1
|
Coone M, Bisschop K, Vanoverberghe I, Verslype C, Decaestecker E. Genotype specific and microbiome effects of hypoxia in the model organism Daphnia magna. J Evol Biol 2023; 36:1669-1683. [PMID: 37822108 DOI: 10.1111/jeb.14233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/29/2023] [Accepted: 08/11/2023] [Indexed: 10/13/2023]
Abstract
The fitness of the host is highly influenced by the interplay between the host and its associated microbiota. The flexible nature of these microbiota enables them to respond swiftly to shifts in the environment, which plays a key role in the host's capacity to withstand environmental stresses. To understand the role of the microbiome in host tolerance to hypoxia, one of the most significant chemical changes occurring in water ecosystems due to climate change, we performed a reciprocal gut transplant experiment with the freshwater crustacean Daphnia magna. In a microbiome transplant experiment, two genotypes of germ-free recipients were inoculated with gut microbiota from Daphnia donors of their own genotype or from the other genotype, that had been either pre-exposed to normoxic or hypoxic conditions. We found that D. magna individuals had a higher survival probability in hypoxia if their microbiome had been pre-exposed to hypoxia. The bacterial communities of the recipients changed over time with a reduction in alpha diversity, which was stronger when donors were pre-exposed to a hypoxic environment. While donor genotype had no influence on the long-term survival probability in hypoxia, donor genotypes was the most influential factor of the microbial community 3 days after the transplantation. Our results indicate that microbiome influencing factors mediate host fitness in a hypoxic environment in a time depending way.
Collapse
Affiliation(s)
- Manon Coone
- Aquatic Biology, Department of Biology, KU Leuven, Kortrijk, Belgium
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Karen Bisschop
- Aquatic Biology, Department of Biology, KU Leuven, Kortrijk, Belgium
- Terrestrial Ecology, Department of Biology, Ghent University, Ghent, Belgium
| | | | - Chris Verslype
- Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
2
|
Ekwudo MN, Malek MC, Anderson CE, Yampolsky LY. The interplay between prior selection, mild intermittent exposure, and acute severe exposure in phenotypic and transcriptional response to hypoxia. Ecol Evol 2022; 12:e9319. [PMID: 36248677 PMCID: PMC9548574 DOI: 10.1002/ece3.9319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia has profound and diverse effects on aerobic organisms, disrupting oxidative phosphorylation and activating several protective pathways. Predictions have been made that exposure to mild intermittent hypoxia may be protective against more severe exposure and may extend lifespan. Here we report the lifespan effects of chronic, mild, intermittent hypoxia, and short-term survival in acute severe hypoxia in four clones of Daphnia magna originating from either permanent or intermittent habitats. We test the hypothesis that acclimation to chronic mild intermittent hypoxia can extend lifespan through activation of antioxidant and stress-tolerance pathways and increase survival in acute severe hypoxia through activation of oxygen transport and storage proteins and adjustment to carbohydrate metabolism. Unexpectedly, we show that chronic hypoxia extended the lifespan in the two clones originating from intermittent habitats but had the opposite effect in the two clones from permanent habitats, which also showed lower tolerance to acute hypoxia. Exposure to chronic hypoxia did not protect against acute hypoxia; to the contrary, Daphnia from the chronic hypoxia treatment had lower acute hypoxia tolerance than normoxic controls. Few transcripts changed their abundance in response to the chronic hypoxia treatment in any of the clones. After 12 h of acute hypoxia treatment, the transcriptional response was more pronounced, with numerous protein-coding genes with functionality in oxygen transport, mitochondrial and respiratory metabolism, and gluconeogenesis, showing upregulation. While clones from intermittent habitats showed somewhat stronger differential expression in response to acute hypoxia than those from permanent habitats, contrary to predictions, there were no significant hypoxia-by-habitat of origin or chronic-by-acute treatment interactions. GO enrichment analysis revealed a possible hypoxia tolerance role by accelerating the molting cycle and regulating neuron survival through upregulation of cuticular proteins and neurotrophins, respectively.
Collapse
Affiliation(s)
- Millicent N. Ekwudo
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Morad C. Malek
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| | - Cora E. Anderson
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Lev Y. Yampolsky
- Department of Biological SciencesEast Tennessee State UniversityJohnson CityTennesseeUSA
| |
Collapse
|
3
|
Bomfim FF, Melão MGG, Gebara RC, Lansac-Tôha FA. Warming alters the metabolic rates and life-history parameters of Ceriodaphnia silvestrii (Cladocera). AN ACAD BRAS CIENC 2022; 94:e20200604. [PMID: 35703690 DOI: 10.1590/0001-3765202220200604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 08/13/2020] [Indexed: 11/22/2022] Open
Abstract
Temperature rise has effects on the metabolic process of organisms, population structure, and ecosystem functioning. Here, we tested the effects of warming on the metabolic rates and life-history parameters of the widespread cladoceran Ceriodaphnia silvestrii. Two scenarios of global warming were established, an increase of 2 °C and an increase of 4 °C; the control temperature was 22°C. Our results showed that warming altered C. silvestrii metabolic rates, by increasing the rates of assimilation and secondary production, and decreasing the rates of filtration and ingestion. Warming also increased C. silvestrii fecundity and the body size of neonates and juveniles, and decreased the embryonic and post-embryonic time of development. C. silvestrii might be an important food resource at intermediary temperature as it had higher assimilation rates, even filtering fewer algae. At the highest temperature, we observed a substantial decrease in assimilation and secondary production, which could be a sign of stress starting. The increase in temperature by global warming will affect the cladocerans' metabolic processes and the population survival, even a small increase (2°C) might induce drastic fluctuations in such processes and affect the carbon and energy availability inside aquatic food-webs.
