1
|
Chen J, Setia G, Lin LH, Sun Q, Husseneder C. Weight and protozoa number but not bacteria diversity are associated with successful pair formation of dealates in the Formosan subterranean termite, Coptotermes formosanus. PLoS One 2023; 18:e0293813. [PMID: 37956140 PMCID: PMC10642788 DOI: 10.1371/journal.pone.0293813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
New colonies of Formosan subterranean termites are founded by monogamous pairs. During swarming season, alates (winged reproductives) leave their parental colony. After swarming, they drop to the ground, shed their wings, and male and female dealates find suitable nesting sites where they mate and become kings and queens of new colonies. The first generation of offspring is entirely dependent on the nutritional resources of the founder pair consisting of the fat and protein reserves of the dealates and their microbiota, which include the cellulose-digesting protozoa and diverse bacteria. Since termite kings and queens can live for decades, mate for life and colony success is linked to those initial resources, we hypothesized that gut microbiota of founders affect pair formation. To test this hypothesis, we collected pairs found in nest chambers and single male and female dealates from four swarm populations. The association of three factors (pairing status, sex of the dealates and population) with dealate weights, total protozoa, and protozoa Pseudotrichonympha grassii numbers in dealate hindguts was determined. In addition, Illumina 16S rRNA gene sequencing and the QIIME2 pipeline were used to determine the impact of those three factors on gut bacteria diversity of dealates. Here we report that pairing status was significantly affected by weight and total protozoa numbers, but not by P. grassii numbers and bacteria diversity. Weight and total protozoa numbers were higher in paired compared to single dealates. Males contained significantly higher P. grassii numbers and bacteria richness and marginally higher phylogenetic diversity despite having lower weights than females. In conclusion, this study showed that dealates with high body weight and protozoa numbers are more likely to pair and become colony founders, probably because of competitive advantage. The combined nutritional resources provided by body weight and protozoa symbionts of the parents are important for successful colony foundation and development.
Collapse
Affiliation(s)
- Junyan Chen
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| | - Garima Setia
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| | - Li-Hsiang Lin
- Department of Experimental Statistics, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| | - Qian Sun
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Los Angeles, United States of America
| |
Collapse
|
2
|
Grieco MB, Lopes FAC, Oliveira LS, Tschoeke DA, Popov CC, Thompson CC, Gonçalves LC, Constantino R, Martins OB, Kruger RH, de Souza W, Thompson FL. Metagenomic Analysis of the Whole Gut Microbiota in Brazilian Termitidae Termites Cornitermes cumulans, Cyrilliotermes strictinasus, Syntermes dirus, Nasutitermes jaraguae, Nasutitermes aquilinus, Grigiotermes bequaerti, and Orthognathotermes mirim. Curr Microbiol 2019; 76:687-697. [DOI: 10.1007/s00284-019-01662-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/22/2019] [Indexed: 01/04/2023]
|
3
|
Brandão-Costa RM, Araújo VF, Porto ALF. CgTI, a novel thermostable Kunitz trypsin-inhibitor purified from Cassia grandis seeds: Purification, characterization and termiticidal activity. Int J Biol Macromol 2018; 118:2296-2306. [DOI: 10.1016/j.ijbiomac.2018.07.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
4
|
Pilon FM, Silva CDR, Visôtto LE, Barros RDA, da Silva Júnior NR, Campos WG, de Almeida Oliveira MG. Purification and characterization of trypsin produced by gut bacteria from Anticarsia gemmatalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2017; 96:e21407. [PMID: 28762531 DOI: 10.1002/arch.21407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Purification of active trypsin in the digestive process of insects is essential for the development of potent protease inhibitors (PIs) as an emerging pest control technology and research into insect adaptations to dietary PIs. An important aspect is the presence of proteolytic microorganisms, which contribute to host nutrition. Here, we purified trypsins produced by bacteria Bacillus cereus, Enterococcus mundtii, Enterococcus gallinarum, and Staphylococcus xylosus isolated from the midgut of Anticarsia gemmatalis. The trypsins had a molecular mass of approximately 25 kDa. The enzymes showed increased activity at 40°C, and they were active at pH values 7.5-10. Aprotinin, bis-benzamidine, and soybean Kunitz inhibitor (SKTI) significantly inhibited trypsin activity. The l-1-tosyl-amido-2-phenylethylchloromethyl ketone (TPCK), pepstatin A, E-64, ethylenediamine tetraacetic acid, and calcium ions did not affect the enzyme activity at the concentrations tested. We infer the purified trypsins do not require calcium ions, by which they differ from the trypsins of other microorganisms and the soluble and insoluble trypsins characterized from A. gemmatalis. These data suggest the existence of different isoforms of trypsin in the velvetbean caterpillar midguts.
