1
|
Cui G, Liu Y, Zu D, Zhao X, Zhang Z, Kim DY, Senaratne P, Fox A, Sept D, Park Y, Lee SE. Phase intensity nanoscope (PINE) opens long-time investigation windows of living matter. Nat Commun 2023; 14:4318. [PMID: 37463892 DOI: 10.1038/s41467-023-39624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Fundamental to all living organisms and living soft matter are emergent processes in which the reorganization of individual constituents at the nanoscale drives group-level movements and shape changes at the macroscale over time. However, light-induced degradation of fluorophores, photobleaching, is a significant problem in extended bioimaging in life science. Here, we report opening a long-time investigation window by nonbleaching phase intensity nanoscope: PINE. We accomplish phase-intensity separation such that nanoprobe distributions are distinguished by an integrated phase-intensity multilayer thin film (polyvinyl alcohol/liquid crystal). We overcame a physical limit to resolve sub-10 nm cellular architectures, and achieve the first dynamic imaging of nanoscopic reorganization over 250 h using PINE. We discover nanoscopic rearrangements synchronized with the emergence of group-level movements and shape changes at the macroscale according to a set of interaction rules with importance in cellular and soft matter reorganization, self-organization, and pattern formation.
Collapse
Affiliation(s)
- Guangjie Cui
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yunbo Liu
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Di Zu
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xintao Zhao
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Zhijia Zhang
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Do Young Kim
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Pramith Senaratne
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aaron Fox
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Younggeun Park
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Somin Eunice Lee
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Da A, Chu Y, Krach J, Liu Y, Park Y, Lee SE. Optical Penetration of Shape-Controlled Metallic Nanosensors across Membrane Barriers. SENSORS (BASEL, SWITZERLAND) 2023; 23:2824. [PMID: 36905027 PMCID: PMC10007193 DOI: 10.3390/s23052824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Precise nanostructure geometry that enables the optical biomolecular delivery of nanosensors to the living intracellular environment is highly desirable for precision biological and clinical therapies. However, the optical delivery through membrane barriers utilizing nanosensors remains difficult due to a lack of design guidelines to avoid inherent conflict between optical force and photothermal heat generation in metallic nanosensors during the process. Here, we present a numerical study reporting significantly enhanced optical penetration of nanosensors by engineering nanostructure geometry with minimized photothermal heating generation for penetrating across membrane barriers. We show that by varying the nanosensor geometry, penetration depths can be maximized while heat generated during the penetration process can be minimized. We demonstrate the effect of lateral stress induced by an angularly rotating nanosensor on a membrane barrier by theoretical analysis. Furthermore, we show that by varying the nanosensor geometry, maximized local stress fields at the nanoparticle-membrane interface enhanced the optical penetration process by four-fold. Owing to the high efficiency and stability, we anticipate that precise optical penetration of nanosensors to specific intracellular locations will be beneficial for biological and therapeutic applications.
Collapse
Affiliation(s)
- Ancheng Da
- Department of Electrical & Computer Engineering, Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanan Chu
- Department of Electrical & Computer Engineering, Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jacob Krach
- Department of Electrical & Computer Engineering, Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yunbo Liu
- Department of Electrical & Computer Engineering, Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Younggeun Park
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Somin Eunice Lee
- Department of Electrical & Computer Engineering, Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Do H, Yoon C, Liu Y, Zhao X, Gregg J, Da A, Park Y, Lee SE. Intelligent Fusion Imaging Photonics for Real-Time Lighting Obstructions. SENSORS (BASEL, SWITZERLAND) 2022; 23:323. [PMID: 36616919 PMCID: PMC9824281 DOI: 10.3390/s23010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Dynamic detection in challenging lighting environments is essential for advancing intelligent robots and autonomous vehicles. Traditional vision systems are prone to severe lighting conditions in which rapid increases or decreases in contrast or saturation obscures objects, resulting in a loss of visibility. By incorporating intelligent optimization of polarization into vision systems using the iNC (integrated nanoscopic correction), we introduce an intelligent real-time fusion algorithm to address challenging and changing lighting conditions. Through real-time iterative feedback, we rapidly select polarizations, which is difficult to achieve with traditional methods. Fusion images were also dynamically reconstructed using pixel-based weights calculated in the intelligent polarization selection process. We showed that fused images by intelligent polarization selection reduced the mean-square error by two orders of magnitude to uncover subtle features of occluded objects. Our intelligent real-time fusion algorithm also achieved two orders of magnitude increase in time performance without compromising image quality. We expect intelligent fusion imaging photonics to play increasingly vital roles in the fields of next generation intelligent robots and autonomous vehicles.