Collapse
Affiliation(s)
- Francieli F Bomfim
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), Universidade Estadual de Maringá (UEM), Núcleo de Pesquisas em Limnologia Ictiologia e Aquicultura (Nupélia), Av. Colombo, 5790, Campus Universitário, 87020-900 Maringá, PR, Brazil
| | - Maria G G Melão
- Universidade Federal de São Carlos (UFSCar), Departamento de Hidrobiologia, Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Renan C Gebara
- Universidade Federal de São Carlos (UFSCar), Departamento de Hidrobiologia, Rod. Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil
| | - Fábio A Lansac-Tôha
- Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais (PEA), Universidade Estadual de Maringá (UEM), Núcleo de Pesquisas em Limnologia Ictiologia e Aquicultura (Nupélia), Av. Colombo, 5790, Campus Universitário, 87020-900 Maringá, PR, Brazil
| |
Collapse
|
4
|
Lee TM, Westbury KM, Martyniuk CJ, Nelson WA, Moyes CD. Metabolic Phenotype of Daphnia Under Hypoxia: Macroevolution, Microevolution, and Phenotypic Plasticity. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.822935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Daphnia is a freshwater crustacean that is able to upregulate hemoglobin (Hb) in response to hypoxia, imparting a red color. We combine multiple field surveys across season with a lab experiment to evaluate changes in the metabolic phenotype of Daphnia in relation to environmental hypoxia. Looking at the zooplankton community, we found that D. pulicaria was restricted to lakes with a hypoxic hypolimnion. Comparing D. pulicaria with different amounts of Hb, red animals showed higher mRNA levels for several Hb genes, whereas most glycolytic genes showed red/pale differences of less than 50%. We also observed seasonal changes in the metabolic phenotype that differed between red and pale animals. Hb was upregulated early in the season in hypoxic lakes, and a relationship between Hb and lactate dehydrogenase only emerged later in the season in a temporal pattern that was lake specific. To evaluate whether these differences were due to specific lake environments or microevolutionary differences, we tested the induction of genes under controlled hypoxia in isofemale lines from each of four lakes. We found a strong response to 18 h hypoxia exposure in both Hb and lactate dehydrogenase mRNA, although the magnitude of the acute response was greater than the steady state differences in mRNA levels between pale and red Daphnia. The baseline expression of Hb and lactate dehydrogenase also varied between isofemale lines with different lake origins. These results, in combination with comparison of glycogen measurements, suggests that Hb functions primarily to facilitate oxygen delivery, mitigating systemic hypoxia, rather than an oxygen store. The combination of lab and field studies suggest that the metabolic phenotype of the animal is influenced by both microevolutionary differences (within and between lakes) as well as the spatial and temporal environmental heterogeneity of the lakes. The differences between Daphnia species, and the unexpected lack of hypoxia sensitivity of select glycolytic genes provide evidence of macroevolutionary differences in metabolic strategies to cope with hypoxia.
Collapse
|
5
|
Coggins BL, Anderson CE, Hasan R, Pearson AC, Ekwudo MN, Bidwell JR, Yampolsky LY. Breaking free from thermodynamic constraints: thermal acclimation and metabolic compensation in a freshwater zooplankton species. J Exp Biol 2021; 224:jeb237727. [PMID: 33328286 DOI: 10.1242/jeb.237727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/09/2020] [Indexed: 01/14/2023]
Abstract
Respiration rates of ectothermic organisms are affected by environmental temperatures, and sustainable metabolism at high temperatures sometimes limits heat tolerance. Organisms are hypothesized to exhibit acclimatory metabolic compensation effects, decelerating their metabolic processes below Arrhenius expectations based on temperature alone. We tested the hypothesis that either heritable or plastic heat tolerance differences can be explained by metabolic compensation in the eurythermal freshwater zooplankton crustacean Daphnia magna We measured respiration rates in a ramp-up experiment over a range of assay temperatures (5-37°C) in eight genotypes of D. magna representing a range of previously reported acute heat tolerances and, at a narrower range of temperatures (10-35°C), in D. magna with different acclimation history (either 10 or 25°C). We discovered no difference in temperature-specific respiration rates between heat-tolerant and heat-sensitive genotypes. In contrast, we observed acclimation-specific compensatory differences in respiration rates at both extremes of the temperature range studied. Notably, there was a deceleration of oxygen consumption at higher temperature in 25°C-acclimated D. magna relative to their 10°C-acclimated counterparts, observed in active animals, a pattern corroborated by similar changes in filtering rate and, partly, by changes in mitochondrial membrane potential. A recovery experiment indicated that the reduction of respiration was not caused by irreversible damage during exposure to a sublethal temperature. Response time necessary to acquire the respiratory adjustment to high temperature was lower than for low temperature, indicating that metabolic compensation at lower temperatures requires slower, possibly structural changes.