Collapse
Affiliation(s)
- Franciny Martins Pilon
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Camila da Rocha Silva
- Instituto de Ciências Agrárias, Universidade Federal de Viçosa Campus Rio Paranaíba, MG, Brazil
| | - Liliane Evangelista Visôtto
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa Campus Rio Paranaíba, MG, Brazil
| | - Rafael de Almeida Barros
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Neilier Rodrigues da Silva Júnior
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Wellington Garcia Campos
- Departamento de Engenharia de Biossistemas, Universidade Federal de São João Del Rei, São João Del Rei, MG, Brazil
| | - Maria Goreti de Almeida Oliveira
- Departamento de Bioquímica e Biologia Molecular, Instituto de Biotecnologia Aplicada a Agropecuária-BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
5
|
Tikhe CV, Sethi A, Delatte J, Husseneder C. Isolation and assessment of gut bacteria from the Formosan subterranean termite, Coptotermes formosanus (Isoptera: Rhinotermitidae), for paratransgenesis research and application. INSECT SCIENCE 2017; 24:93-102. [PMID: 26477889 DOI: 10.1111/1744-7917.12282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 06/05/2023]
Abstract
Paratransgenesis targeting the gut protozoa is being developed as an alternative method for the control of the Formosan subterranean termite (FST). This method involves killing the cellulose-digesting gut protozoa using a previously developed antiprotozoal peptide consisting of a target specific ligand coupled to an antimicrobial peptide (Hecate). In the future, we intend to genetically engineer termite gut bacteria as "Trojan Horses" to express and spread ligand-Hecate in the termite colony. The aim of this study was to assess the usefulness of bacteria strains isolated from the gut of FST as "Trojan Horses." We isolated 135 bacteria from the guts of workers from 3 termite colonies. Sequencing of the 16S rRNA gene identified 20 species. We tested 5 bacteria species that were previously described as part of the termite gut community for their tolerance against Hecate and ligand-Hecate. Results showed that the minimum concentration required to inhibit bacteria growth was always higher than the concentration required to kill the gut protozoa. Out of the 5 bacteria tested, we engineered Trabulsiella odontotermitis, a termite specific bacterium, to express green fluorescent protein as a proof of concept that the bacteria can be engineered to express foreign proteins. Engineered T. odontotermitis was fed to FST to study if the bacteria are ingested. This feeding experiment confirmed that engineered T. odontotermitis is ingested by termites and can survive in the gut for at least 48 h. Here we report that T. odontotermitis is a suitable delivery and expression system for paratransgenesis in a termite species.
Collapse
Affiliation(s)
- Chinmay V Tikhe
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803
| | - Amit Sethi
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803
- DuPont-Pioneer, Johnston, IA, 50131-0552, USA
| | - Jennifer Delatte
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803
| |
Collapse
|
6
|
Subala SP, Shivakumar MS. Circadian variation affects the biology and digestive profiles of a nocturnal insectSpodoptera litura(Insecta: Lepidoptera). BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1251928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Tikhe CV, Martin TM, Howells A, Delatte J, Husseneder C. Assessment of genetically engineered Trabulsiella odontotermitis as a 'Trojan Horse' for paratransgenesis in termites. BMC Microbiol 2016; 16:202. [PMID: 27595984 PMCID: PMC5011783 DOI: 10.1186/s12866-016-0822-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/26/2016] [Indexed: 12/02/2022] Open
Abstract
Background The Formosan subterranean termite, Coptotermes formosanus is an invasive urban pest in the Southeastern USA. Paratransgenesis using a microbe expressed lytic peptide that targets the termite gut protozoa is currently being developed for the control of Formosan subterranean termites. In this study, we evaluated Trabulsiella odontotermitis, a termite-specific bacterium, for its potential to serve as a ‘Trojan Horse’ for expression of gene products in termite colonies. Results We engineered two strains of T. odontotermitis, one transformed with a constitutively expressed GFP plasmid and the other engineered at the chromosome with a Kanamycin resistant gene using a non- disruptive Tn7 transposon. Both strains were fed to termites from three different colonies. Fluorescent microscopy confirmed that T. odontotermitis expressed GFP in the gut and formed a biofilm in the termite hindgut. However, GFP producing bacteria could not be isolated from the termite gut after 2 weeks. The feeding experiment with the chromosomally engineered strain demonstrated that T. odontotermitis was maintained in the termite gut for at least 21 days, irrespective of the termite colony. The bacteria persisted in two termite colonies for at least 36 days post feeding. The experiment also confirmed the horizontal transfer of T. odontotermitis amongst nest mates. Conclusion Overall, we conclude that T. odontotermitis can serve as a ‘Trojan Horse’ for spreading gene products in termite colonies. This study provided proof of concept and laid the foundation for the future development of genetically engineered termite gut bacteria for paratransgenesis based termite control. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0822-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chinmay Vijay Tikhe
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA.