Collapse
Affiliation(s)
- Hyeonsu Do
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Colin Yoon
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yunbo Liu
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xintao Zhao
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Gregg
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ancheng Da
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Younggeun Park
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Somin Eunice Lee
- Department of Electrical & Computer Engineering, Biomedical Engineering, Applied Physics, Biointerfaces Institute, Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Liu Y, Zhang Z, Park Y, Lee SE. Ultraprecision Imaging and Manipulation of Plasmonic Nanostructures by Integrated Nanoscopic Correction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007610. [PMID: 33856109 DOI: 10.1002/smll.202007610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Optical manipulation and imaging of nano-objects with nanometer precision is highly desirable for nanomaterial and biological studies due to inherent noninvasiveness. However, time constraints and current segregated experimental systems for nanoimaging and nanomanipulation limits real-time super-resolution imaging with spatially enhanced manipulation. Here, an integrated nanoscopic correction (iNC) method to enable multimodal nanomanipulation-nanoimaging is reported. The iNC consists of a multimodal voltage-tunable power modulator, polarization rotator, and polarizer. Using the iNC, plasmonic nano-objects which are below the diffraction limit and which can be distinguished by direct observation without post processing are demonstrated. Furthermore, such direct observations with enhanced nanometer spatial stability and millisecond high speed are shown. Precise trapping and rapid rotation of gold nanorods with the iNC are demonstrated successfully. With non-invasive post-processing free nanoimaging and nanomanipulation, it is anticipated that the iNC will make contributions in the nanomaterial and biological sciences requiring precision optics.
Collapse
Affiliation(s)
- Yunbo Liu
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Zhijia Zhang
- Department of Electrical and Computer Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Younggeun Park
- Department of Mechanical Engineering, Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Somin Eunice Lee
- Department of Electrical and Computer Engineering, Department of Biomedical Engineering, Biointerfaces Institute, Applied Physics, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Wu L, Xu F, Reinhard BM. Nanoconjugation prolongs endosomal signaling of the epidermal growth factor receptor and enhances apoptosis. NANOSCALE 2016; 8:13755-68. [PMID: 27378391 PMCID: PMC5081566 DOI: 10.1039/c6nr02974d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It is becoming increasingly clear that intracellular signaling can be subject to strict spatial control. As the covalent attachment of a signaling ligand to a nanoparticle (NP) impacts ligand-receptor binding, uptake, and trafficking, nanoconjugation provides new opportunities for manipulating intracellular signaling in a controlled fashion. To establish the effect of nanoconjugation on epidermal growth factor (EGF) mediated signaling, we investigate here the intracellular fate of nanoconjugated EGF (NP-EGF) and its bound receptor (EGFR) by quantitative correlated darkfield/fluorescence microscopy and density-based endosomal fractionation. We demonstrate that nanoconjugation prolongs the dwell time of phosphorylated receptors in the early endosomes and that the retention of activated EGFR in the early endosomes is accompanied by an EGF mediated apoptosis at effective concentrations that do not induce apoptosis in the case of free EGF. Overall, these findings indicate nanoconjugation as a rational strategy for modifying signaling that acts by modulating the temporo-spatial distribution of the activated EGF-EGFR ligand-receptor complex.
Collapse
Affiliation(s)
- L Wu
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - F Xu
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - B M Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Kumal RR, Landry CR, Abu-Laban M, Hayes DJ, Haber LH. Monitoring the Photocleaving Dynamics of Colloidal MicroRNA-Functionalized Gold Nanoparticles Using Second Harmonic Generation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9983-90. [PMID: 26313536 PMCID: PMC4819427 DOI: 10.1021/acs.langmuir.5b02199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Photoactivated drug delivery systems using gold nanoparticles provide the promise of spatiotemporal control of delivery that is crucial for applications ranging from regenerative medicine to cancer therapy. In this study, we use second harmonic generation (SHG) spectroscopy to monitor the light-activated controlled release of oligonucleotides from the surface of colloidal gold nanoparticles. MicroRNA is functionalized to spherical gold nanoparticles using a nitrobenzyl linker that undergoes photocleaving upon ultraviolet irradiation. The SHG signal generated from the colloidal nanoparticle sample is shown to be a sensitive probe for monitoring the photocleaving dynamics in real time. The photocleaving irradiation wavelength is scanned to show maximum efficiency on resonance at 365 nm, and the kinetics are investigated at varying irradiation powers to demonstrate that the nitrobenzyl photocleaving is a one-photon process. Additional characterization methods including electrophoretic mobility measurements, extinction spectroscopy, and fluorimetry are used to verify the SHG results, leading to a better understanding of the photocleaving dynamics for this model oligonucleotide therapeutic delivery system.