Collapse
Affiliation(s)
- B L Coggins
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
- Department of Biological Sciences, University of Notre Dame, Galvin Life Science Center, Notre Dame, IN 46556, USA
| | - C E Anderson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
| | - R Hasan
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
| | - A C Pearson
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
| | - M N Ekwudo
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
| | - J R Bidwell
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
| | - L Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37691, USA
| |
Collapse
|
6
|
Hearn J, Clark J, Wilson PJ, Little TJ. Daphnia magna modifies its gene expression extensively in response to caloric restriction revealing a novel effect on haemoglobin isoform preference. Mol Ecol 2020; 29:3261-3276. [PMID: 32687619 DOI: 10.1111/mec.15557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
Abstract
Caloric restriction (CR) produces clear phenotypic effects within and between generations of the model crustacean Daphnia magna. We have previously established that micro-RNAs and cytosine methylation change in response to CR in this organism, and we demonstrate here that CR has a dramatic effect on gene expression. Over 6,000 genes were differentially expressed between CR and well-fed D. magna, with a bias towards up-regulation of genes under caloric restriction. We identified a highly expressed haemoglobin gene that responds to CR by changing isoform proportions. Specifically, a transcript containing three haem-binding erythrocruorin domains was strongly down-regulated under CR in favour of transcripts containing fewer or no such domains. This change in the haemoglobin mix is similar to the response to hypoxia in Daphnia, which is mediated through the transcription factor hypoxia-inducible factor 1, and ultimately the mTOR signalling pathway. This is the first report of a role for haemoglobin in the response to CR. We also observed high absolute expression of superoxide dismutase (SOD) in normally fed individuals, which contrasts with observations of high SOD levels under CR in other taxa. However, key differentially expressed genes, like SOD, were not targeted by differentially expressed micro-RNAs. Whether the link between haemoglobin and CR occurs in other organisms, or is related to the aquatic lifestyle, remains to be tested. It suggests that one response to CR may be to simply transport less oxygen and lower respiration.
Collapse
Affiliation(s)
- Jack Hearn
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jessica Clark
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Philip J Wilson
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Tom J Little
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
7
|
Abstract
Hemoglobin is the respiratory protein of many arthropods, enhancing the oxygen transport capacity of the hemolymph. One example, that has been subject of extensive studies, is the hemoglobin of the crustacean genus Daphnia. Here the characteristics of this oxygen binding protein are reviewed. The genetic structure is the result of repeated duplication events in the evolution, leading to a variety of di-domain isoforms. Adjustments to environmental changes thus result from differential expression of these paralogs. The biochemical properties, including spectral characteristics, concentration ranges, molecular mass of monomers and native oligomers, are compared. Structural differences between isoforms can be correlated to functional properties of oxygen binding characteristics. The mechanism of hemoglobin induction via hypoxia-inducible factor 1 allows the response to altered oxygen and temperature conditions. Changes of the hemoglobin suite in quantity and functional quality can be linked to their benefits for the animals' physiological performance. However, there is a large inter- and intra-specific variability of this induction potential. The consequences of altered hemoglobin characteristics for the animals' success within their habitat are discussed.
Collapse
Affiliation(s)
- Bettina Zeis
- Institut für Zoophysiologie, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48149, Münster, Germany.
| |
Collapse
|
8
|
Chen XJ, Wu S, Yan RM, Fan LS, Yu L, Zhang YM, Wei WF, Zhou CF, Wu XG, Zhong M, Yu YH, Liang L, Wang W. The role of the hypoxia-Nrp-1 axis in the activation of M2-like tumor-associated macrophages in the tumor microenvironment of cervical cancer. Mol Carcinog 2018; 58:388-397. [PMID: 30362630 DOI: 10.1002/mc.22936] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 10/08/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
To explore the mechanisms through which hypoxic tumor microenvironment (TME) modulates the transition of tumor-associated macrophages (TAMs). The migration ability of RAW264.7 macrophages was determined by transwell assay. Flow cytometric, western blot and immunofluorescence analyses of CD206 further validated the M2 polarization of macrophages. Immunofluorescence, western blot and qRT-PCR were performed to detect the expression of neuropilin-1 (Nrp-1) and carbonic anhydrase IX (CAIX). An intermittent hypobaric hypoxia (IH) animal model was established to evaluate the role of hypoxia in activating M2-like TAMs in vivo. We also used immunohistochemistry to analyze the association between CAIX, CD163+ macrophages and Nrp-1 in a series of 72 human cervical cancer specimens. We found that the hypoxic cervical TME educated the recruited macrophages to transform into the M2 phenotype. Nrp-1 expression was significantly increased in hypoxia-primed cervical cancer cells. Blocking Nrp-1 expression prevented hypoxic cells from recruiting and polarizing macrophages towards the M2 phenotype. Hypoxia exposure significantly increased the expression of Nrp-1 as well as the infiltration of macrophages in vivo. Consistently, immunochemical staining in serial tissue sections of cervical cancer revealed upregulated levels of Nrp-1 in CAIX-positive hypoxic regions along with a concurrent significant elevation of M2 macrophages. Nrp-1 and M2-like TAMs were related to the malignant properties of cervical cancer, such as the FIGO stage and lymph node metastasis. Nrp-1 plays critical roles in hypoxic TME-induced activation and pro-tumoral effects of TAMs in cervical cancer. Interfering with Nrp-1 may be a potential therapeutic strategy in treating cervical cancer.
