge, United Kingdom
| | - Bernd Hänfling
- School of Environmental Sciences, University of Hull, Hull, United Kingdom
| | - Africa Gómez
- School of Environmental Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
9
|
Bossus MC, Guler YZ, Short SJ, Morrison ER, Ford AT. Behavioural and transcriptional changes in the amphipod Echinogammarus marinus exposed to two antidepressants, fluoxetine and sertraline. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 151:46-56. [PMID: 24373616 DOI: 10.1016/j.aquatox.2013.11.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/04/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
In the past decade, there have been increasing concerns over the effects of pharmaceutical compounds in the aquatic environment, however very little is known about the effects of antidepressants such as the selective serotonin re-uptake inhibitors (SSRIs). Many biological functions within invertebrates are under the control of serotonin, such as reproduction, metabolism, moulting and behaviour. The effects of serotonin and fluoxetine have recently been shown to alter the behaviour of the marine amphipod, Echinogammarus marinus (Leach, 1815). The purpose of this study was to observe behavioural and transcriptional modifications in this crustacean exposed to the two most prescribed SSRIs (fluoxetine and sertraline) and to develop biomarkers of neurological endocrine disruption. The animals were exposed to both drugs at environmentally relevant concentrations from 0.001 to 1μg/L during short-term (1h and 1day) and medium-term (8 days) experiments. The movement of the amphipods was tracked using the behavioural analysis software during 12min alternating dark/light conditions. The behavioural analysis revealed a significant effect on velocity which was observed after 1h exposure to sertraline at 0.01μg/L and after 1 day exposure to fluoxetine as low as 0.001μg/L. The most predominant effect of drugs on velocity was recorded after 1 day exposure for the 0.1 and 0.01μg/L concentrations of fluoxetine and sertraline, respectively. Subsequently, the expression (in this article gene expression is taken to represent only transcription, although it is acknowledged that gene expression can also be regulated at translation, mRNA and protein stability levels) of several E. marinus neurological genes, potentially involved in the serotonin metabolic pathway or behaviour regulation, were analysed in animals exposed to various SSRIs concentrations using RT-qPCR. The expression of a tryptophan hydroxylase (Ph), a neurocan core protein (Neuc), a Rhodopsin (Rhod1) and an Arrestin (Arr) were measured following exposure to fluoxetine or sertraline for 8 days. The levels of Neuc, Rhod1 and Arr were significantly down-regulated to approximately 0.5-, 0.29- and 0.46-fold, respectively, for the lower concentrations of fluoxetine suggesting potential changes in the phototransduction pathway. The expression of Rhod1 tended to be up-regulated for the lower concentration of sertraline but not significantly. In summary, fluoxetine and sertraline have a significant impact on the behaviour and neurophysiology of this amphipod at environmentally relevant concentrations with effects observed after relatively short periods of time.
Collapse
Affiliation(s)
- Maryline C Bossus
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY, UK
| | - Yasmin Z Guler
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY, UK
| | - Stephen J Short
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY, UK
| | - Edward R Morrison
- Higher Education Academy Psychology, Department of Psychology, University of Portsmouth, Hampshire PO1 2DY, UK
| | - Alex T Ford
- Institute of Marine Sciences, School of Biological Sciences, University of Portsmouth, Ferry Road, Portsmouth, Hampshire PO4 9LY, UK.
| |
Collapse
|
10
|
Blanco-Vives B, Aliaga-Guerrero M, Cañavate JP, Muñoz-Cueto JA, Sánchez-Vázquez FJ. Does lighting manipulation during incubation affect hatching rhythms and early development of sole? Chronobiol Int 2011; 28:300-6. [PMID: 21539421 DOI: 10.3109/07420528.2011.560316] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Light plays a key role in the development of biological rhythms in fish. Previous research on Senegal sole has revealed that both spawning rhythms and larval development are strongly influenced by lighting conditions. However, hatching rhythms and the effect of light during incubation are as yet unexplored. Therefore, the aim of this study was to investigate the impact of the light spectrum and photoperiod on Solea senegalensis eggs and larvae until day 7 post hatching (dph). To this end, eggs were collected immediately after spawning during the night and exposed to continuous light (LL), continuous darkness (DD), or light-dark (LD) 12L:12D cycles of white light (LD(W)), blue light (LD(B); λ(peak) = 463 nm), or red light (LD(R); λ(peak) = 685 nm). Eggs exposed to LD(B) had the highest hatching rate (94.5% ± 1.9%), whereas LD(R) and DD showed the lowest hatching rate (54.4% ± 3.9% and 48.4% ± 4.2%, respectively). Under LD conditions, the hatching rhythm peaked by the end of the dark phase, but was advanced in LD(B) (zeitgeber time 8 [ZT8]; ZT0 representing the onset of darkness) in relation to LD(W) and LD(R) (ZT11). Under DD conditions, the same rhythm persisted, although with lower amplitude, whereas under LL the hatching rhythm split into two peaks (ZT8 and ZT13). From dph 4 onwards, larvae under LD(B) showed the best growth and quickest development (advanced eye pigmentation, mouth opening, and pectoral fins), whereas larvae under LD(R) and DD had the poorest performance. These results reveal that developmental rhythms at the egg stage are tightly controlled by light characteristics, underlining the importance of reproducing their natural underwater photoenvironment (LD cycles of blue wavelengths) during incubation and early larvae development of fish.
Collapse
Affiliation(s)
- B Blanco-Vives
- Department of Physiology, Faculty of Biology, University of Murcia, Espinardo Campus, Murcia, Spain.
| | | | | | | | | |
Collapse
|