| | - Thomas M Martin
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Andréa Howells
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Jennifer Delatte
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| |
Collapse
|
8
|
Peterson BF, Scharf ME. Lower Termite Associations with Microbes: Synergy, Protection, and Interplay. Front Microbiol 2016; 7:422. [PMID: 27092110 PMCID: PMC4824777 DOI: 10.3389/fmicb.2016.00422] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/16/2016] [Indexed: 11/15/2022] Open
Abstract
Lower-termites are one of the best studied symbiotic systems in insects. Their ability to feed on a nitrogen-poor, wood-based diet with help from symbiotic microbes has been under investigation for almost a century. A unique microbial consortium living in the guts of lower termites is essential for wood-feeding. Host and symbiont cellulolytic enzymes synergize each other in the termite gut to increase digestive efficiency. Because of their critical role in digestion, gut microbiota are driving forces in all aspects of termite biology. Social living also comes with risks for termites. The combination of group living and a microbe-rich habitat makes termites potentially vulnerable to pathogenic infections. However, the use of entomopathogens for termite control has been largely unsuccessful. One mechanism for this failure may be symbiotic collaboration; i.e., one of the very reasons termites have thrived in the first place. Symbiont contributions are thought to neutralize fungal spores as they pass through the termite gut. Also, when the symbiont community is disrupted pathogen susceptibility increases. These recent discoveries have shed light on novel interactions for symbiotic microbes both within the termite host and with pathogenic invaders. Lower termite biology is therefore tightly linked to symbiotic associations and their resulting physiological collaborations.
Collapse
Affiliation(s)
| | - Michael E Scharf
- Department of Entomology, Purdue University, West Lafayette IN, USA
| |
Collapse
|
9
|
Lima TDA, Pontual EV, Dornelles LP, Amorim PK, Sá RA, Coelho LCBB, Napoleão TH, Paiva PMG. Digestive enzymes from workers and soldiers of termite Nasutitermes corniger. Comp Biochem Physiol B Biochem Mol Biol 2014; 176:1-8. [DOI: 10.1016/j.cbpb.2014.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 06/28/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
|
10
|
Sethi A, Delatte J, Foil L, Husseneder C. Protozoacidal Trojan-Horse: use of a ligand-lytic peptide for selective destruction of symbiotic protozoa within termite guts. PLoS One 2014; 9:e106199. [PMID: 25198727 PMCID: PMC4157778 DOI: 10.1371/journal.pone.0106199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/04/2014] [Indexed: 11/18/2022] Open
Abstract
For novel biotechnology-based termite control, we developed a cellulose bait containing freeze-dried genetically engineered yeast which expresses a protozoacidal lytic peptide attached to a protozoa-recognizing ligand. The yeast acts as a ‘Trojan-Horse’ that kills the cellulose-digesting protozoa in the termite gut, which leads to the death of termites, presumably due to inefficient cellulose digestion. The ligand targets the lytic peptide specifically to protozoa, thereby increasing its protozoacidal efficiency while protecting non-target organisms. After ingestion of the bait, the yeast propagates in the termite's gut and is spread throughout the termite colony via social interactions. This novel paratransgenesis-based strategy could be a good supplement for current termite control using fortified biological control agents in addition to chemical insecticides. Moreover, this ligand-lytic peptide system could be used for drug development to selectively target disease-causing protozoa in humans or other vertebrates.
Collapse
Affiliation(s)
- Amit Sethi
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
- * E-mail: (AS); (CH)
| | - Jennifer Delatte
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Lane Foil
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Claudia Husseneder
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
- * E-mail: (AS); (CH)
| |
Collapse
|
11
|
Sethi A, Kovaleva ES, Slack JM, Brown S, Buchman GW, Scharf ME. A GHF7 cellulase from the protist symbiont community of Reticulitermes flavipes enables more efficient lignocellulose processing by host enzymes. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2013; 84:175-193. [PMID: 24186432 DOI: 10.1002/arch.21135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Termites and their gut microbial symbionts efficiently degrade lignocellulose into fermentable monosaccharides. This study examined three glycosyl hydrolase family 7 (GHF7) cellulases from protist symbionts of the termite Reticulitermes flavipes. We tested the hypotheses that three GHF7 cellulases (GHF7-3, GHF7-5, and GHF7-6) can function synergistically with three host digestive enzymes and a fungal cellulase preparation. Full-length cDNA sequences of the three GHF7s were assembled and their protist origins confirmed through a combination of quantitative PCR and cellobiohydrolase (CBH) activity assays. Recombinant versions of the three GHF7s were generated using a baculovirus-insect expression system and their activity toward several model substrates compared with and without metallic cofactors. GHF7-3 was the most active of the three cellulases; it exhibited a combination of CBH, endoglucanase (EGase), and β-glucosidase activities that were optimal around pH 7 and 30°C, and enhanced by calcium chloride and zinc sulfate. Lignocellulose saccharification assays were then done using various combinations of the three GHF7s along with a host EGase (Cell-1), beta-glucosidase (β-glu), and laccase (LacA). GHF7-3 was the only GHF7 to enhance glucose release by Cell-1 and β-glu. Finally, GHF7-3, Cell-1, and β-glu were individually tested with a commercial fungal cellulase preparation in lignocellulose saccharification assays, but only β-glu appreciably enhanced glucose release. Our hypothesis that protist GHF7 cellulases are capable of synergistic interactions with host termite digestive enzymes is supported only in the case of GHF7-3. These findings suggest that not all protist cellulases will enhance saccharification by cocktails of other termite or fungal lignocellulases.