Collapse
Affiliation(s)
- Xiao-Jing Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomic, Guangzhou, Guangdong Province, People's Republic of China
| | - Rui-Ming Yan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Liang-Sheng Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Lan Yu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yan-Mei Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangdong Provincial Key Laboratory of Proteomic, Guangzhou, Guangdong Province, People's Republic of China
| | - Wen-Fei Wei
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Chen-Fei Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xiang-Guang Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Mei Zhong
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Yan-Hong Yu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Wei Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, People's Republic of China
| |
Collapse
|
9
|
Cuenca Cambronero M, Beasley J, Kissane S, Orsini L. Evolution of thermal tolerance in multifarious environments. Mol Ecol 2018; 27:4529-4541. [DOI: 10.1111/mec.14890] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Maria Cuenca Cambronero
- Environmental Genomics Group; School of Biosciences; The University of Birmingham; Birmingham UK
| | - Jordan Beasley
- Environmental Genomics Group; School of Biosciences; The University of Birmingham; Birmingham UK
- Department of Genetics; University of Leicester; Leicester UK
| | - Stephen Kissane
- Environmental Genomics Group; School of Biosciences; The University of Birmingham; Birmingham UK
| | - Luisa Orsini
- Environmental Genomics Group; School of Biosciences; The University of Birmingham; Birmingham UK
| |
Collapse
|
10
|
Becker D, Reydelet Y, Lopez JA, Jackson C, Colbourne JK, Hawat S, Hippler M, Zeis B, Paul RJ. The transcriptomic and proteomic responses of Daphnia pulex to changes in temperature and food supply comprise environment-specific and clone-specific elements. BMC Genomics 2018; 19:376. [PMID: 29783951 PMCID: PMC5963186 DOI: 10.1186/s12864-018-4742-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/30/2018] [Indexed: 02/07/2023] Open
Abstract
Background Regulatory adjustments to acute and chronic temperature changes are highly important for aquatic ectotherms because temperature affects their metabolic rate as well as the already low oxygen concentration in water, which can upset their energy balance. This also applies to severe changes in food supply. Thus, we studied on a molecular level (transcriptomics and/or proteomics) the immediate responses to heat stress and starvation and the acclimation to different temperatures in two clonal isolates of the model microcrustacean Daphnia pulex from more or less stressful environments, which showed a higher (clone M) or lower (clone G) tolerance to heat and starvation. Results The transcriptomic responses of clone G to acute heat stress (from 20 °C to 30 °C) and temperature acclimation (10 °C, 20 °C, and 24 °C) and the proteomic responses of both clones to acute heat, starvation, and heat-and-starvation stress comprised environment-specific and clone-specific elements. Acute stress (in particular heat stress) led to an early upregulation of stress genes and proteins (e.g., molecular chaperones) and a downregulation of metabolic genes and proteins (e.g., hydrolases). The transcriptomic responses to temperature acclimation differed clearly. They also varied depending on the temperature level. Acclimation to higher temperatures comprised an upregulation of metabolic genes and, in case of 24 °C acclimation, a downregulation of genes for translational processes and collagens. The proteomic responses of the clones M and G differed at any type of stress. Clone M showed markedly stronger and less stress-specific proteomic responses than clone G, which included the consistent expression of a specific heat shock protein (HSP60) and vitellogenin (VTG-SOD). Conclusions The expression changes under acute stress can be interpreted as a switch from standard products of gene expression to stress-specific products. The expression changes under temperature acclimation probably served for an increase in energy intake (via digestion) and, if necessary, a decrease in energy expenditures (e.g, for translational processes). The stronger and less stress-specific proteomic responses of clone M indicate a lower degree of cell damage and an active preservation of the energy balance, which allowed adequate proteomic responses under stress, including the initiation of resting egg production (VTG-SOD expression) as an emergency reaction. Electronic supplementary material The online version of this article (10.1186/s12864-018-4742-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dörthe Becker
- Institute of Zoophysiology, University of Münster, 48143, Münster, Germany.,Present address: Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Yann Reydelet
- Institute of Zoophysiology, University of Münster, 48143, Münster, Germany
| | - Jacqueline A Lopez
- Present address: Genomics Core Facility, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN, USA
| | - Craig Jackson
- Present address: School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA
| | - John K Colbourne
- Present address: Environmental Genomics Group, School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Susan Hawat
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143 Münster, Germany
| | - Bettina Zeis
- Institute of Zoophysiology, University of Münster, 48143, Münster, Germany
| | - Rüdiger J Paul
- Institute of Zoophysiology, University of Münster, 48143, Münster, Germany.
| |
Collapse
|
11
|
Cuenca Cambronero M, Zeis B, Orsini L. Haemoglobin-mediated response to hyper-thermal stress in the keystone species Daphnia magna. Evol Appl 2018; 11:112-120. [PMID: 29302276 PMCID: PMC5748520 DOI: 10.1111/eva.12561] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 10/06/2017] [Indexed: 12/25/2022] Open
Abstract
Anthropogenic global warming has become a major geological and environmental force driving drastic changes in natural ecosystems. Due to the high thermal conductivity of water and the effects of temperature on metabolic processes, freshwater ecosystems are among the most impacted by these changes. The ability to tolerate changes in temperature may determine species long-term survival and fitness. Therefore, it is critical to identify coping mechanisms to thermal and hyper-thermal stress in aquatic organisms. A central regulatory element compensating for changes in oxygen supply and ambient temperature is the respiratory protein haemoglobin (Hb). Here, we quantify Hb plastic and evolutionary response in Daphnia magna subpopulations resurrected from the sedimentary archive of a lake with known history of increase in average temperature and recurrence of heat waves. By measuring constitutive changes in crude Hb protein content among subpopulations, we assessed evolution of the Hb gene family in response to temperature increase. To quantify the contribution of plasticity in the response of this gene family to hyper-thermal stress, we quantified changes in Hb content in all subpopulations under hyper-thermal stress as compared to nonstressful temperature. Further, we tested competitive abilities of genotypes as a function of their Hb content, constitutive and induced. We found that Hb-rich genotypes have superior competitive abilities as compared to Hb-poor genotypes under hyper-thermal stress after a period of acclimation. These findings suggest that whereas long-term adjustment to higher occurrence of heat waves may require a combination of plasticity and genetic adaptation, plasticity is most likely the coping mechanism to hyper-thermal stress in the short term. Our study suggests that with higher occurrence of heat waves, Hb-rich genotypes may be favoured with potential long-term impact on population genetic diversity.