Collapse
Affiliation(s)
- Raju R. Kumal
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Corey R. Landry
- Department of Biological, Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Mohammad Abu-Laban
- Department of Biological, Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Daniel J. Hayes
- Department of Biological, Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Louis H. Haber
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
- Corresponding Author: ; phone: (225) 578-7965
| |
Collapse
|
7
|
Lee SE, Alivisatos AP, Bissell MJ. Toward plasmonics-enabled spatiotemporal activity patterns in three-dimensional culture models. ACTA ACUST UNITED AC 2014; 1. [PMID: 24224142 DOI: 10.4161/sysb.22834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Spatiotemporal activity patterns of proteases such as matrix metalloproteinases and cysteine proteases in organs have the potential to provide insight into how organized structural patterns arise during tissue morphogenesis and may suggest therapeutic strategies to repair diseased tissues. Toward imaging spatiotemporal activity patterns, recently increased emphasis has been placed on imaging activity patterns in three-dimensional culture models that resemble tissues in vivo. Here, we briefly review key methods, based on fluorogenic modifications either to the extracellular matrix or to the protease-of-interest, that have allowed for qualitative imaging of activity patterns in three-dimensional culture models. We highlight emerging plasmonic methods that address significant improvements in spatial and temporal resolution and have the potential to enable quantitative measurement of spatiotemporal activity patterns with single-molecule sensitivity.
Collapse
|
8
|
Palankar R, Pinchasik BE, Khlebtsov BN, Kolesnikova TA, Möhwald H, Winterhalter M, Skirtach AG. Nanoplasmonically-induced defects in lipid membrane monitored by ion current: transient nanopores versus membrane rupture. NANO LETTERS 2014; 14:4273-4279. [PMID: 24961609 DOI: 10.1021/nl500907k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We have developed a nanoplasmonic-based approach to induce nanometer-sized local defects in the phospholipid membranes. Here, gold nanorods and nanoparticles having plasmon resonances in the near-infrared (NIR) spectral range are used as optical absorption centers in the lipid membrane. Defects optically induced by NIR-laser irradiation of gold nanoparticles are continuously monitored by high-precision ion conductance measurement. Localized laser-mediated heating of nanorods and nanoparticle aggregates cause either (a) transient nanopores in lipid membranes or (b) irreversible rupture of the membrane. To monitor transient opening and closing, an electrophysiological setup is assembled wherein a giant liposome is spread over a micrometer hole in a glass slide forming a single bilayer of high Ohmic resistance (so-called gigaseal), while laser light is coupled in and focused on the membrane. The energy associated with the localized heating is discussed and compared with typical elastic parameters in the lipid membranes. The method presented here provides a novel methodology for better understanding of transport across artificial or natural biological membranes.
Collapse
Affiliation(s)
- Raghavendra Palankar
- ZIK HIKE, Nanostructure Group, Ernst-Moritz-Arndt-Universität Greifswald , 17489 Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
9
|
Webb JA, Bardhan R. Emerging advances in nanomedicine with engineered gold nanostructures. NANOSCALE 2014; 6:2502-30. [PMID: 24445488 DOI: 10.1039/c3nr05112a] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.
Collapse
Affiliation(s)
- Joseph A Webb
- Department of Chemical and Biomolecular Engineering Department, Vanderbilt University, Nashville, TN 37235, USA.
| | | |
Collapse
|
10
|
Díaz JA, Gibbs-Davis JM. Sharpening the thermal release of DNA from nanoparticles: towards a sequential release strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2862-2871. [PMID: 23341260 DOI: 10.1002/smll.201202278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 10/23/2012] [Indexed: 06/01/2023]
Abstract
Unlike the sharp melting behavior of DNA-linked nanoparticle aggregates, the melting of DNA strands from individual gold nanoparticles is broad despite the high surface density of bound DNA. Here, it is demonstrated how sharpened melting can be achieved in colloidal nanoparticle systems using branched DNA-doubler structures hybridized with complementary DNA-doublers bound to the gold nanoparticle. Moreover, sharpened transitions are observed when DNA-doublers are hybridized with linear DNA-modified gold nanoparticles. This result suggests that the DNA density on nanoparticles is intrinsically great enough to form cooperative structures with the DNA-doublers. Finally, by introducing abasic destabilizing groups, the melting temperature of these DNA-doublers decreases without decreasing the sharpness. Consequently, by varying the temperature, two DNA-doublers with different stabilities dissociate sequentially from the gold nanoparticle surface, without overlapping and within a narrow temperature window. Owing to the excellent thermal selectivities exhibited by this system, the implementation of DNA-doublers in sequential photothermal therapies and with other nanomedicine delivery agents that rely on DNA dissociation as the mechanism of selective release is anticipated.