Collapse
Affiliation(s)
- Amit Sethi
- Department of Entomology, Purdue University, West Lafayette, Indiana
| | | | | | | | | | | |
Collapse
|
12
|
Cornette R, Hayashi Y, Koshikawa S, Miura T. Differential gene expression in response to juvenile hormone analog treatment in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Archotermopsidae). JOURNAL OF INSECT PHYSIOLOGY 2013; 59:509-518. [PMID: 23481672 DOI: 10.1016/j.jinsphys.2013.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/29/2013] [Accepted: 02/07/2013] [Indexed: 06/01/2023]
Abstract
Termite societies are characterized by a highly organized division of labor among conspicuous castes, groups of individuals with various morphological specializations. Termite caste differentiation is under control of juvenile hormone (JH), but the molecular mechanism underlying the response to JH and early events triggering caste differentiation are still poorly understood. In order to profile candidate gene expression during early soldier caste differentiation of the damp-wood termite, Hodotermopsis sjostedti, we treated pseudergates (workers) with a juvenile hormone analog (JHA) to induce soldier caste differentiation. We then used Suppressive Subtractive Hybridization to create two cDNA libraries enriched for transcripts that were either up- or downregulated at 24h after treatment. Finally, we used quantitative PCR to confirm temporal expression patterns. Hexamerins represent a large proportion of the genes upregulated following JHA treatment and have an expression pattern that shows roughly an inverse correlation to intrinsic JH titers. This data is consistent with the role of a JH "sink", which was demonstrated for hexamerins in another termite, Reticulitermes flavipes. A putative nuclear protein was also upregulated a few hours after JHA treatment, which suggests a role in the early response to JH and subsequent regulation of transcriptional events associated with soldier caste differentiation. Some digestive enzymes, such as endogenous beta-endoglucanase and chymotrypsin, as well as a protein associated to digestion were identified among genes downregulated after JHA treatment. This suggests that JH may directly influence the pseudergate-specific digestive system.
Collapse
Affiliation(s)
- Richard Cornette
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | | | | | | |
Collapse
|
13
|
Sethi A, Slack JM, Kovaleva ES, Buchman GW, Scharf ME. Lignin-associated metagene expression in a lignocellulose-digesting termite. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:91-101. [PMID: 23108206 DOI: 10.1016/j.ibmb.2012.10.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/29/2012] [Accepted: 10/06/2012] [Indexed: 05/23/2023]
Abstract
Lignin is a component of plant biomass that presents a significant obstacle to biofuel production. It is composed of a highly stable phenylpropanoid matrix that upon degradation, releases toxic metabolites. Termites have specialized digestive systems that overcome the lignin barrier in wood lignocellulose to efficiently release fermentable simple sugars; however, how termites specifically degrade lignin and tolerate its toxic byproducts remains unknown. Here, using the termite Reticulitermes flavipes and its symbiotic (protozoan) gut fauna as a model system, we used high throughput Roche 454-titanium pyrosequencing and proteomics approaches to (i) experimentally compare the effects of diets containing varying degrees of lignin complexity on host-symbiont digestome composition, (ii) deeply sample host and symbiont lignocellulase diversity, and (iii) identify promising lignocellulase candidates for functional characterization. In addition to revealing over 9500 differentially expressed transcripts related to a wide range of physiological processes, our findings reveal two detoxification enzyme families not generally considered in connection with lignocellulose digestion: aldo-keto reductases and catalases. Recombinant versions of two host enzymes from these enzyme families, which apparently play no roles in cellulose or hemicellulose digestion, significantly enhance lignocellulose saccharification by cocktails of host and symbiont cellulases. These hypothesis-driven results provide important new insights into (i) dietary lignin as a xenobiotic challenge, (ii) the complex mechanisms used by termites to cope with their lignin-rich diets, and (iii) novel lignin-targeted enzymatic approaches to enhance biofuel and biomaterial production.
Collapse
Affiliation(s)
- Amit Sethi
- Department of Entomology, Purdue University, West Lafayette, IN 47907-2089, USA
| | | | | | | | | |
Collapse
|