Collapse
Affiliation(s)
| | - Bettina Zeis
- Institute of ZoophysiologyUniversity of MuensterMuensterGermany
| | - Luisa Orsini
- Environmental Genomics GroupSchool of Biosciencesthe University of BirminghamBirminghamUK
| |
Collapse
|
12
|
Gorr TA. Hypometabolism as the ultimate defence in stress response: how the comparative approach helps understanding of medically relevant questions. Acta Physiol (Oxf) 2017; 219:409-440. [PMID: 27364602 DOI: 10.1111/apha.12747] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/28/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
First conceptualized from breath-hold diving mammals, later recognized as the ultimate cell autonomous survival strategy in anoxia-tolerant vertebrates and burrowing or hibernating rodents, hypometabolism is typically recruited by resilient organisms to withstand and recover from otherwise life-threatening hazards. Through the coordinated down-regulation of biosynthetic, proliferative and electrogenic expenditures at times when little ATP can be generated, a metabolism turned 'down to the pilot light' allows the re-balancing of energy demand with supply at a greatly suppressed level in response to noxious exogenous stimuli or seasonal endogenous cues. A unifying hallmark of stress-tolerant organisms, the adaptation effectively prevents lethal depletion of ATP, thus delineating a marked contrast with susceptible species. Along with disengaged macromolecular syntheses, attenuated transmembrane ion shuttling and PO2 -conforming respiration rates, the metabolic slowdown in tolerant species usually culminates in a non-cycling, quiescent phenotype. However, such a reprogramming also occurs in leading human pathophysiologies. Ranging from microbial infections through ischaemia-driven infarcts to solid malignancies, cells involved in these disorders may again invoke hypometabolism to endure conditions non-permissive for growth. At the same time, their reduced activities underlie the frequent development of a general resistance to therapeutic interventions. On the other hand, a controlled induction of hypometabolic and/or hypothermic states by pharmacological means has recently stimulated intense research aimed at improved organ preservation and patient survival in situations requiring acutely administered critical care. The current review article therefore presents an up-to-date survey of concepts and applications of a coordinated and reversibly down-regulated metabolic rate as the ultimate defence in stress responses.
Collapse
Affiliation(s)
- T. A. Gorr
- Institute of Veterinary Physiology; Vetsuisse Faculty; University of Zurich; Zurich Switzerland
| |
Collapse
|
13
|
Klumpen E, Hoffschröer N, Zeis B, Gigengack U, Dohmen E, Paul RJ. Reactive oxygen species (ROS) and the heat stress response of Daphnia pulex: ROS-mediated activation of hypoxia-inducible factor 1 (HIF-1) and heat shock factor 1 (HSF-1) and the clustered expression of stress genes. Biol Cell 2016; 109:39-64. [PMID: 27515976 DOI: 10.1111/boc.201600017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/09/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND INFORMATION Heat stress in ectotherms involves direct (e.g. protein damage) and/or indirect effects (temperature-induced hypoxia and ROS formation), which cause activation of the transcription factors (TF) heat shock factor 1 (HSF-1) and/or hypoxia-inducible factor 1 (HIF-1). The present study focused on the links between stress (ROS) signals, nuclear (n) and cytoplasmic (c) HSF-1/HIF-1 levels, and stress gene expression on mRNA and protein levels (e.g. heat-shock protein 90, HSP90) upon acute heat and ROS (H2 O2 ) stress. RESULTS Acute heat stress (30°C) evoked fluctuations in ROS level. Different feeding regimens, which affected the glutathione (GSH) level, allowed altering the frequency of ROS fluctuations. Other data showed fluctuation frequency to depend also on ROS production rate. The heat-induced slow or fast ROS fluctuations (at high or low GSH levels) evoked slow or fast fluctuations in the levels of nHIF-1α, nHSF-1 and gene products (mRNAs and protein), albeit after different time delays. Time delays to ROS fluctuations were, for example,shorter for nHIF-1α than for nHSF-1 fluctuations, and nHIF-1α fluctuations preceded and nHSF-1 fluctuations followed fluctuations in HSP90 mRNA level. Cytoplasmic TF levels either changed little (cHIF-1α) or showed a steady increase (cHSF-1). Applying acute H2 O2 stress (at 20°C) revealed effects on nHIF-1α and mRNA levels, but no significant effects on nHSF-1 level. Transcriptome data additionally showed coordinated fluctuations of mRNA levels upon acute heat stress, involving mRNAs for HSPs and other stress proteins, with all corresponding genes carrying DNA binding motifs for HIF-1 and HSF-1. CONCLUSIONS This study provided evidence for promoting effects of ROS and HIF-1 on early haemoglobin, HIF-1α and HSP90 mRNA expressions upon heat or ROS stress. The increasing cHSF-1 level likely affected nHSF-1 level and later HSP90 mRNA expression. SIGNIFICANCE Heat stress evoked ROS fluctuations, with this stress signal forwarded via nHIF-1 and nHSF-1 fluctuations to stress gene expression. The frequency of ROS fluctuations seemed to integrate information about ROS productionrate and GSH antioxidant buffer capacity, resulting in stress protein expression of different speed. Results of this study suggest ROS as early (pre-damage) and protein defects as later (post-damage) stress signals to trigger heat stress responses.