Collapse
Affiliation(s)
- Julián A Díaz
- Department of Chemistry, University of Alberta, T6G 2G2, Canada
| | | |
Collapse
|
11
|
Asanuma H, Subedi P, Hartmann J, Shen Y, Möhwald H, Nakanishi T, Skirtach A. Nanoplasmonic modification of the local morphology, shape, and wetting properties of nanoflake microparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7464-7471. [PMID: 23298177 DOI: 10.1021/la304550n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Inducing a phase transition of a self-organized object may trigger its structural transformation. Here, we demonstrate local control of the morphology and shape of self-organized microparticles with a nanoflake outer surface by nanoplasmonic heating. To increase the photothermal efficiency of the microparticles, gold nanoparticles (AuNPs) or single-walled carbon nanotubes (SWCNTs) were incorporated. AuNPs and SWCNTs, which have excellent photothermal activity, acts as photoresponsive heat converters. Because they have distinct absorption characteristics, visible or near-infrared lasers can be used to induce local heating. The photothermal effect was used to spatially confine the melting to the space within the particle and the aggregate; as a result, microparticles with various shapes and morphologies have been fabricated. Such morphological changes lead to a superhydrophobic-hydrophobic wetting transition, which was confirmed by the films constituting the microparticles. The work presented is seen useful for anisotropic particle synthesis, local wetting control, lithography, and morphological control of functional materials.
Collapse
Affiliation(s)
- Hidehiko Asanuma
- Department of Interfaces, Max Planck Institute of Colloids and Interfaces, Potsdam 14424, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Zheng YB, Kiraly B, Weiss PS, Huang TJ. Molecular plasmonics for biology and nanomedicine. Nanomedicine (Lond) 2012; 7:751-70. [PMID: 22630155 DOI: 10.2217/nnm.12.30] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The optical excitation of surface plasmons in metal nanoparticles leads to nanoscale spatial confinement of electromagnetic fields. The confined electromagnetic fields can generate intense, localized thermal energy and large near-field optical forces. The interaction between these effects and nearby molecules has led to the emerging field known as molecular plasmonics. Recent advances in molecular plasmonics have enabled novel optical materials and devices with applications in biology and nanomedicine. In this article, we categorize three main types of interactions between molecules and surface plasmons: optical, thermal and mechanical. Within the scope of each type of interaction, we will review applications of molecular plasmonics in biology and nanomedicine. We include a wide range of applications that involve sensing, spectral analysis, imaging, delivery, manipulation and heating of molecules, biomolecules or cells using plasmonic effects. We also briefly describe the physical principles of molecular plasmonics and progress in the nanofabrication, surface functionalization and bioconjugation of metal nanoparticles.
Collapse
Affiliation(s)
- Yue Bing Zheng
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
13
|
Lee SE, Sasaki DY, Park Y, Xu R, Brennan JS, Bissell MJ, Lee LP. Photonic gene circuits by optically addressable siRNA-Au nanoantennas. ACS NANO 2012; 6:7770-80. [PMID: 22827439 PMCID: PMC3458151 DOI: 10.1021/nn301744x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The precise perturbation of gene circuits and the direct observation of signaling pathways in living cells are essential for both fundamental biology and translational medicine. Current optogenetic technology offers a new paradigm of optical control for cells; however, this technology relies on permanent genomic modifications with light-responsive genes, thus limiting dynamic reconfiguration of gene circuits. Here, we report precise control of perturbation and reconfiguration of gene circuits in living cells by optically addressable siRNA-Au nanoantennas. The siRNA-Au nanoantennas fulfill dual functions as selectively addressable optical receivers and biomolecular emitters of small interfering RNA (siRNA). Using siRNA-Au nanoantennas as optical inputs to existing circuit connections, photonic gene circuits are constructed in living cells. We show that photonic gene circuits are modular, enabling subcircuits to be combined on-demand. Photonic gene circuits open new avenues for engineering functional gene circuits useful for fundamental bioscience, bioengineering, and medical applications.