Collapse
Affiliation(s)
- Eva Klumpen
- Institute of Zoophysiology, WWU Münster, Münster, Germany
| | | | - Bettina Zeis
- Institute of Zoophysiology, WWU Münster, Münster, Germany
| | | | - Elias Dohmen
- Institute of Zoophysiology, WWU Münster, Münster, Germany
| | - Rüdiger J Paul
- Institute of Zoophysiology, WWU Münster, Münster, Germany
| |
Collapse
|
14
|
Lai KP, Li JW, Chan CYS, Chan TF, Yuen KWY, Chiu JMY. Transcriptomic alterations in Daphnia magna embryos from mothers exposed to hypoxia. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:454-463. [PMID: 27399157 DOI: 10.1016/j.aquatox.2016.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Hypoxia occurs when dissolved oxygen (DO) falls below 2.8mgL(-1) in aquatic environments. It can cause trans-generational effects not only in fish, but also in the water fleas Daphnia. In this study, transcriptome sequencing analysis was employed to identify transcriptomic alterations induced by hypoxia in embryos of Daphnia magna, with an aim to investigate the mechanism underlying the trans-generational effects caused by hypoxia in Daphnia. The embryos (F1) were collected from adults (F0) that were previously exposed to hypoxia (or normoxia) for their whole life. De novo transcriptome assembly identified 18270 transcripts that were matched to the UniProtKB/Swiss-Prot database and resulted in 7419 genes. Comparative transcriptome analysis showed 124 differentially expressed genes, including 70 up- and 54 down-regulated genes under hypoxia. Gene ontology analysis further highlighted three clusters of genes which revealed acclimatory changes of haemoglobin, suppression in vitellogenin gene family and histone modifications. Specifically, the expressions of histone H2B, H3, H4 and histone deacetylase 4 (HDAC4) were deregulated. This study suggested that trans-generational effects of hypoxia on Daphnia may be mediated through epigenetic regulations of histone modifications.
Collapse
Affiliation(s)
- Keng-Po Lai
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong
| | - Jing-Woei Li
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | | | - Ting-Fung Chan
- School of Life Sciences, Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
15
|
Takahashi T, Ohnuma M. Identification and Expression Analysis of Upregulated Genes in the Resting Egg-Producing Water Flea (Daphnia pulex). Zoolog Sci 2016; 33:106-15. [PMID: 26853876 DOI: 10.2108/zs150068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Water fleas (Daphnia pulex) normally produce subitaneous eggs that initiate development immediately after oviposition. However, in response to habitat degradation, resting eggs are produced, which are enclosed in a sturdy outer envelope (ephippium) and can survive in harsh environments for an extended time. To understand the molecular mechanism underlying resting egg production in D. pulex, we investigated the genes whose expression patterns played a role in the production and identified the following six candidate genes: Dpfa-1, Dpfa-2, Dpep-1, Dpep-2, Dpep-3, and Dpep-4. These six genes displayed > 40-fold higher expression levels in resting egg-producing animals compared with those in subitaneous egg-producing animals at the period when the ovaries were mature. Dpfa-1 and Dpfa-2 were expressed in the fat cells, and their expression patterns were synchronized with the development of resting egg oocytes in the ovary. In contrast, Dpep-1-4 were expressed in the morphologically altered epidermal cells of the brood chamber with the formation of the ephippium, and their expression patterns were also related to ephippium formation. Our results suggest that the former two genes encode the resting egg-specific components produced by fat cells and that the latter four genes encode the components related to the ephippium formation synthesized by epidermal cells.
Collapse
Affiliation(s)
- Tomoko Takahashi
- Department of Biology, School of Medicine, Kurume University, Fukuoka 830-0011, Japan
| | - Masaaki Ohnuma
- Department of Biology, School of Medicine, Kurume University, Fukuoka 830-0011, Japan
| |
Collapse
|
16
|
Trotter B, Otte KA, Schoppmann K, Hemmersbach R, Fröhlich T, Arnold GJ, Laforsch C. The influence of simulated microgravity on the proteome of Daphnia magna. NPJ Microgravity 2015; 1:15016. [PMID: 28725717 PMCID: PMC5515502 DOI: 10.1038/npjmgrav.2015.16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 01/04/2023] Open
Abstract
Background: The waterflea Daphnia is an interesting candidate for bioregenerative life support systems (BLSS). These animals are particularly promising because of their central role in the limnic food web and its mode of reproduction. However, the response of Daphnia to altered gravity conditions has to be investigated, especially on the molecular level, to evaluate the suitability of Daphnia for BLSS in space. Methods: In this study, we applied a proteomic approach to identify key proteins and pathways involved in the response of Daphnia to simulated microgravity generated by a two-dimensional (2D) clinostat. We analyzed five biological replicates using 2D-difference gel electrophoresis proteomic analysis. Results: We identified 109 protein spots differing in intensity (P<0.05). Substantial fractions of these proteins are involved in actin microfilament organization, indicating the disruption of cytoskeletal structures during clinorotation. Furthermore, proteins involved in protein folding were identified, suggesting altered gravity induced breakdown of protein structures in general. In addition, simulated microgravity increased the abundance of energy metabolism-related proteins, indicating an enhanced energy demand of Daphnia. Conclusions: The affected biological processes were also described in other studies using different organisms and systems either aiming to simulate microgravity conditions or providing real microgravity conditions. Moreover, most of the Daphnia protein sequences are well-conserved throughout taxa, indicating that the response to altered gravity conditions in Daphnia follows a general concept. Data are available via ProteomeXchange with identifier PXD002096.
Collapse
Affiliation(s)
- Benjamin Trotter
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Animal Ecology I and BayCEER, Bayreuth University, Bayreuth, Germany
| | - Kathrin A Otte
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany.,Animal Ecology I and BayCEER, Bayreuth University, Bayreuth, Germany
| | | | - Ruth Hemmersbach
- Biomedical Research, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany
| | | |
Collapse
|
17
|
Zhang J, Cao J, Ma S, Dong R, Meng W, Ying M, Weng Q, Chen Z, Ma J, Fang Q, He Q, Yang B. Tumor hypoxia enhances Non-Small Cell Lung Cancer metastasis by selectively promoting macrophage M2 polarization through the activation of ERK signaling. Oncotarget 2015; 5:9664-77. [PMID: 25313135 PMCID: PMC4259428 DOI: 10.18632/oncotarget.1856] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hypoxia is a common phenomenon occurring in the majority of human tumors and has been proved to play an important role in tumor progression. However, it remains unclear that whether the action of hypoxia on macrophages is a main driving force of hypoxia-mediated aggressive tumor behaviors. In the present study, we observe that high density of M2 macrophages is associated with metastasis in adenocarcinoma Non-Small Cell Lung Cancer (NSCLC) patients. By applying the in vivo hypoxia model, the results suggest that intermittent hypoxia significantly promotes the metastasis of Lewis lung carcinoma (LLC), accompanied with more CD209+ macrophages infiltrated in primary tumor tissue. More intriguingly, by skewing macrophages polarization away from the M1- to a tumor-promoting M2-like phenotype, hypoxia and IL-6 cooperate to enhance the LLC metastasis both in vitro and in vivo. In addition, we also demonstrate that skewing of macrophage M2 polarization by hypoxia relies substantially on activation of ERK signaling. Collectively, these observations unveil a novel tumor hypoxia concept involving the macrophage phenotype shift and provide direct evidence for lung cancer intervention through modulating the phenotype of macrophages.
Collapse
Affiliation(s)
- Jun Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shenglin Ma
- Hangzhou First People's Hospital, Huansha Road, Hangzhou, China. The second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Dong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Wen Meng
- Hangzhou First People's Hospital, Huansha Road, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qinjie Weng
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zibo Chen
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jian Ma
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qingxia Fang
- Zhejiang Provincial People's hospital, Shangtang Road, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Burmester T. Evolution of Respiratory Proteins across the Pancrustacea. Integr Comp Biol 2015; 55:792-801. [PMID: 26130703 DOI: 10.1093/icb/icv079] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Respiratory proteins enhance the capacity of the blood for oxygen transport and support intracellular storage and delivery of oxygen. Hemocyanin and hemoglobin are the respiratory proteins that occur in the Pancrustacea. The copper-containing hemocyanins evolved from phenoloxidases in the stem lineage of arthropods. For a long time, hemocyanins had only been known from the malacostracan crustaceans but recent studies identified hemocyanin also in Remipedia, Ostracoda, and Branchiura. Hemoglobins are common in the Branchiopoda but have also been sporadically found in other crustacean classes (Malacostraca, Copepoda, Thecostraca). Respiratory proteins had long been considered unnecessary in the hexapods because of the tracheal system. Only chironomids, some backswimmers, and the horse botfly, which all live under hypoxic conditions, were known exceptions and possess hemoglobins. However, recent data suggest that hemocyanins occur in most ametabolous and hemimetabolous insects. Phylogenetic analysis showed the hemocyanins of insects and Remipedia to be similar, suggesting a close relationship of these taxa. Hemocyanin has been lost in dragonflies, mayflies, and Eumetabola (Hemiptera + Holometabola). In cockroaches and grasshoppers, hemocyanin expression is restricted to the developing embryo while in adults oxygen is supplied solely by the tracheal system. This pattern suggests that hemocyanin was the oxygen-transport protein in the hemolymph of the last common ancestor of the pancrustaceans. The loss was probably associated with miniaturization, a period of restricted availability of oxygen, a change in life-style, or morphological changes. Once lost, hemocyanin was not regained. Some pancrustaceans also possess cellular globin genes with uncertain functions, which are expressed at low levels. When a respiratory protein was again required, hemoglobins evolved several times independently from cellular globins.
Collapse
Affiliation(s)
- Thorsten Burmester
- Institute of Zoology, Biocenter Grindel, University of Hamburg, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| |
Collapse
|
19
|
Scanlan LD, Reed RB, Loguinov AV, Antczak P, Tagmount A, Aloni S, Nowinski DT, Luong P, Tran C, Karunaratne N, Pham D, Lin XX, Falciani F, Higgins CP, Ranville JF, Vulpe CD, Gilbert B. Silver nanowire exposure results in internalization and toxicity to Daphnia magna. ACS NANO 2013; 7:10681-94. [PMID: 24099093 PMCID: PMC3912856 DOI: 10.1021/nn4034103] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physicochemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna . Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag(+) release and underwent a significant morphological transformation within 1 h following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating, and solution chemistry. Ag(+) release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag(+) and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag(+). Scanning electron microscopy imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology, and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna .
Collapse
Affiliation(s)
- Leona D. Scanlan
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Robert B. Reed
- Colorado School of Mines, Department of Chemistry and Geochemistry, 1500 Illinois St., Golden, CO 80401
| | - Alexandre V. Loguinov
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Philipp Antczak
- University of Liverpool Centre for Computational Biology and Modeling, Institute of Integrative Biology, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Abderrahmane Tagmount
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Shaul Aloni
- Molecular Foundry, Lawrence Berkeley National Laboratory, Materials Sciences Division, 1 Cyclotron Rd., MS 90-1116, Berkeley, CA, 94720
| | - Daniel Thomas Nowinski
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Pauline Luong
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Christine Tran
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Nadeeka Karunaratne
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Don Pham
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Xin Xin Lin
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
| | - Francesco Falciani
- University of Liverpool Centre for Computational Biology and Modeling, Institute of Integrative Biology, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Chris P. Higgins
- Molecular Foundry, Lawrence Berkeley National Laboratory, Materials Sciences Division, 1 Cyclotron Rd., MS 90-1116, Berkeley, CA, 94720
| | - James F. Ranville
- Colorado School of Mines, Department of Chemistry and Geochemistry, 1500 Illinois St., Golden, CO 80401
| | - Chris D. Vulpe
- University of California Berkeley, Department of Nutritional Sciences and Toxicology, 119 Morgan Hall, Berkeley, CA 94720
- Address correspondence to
| | - Benjamin Gilbert
- Earth Science Division, Lawrence Berkeley National Laboratory, Earth Sciences Division, 1 Cyclotron Rd., MS 74-316C, Berkeley, CA, 94720
| |
Collapse
|
20
|
Lyu K, Zhu X, Wang Q, Chen Y, Yang Z. Copper/zinc superoxide dismutase from the Cladoceran Daphnia magna: molecular cloning and expression in response to different acute environmental stressors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8887-8893. [PMID: 23815380 DOI: 10.1021/es4015212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The copper/zinc superoxide dismutase (Cu/Zn-SOD) is a representative antioxidant enzyme that is responsible for the conversion of superoxide to oxygen and hydrogen peroxide in aerobic organisms. Cu/Zn-SOD mRNAs have been cloned from many species and employed as useful biomarkers of oxidative stresses. In the present study, we cloned Cu/Zn-SOD cDNA from the cladoceran Daphnia magna, analyzed its catalytic properties, and investigated mRNA expression patterns after exposure to known oxidative stressors. The full-length Cu/Zn-SOD of the D. magna (Dm-Cu/Zn-SOD) sequence consisted of 703 bp nucleotides, encoding 178 amino acids, showing well-conserved domains that were required for metal binding and several common characteristics. The deduced amino acid sequence of Dm-Cu/Zn-SOD showed that it shared high identity with Daphnia pulex (88%), Alvinella pompejana (56%), and Cristaria plicata (56%). The phylogenetic analysis indicated that Dm-Cu/Zn-SOD was highly homologous to D. pulex. The variation of Dm-Cu/Zn-SOD mRNA expression was quantified by real-time PCR, and the results indicated that the expression was up-regulated after 48-h exposure to copper, un-ionized ammonia, and low dissolved oxygen. This study shows that the Dm-Cu/Zn-SOD mRNA could be successfully employed as a biomarker of oxidative stress, which is a common mode of toxicity for many other aquatic hazardous materials.
Collapse
Affiliation(s)
- Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University , 1 Wenyuan Road, Nanjing 210023, China
| | | | | | | | | |
Collapse
|
21
|
Hypoxia-inducible haemoglobins of Daphnia pulex and their role in the response to acute and chronic temperature increase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1704-10. [PMID: 23388388 DOI: 10.1016/j.bbapap.2013.01.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 11/21/2022]
Abstract
Daphnia pulex is challenged by severe oxygen and temperature changes in its habitat. In response to hypoxia, the equipment of oxygen transport proteins is adjusted in quantity and quality by differential expression of haemoglobin isoforms. This study focuses on the response of 20°C acclimated animals to elevated temperature using transcriptomic and proteomic approaches. Acute temperature stress (30°C) induced the hypoxia-inducible Hb isoforms most strongly, resulting in an increase of the haemoglobin mRNA pool by 70% within 8h. Long-term-acclimation to moderately elevated temperature (24°C) only evoked minor changes of the Hb mRNA suite. Nevertheless, the concentration of the hemolymph pool of haemoglobin was elevated by 80%. In this case, the constitutive Hb isoforms showed the strongest increase, with Hb01 and Hb02 contributing by 64% to the total amount of respiratory protein. The regulation patterns upon acute temperature stress likely reflect temperature-induced tissue hypoxia, whereas in case of persisting exposure to moderately elevated temperature, acclimation processes enabled the successful return to oxygen homeostasis. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.
Collapse
|
22
|
Miner BE, De Meester L, Pfrender ME, Lampert W, Hairston NG. Linking genes to communities and ecosystems: Daphnia as an ecogenomic model. Proc Biol Sci 2012; 279:1873-82. [PMID: 22298849 DOI: 10.1098/rspb.2011.2404] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
How do genetic variation and evolutionary change in critical species affect the composition and functioning of populations, communities and ecosystems? Illuminating the links in the causal chain from genes up to ecosystems is a particularly exciting prospect now that the feedbacks between ecological and evolutionary changes are known to be bidirectional. Yet to fully explore phenomena that span multiple levels of the biological hierarchy requires model organisms and systems that feature a comprehensive triad of strong ecological interactions in nature, experimental tractability in diverse contexts and accessibility to modern genomic tools. The water flea Daphnia satisfies these criteria, and genomic approaches capitalizing on the pivotal role Daphnia plays in the functioning of pelagic freshwater food webs will enable investigations of eco-evolutionary dynamics in unprecedented detail. Because its ecology is profoundly influenced by both genetic polymorphism and phenotypic plasticity, Daphnia represents a model system with tremendous potential for developing a mechanistic understanding of the relationship between traits at the genetic, organismal and population levels, and consequences for community and ecosystem dynamics. Here, we highlight the combination of traits and ecological interactions that make Daphnia a definitive model system, focusing on the additional power and capabilities enabled by recent molecular and genomic advances.
Collapse
Affiliation(s)
- Brooks E Miner
- Department of Biology, University of Washington, PO Box 351800, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|