Collapse
Affiliation(s)
- Somin Eunice Lee
- Department of Bioengineering, University of California-Berkeley, UCSF/UCB Joint Graduate Group in Bioengineering, Berkeley Sensor & Actuator Center
- Life Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, CA
| | - Darryl Y. Sasaki
- Material Science Division, Sandia National Laboratories, Livermore, CA
| | - Younggeun Park
- Department of Bioengineering, University of California-Berkeley, UCSF/UCB Joint Graduate Group in Bioengineering, Berkeley Sensor & Actuator Center
| | - Ren Xu
- Life Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, CA
- Department of Molecular and Biomedical Pharmacology, University of Kentucky
| | - James S. Brennan
- Material Science Division, Sandia National Laboratories, Livermore, CA
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, CA
| | - Luke P. Lee
- Department of Bioengineering, University of California-Berkeley, UCSF/UCB Joint Graduate Group in Bioengineering, Berkeley Sensor & Actuator Center
- To whom correspondence should be addressed. Prof. Luke P. Lee, Department of Bioengineering, University of California-Berkeley, 408C Stanley Hall, Berkeley, CA 94720-1762, (510) 642-5855,
| |
Collapse
|
14
|
Delcea M, Sternberg N, Yashchenok AM, Georgieva R, Bäumler H, Möhwald H, Skirtach AG. Nanoplasmonics for dual-molecule release through nanopores in the membrane of red blood cells. ACS NANO 2012; 6:4169-4180. [PMID: 22463598 DOI: 10.1021/nn3006619] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A nanoplasmonics-based opto-nanoporation method of creating nanopores upon laser illumination is applied for inducing diffusion and triggered release of small and large molecules from red blood cells (RBCs). The method is implemented using absorbing gold nanoparticle (Au-NP) aggregates on the membrane of loaded RBCs, which, upon near-IR laser light absorption, induce release of encapsulated molecules from selected cells. The binding of Au-NPs to RBCs is characterized by Raman spectroscopy. The process of release is driven by heating localized at nanoparticles, which impacts the permeability of the membrane by affecting the lipid bilayer and/or trans-membrane proteins. Localized heating and temperature rise around Au-NP aggregates is simulated and discussed. Research reported in this work is relevant for generating nanopores for biomolecule trafficking through polymeric and lipid membranes as well as cell membranes, while dual- and multi-molecule release is relevant for theragnostics and a wide range of therapies.
Collapse
Affiliation(s)
- Mihaela Delcea
- Department of Interfaces, Max-Planck Institute of Colloids and Interfaces, Research Campus Golm, Golm 14424, Germany.
| | | | | | | | | | | | | |
Collapse
|
15
|
Krpetić Ž, Singh I, Su W, Guerrini L, Faulds K, Burley GA, Graham D. Directed Assembly of DNA-Functionalized Gold Nanoparticles Using Pyrrole–Imidazole Polyamides. J Am Chem Soc 2012; 134:8356-9. [DOI: 10.1021/ja3014924] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Željka Krpetić
- Centre for Molecular Nanometrology,
WestCHEM, Department of Pure and Applied Chemistry, The University of Strathclyde, 295 Cathedral Street, Glasgow
G1 1XL, United Kingdom
| | - Ishwar Singh
- Department of Pure and Applied
Chemistry, WestCHEM, The University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Wu Su
- Department of Chemistry, The University of Leicester, University Road, Leicester
LE1 7RH, United Kingdom
| | - Luca Guerrini
- Centre for Molecular Nanometrology,
WestCHEM, Department of Pure and Applied Chemistry, The University of Strathclyde, 295 Cathedral Street, Glasgow
G1 1XL, United Kingdom
| | - Karen Faulds
- Centre for Molecular Nanometrology,
WestCHEM, Department of Pure and Applied Chemistry, The University of Strathclyde, 295 Cathedral Street, Glasgow
G1 1XL, United Kingdom
| | - Glenn A. Burley
- Department of Pure and Applied
Chemistry, WestCHEM, The University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Duncan Graham
- Centre for Molecular Nanometrology,
WestCHEM, Department of Pure and Applied Chemistry, The University of Strathclyde, 295 Cathedral Street, Glasgow
G1 1XL, United Kingdom
| |
Collapse
|
16
|
Li Y, Jing C, Zhang L, Long YT. Resonance scattering particles as biological nanosensors in vitro and in vivo. Chem Soc Rev 2012; 41:632-42. [DOI: 10.1039/c1cs15143f] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|