1
|
Kishimoto S, Minami A, Aoki Y, Matsubara Y, Watanabe S, Watanabe K. Reactive Azlactone Intermediate Drives Fungal Secondary Metabolite Cross-Pathway Generation. J Am Chem Soc 2023; 145:3221-3228. [PMID: 36706030 DOI: 10.1021/jacs.2c13188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Pathogenic fungi of Aspergillus section Fumigati are known to produce various secondary metabolites. A reported isolation of a compound with an atypical carbon skeleton called fumimycin from A. fumisynnematus prompted us to examine a related fungus, A. lentulus, for production of similar products. Here we report the isolation of fumimycin and a related new racemic compound we named lentofuranine. Detailed analyses revealed that both compounds were assembled by a nonenzymatic condensation of a polyketide intermediate from the terrein biosynthetic pathway and a highly reactive azlactone intermediate produced by an unrelated nonribosomal peptide synthetase carrying a terminal condensation-like domain. While highly reactive azlactone is commonly used in chemical synthesis, its production by a conventional non-metalloenzyme and employment as a biosynthetic pathway intermediate is unprecedented. The observed unusual carbon skeleton formation is likely due to the reactivity of azlactone. Our finding provides another example of a chemical principle being aptly exploited by a biological system.
Collapse
Affiliation(s)
- Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| | - Ayumi Minami
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| | - Yoshimitsu Aoki
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| | - Yuya Matsubara
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| | - Shogo Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| |
Collapse
|
2
|
Jiang L, Yang H, Zhang X, Li X, Lv K, Zhang W, Zhu G, Liu C, Wang Y, Hsiang T, Zhang L, Liu X. Schultriene and nigtetraene: two sesterterpenes characterized from pathogenetic fungi via genome mining approach. Appl Microbiol Biotechnol 2022; 106:6047-6057. [PMID: 36040489 DOI: 10.1007/s00253-022-12125-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 01/01/2023]
Abstract
Fungal bifunctional terpene synthases (BFTSs) have been reported to contribute to the biosynthesis of a variety of di/sesterterpenes via different carbocation transportation pathways. Genome mining of new BFTSs from unique fungal resources will, theoretically, allow for the identification of new terpenes. In this study, we surveyed the distribution of BFTSs in our in-house collection of 430 pathogenetic fungi and preferred two BFTSs (CsSS and NnNS), long distance from previously characterized BFTSs and located in relatively independent branches, based on the established phylogenetic tree. The heterologous expression of the two BFTSs in Aspergillus oryzae and Saccharomyces cerevisiae led to the identification of two new sesterterpenes separately, 5/12/5 tricyclic type-A sesterterpene (schultriene, 1) for CsSS and 5/11 bicyclic type-B sesterterpene (nigtetraene, 2) for NnNS. In addition, to the best of our knowledge, 2 is the first 5/11 bicyclic type-B characterized sesterterpene to date. On the basis of this, the plausible cyclization mechanisms of 1 and 2 were proposed based on density functional theory calculations. These new enzymes and their corresponding terpenes suggest that the chemical spaces produced by BFTSs remain large and also provide important evidences for further protein engineering for new terpenes and for understanding of cyclization mechanism catalyzed by BFTSs. KEY POINTS: • Genome mining of two BFTSs yields two new sesterterpenoids correspondingly. • Identification of the first 5/11 ring system type-B product. • Parse out the rational cyclization mechanism of isolated sesterterpenoids.
Collapse
Affiliation(s)
- Lan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Huanting Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Xue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Xiaoying Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Weiyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Guoliang Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Chengwei Liu
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Yongheng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON, Canada
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science of Technology, Shanghai, China.
| |
Collapse
|
3
|
Properties and Mechanisms of Flavin-Dependent Monooxygenases and Their Applications in Natural Product Synthesis. Int J Mol Sci 2022; 23:ijms23052622. [PMID: 35269764 PMCID: PMC8910399 DOI: 10.3390/ijms23052622] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products are usually highly complicated organic molecules with special scaffolds, and they are an important resource in medicine. Natural products with complicated structures are produced by enzymes, and this is still a challenging research field, its mechanisms requiring detailed methods for elucidation. Flavin adenine dinucleotide (FAD)-dependent monooxygenases (FMOs) catalyze many oxidation reactions with chemo-, regio-, and stereo-selectivity, and they are involved in the synthesis of many natural products. In this review, we introduce the mechanisms for different FMOs, with the classical FAD (C4a)-hydroperoxide as the major oxidant. We also summarize the difference between FMOs and cytochrome P450 (CYP450) monooxygenases emphasizing the advantages of FMOs and their specificity for substrates. Finally, we present examples of FMO-catalyzed synthesis of natural products. Based on these explanations, this review will expand our knowledge of FMOs as powerful enzymes, as well as implementation of the FMOs as effective tools for biosynthesis.
Collapse
|
4
|
Zhang Q, He C, Sun J, Deng Z, Yu Y. N-7′ methylation in apramycin: its biosynthesis and biological role. Org Chem Front 2022. [DOI: 10.1039/d2qo00260d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work characterized N-7′ methylation in apramycin's assembly line, which fills in the final step at the pseudotrisaccharide stage of the apramycin biosynthetic pathway and indicates the significant biological role of the N-7′ methyl group.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P. R. China
| | - Chang He
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P. R. China
| | - Jing Sun
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P. R. China
| | - Zixin Deng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P. R. China
| | - Yi Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071, P. R. China
| |
Collapse
|
5
|
Robinson SL, Piel J, Sunagawa S. A roadmap for metagenomic enzyme discovery. Nat Prod Rep 2021; 38:1994-2023. [PMID: 34821235 PMCID: PMC8597712 DOI: 10.1039/d1np00006c] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Covering: up to 2021Metagenomics has yielded massive amounts of sequencing data offering a glimpse into the biosynthetic potential of the uncultivated microbial majority. While genome-resolved information about microbial communities from nearly every environment on earth is now available, the ability to accurately predict biocatalytic functions directly from sequencing data remains challenging. Compared to primary metabolic pathways, enzymes involved in secondary metabolism often catalyze specialized reactions with diverse substrates, making these pathways rich resources for the discovery of new enzymology. To date, functional insights gained from studies on environmental DNA (eDNA) have largely relied on PCR- or activity-based screening of eDNA fragments cloned in fosmid or cosmid libraries. As an alternative, shotgun metagenomics holds underexplored potential for the discovery of new enzymes directly from eDNA by avoiding common biases introduced through PCR- or activity-guided functional metagenomics workflows. However, inferring new enzyme functions directly from eDNA is similar to searching for a 'needle in a haystack' without direct links between genotype and phenotype. The goal of this review is to provide a roadmap to navigate shotgun metagenomic sequencing data and identify new candidate biosynthetic enzymes. We cover both computational and experimental strategies to mine metagenomes and explore protein sequence space with a spotlight on natural product biosynthesis. Specifically, we compare in silico methods for enzyme discovery including phylogenetics, sequence similarity networks, genomic context, 3D structure-based approaches, and machine learning techniques. We also discuss various experimental strategies to test computational predictions including heterologous expression and screening. Finally, we provide an outlook for future directions in the field with an emphasis on meta-omics, single-cell genomics, cell-free expression systems, and sequence-independent methods.
Collapse
Affiliation(s)
| | - Jörn Piel
- Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| | | |
Collapse
|
6
|
Walker PD, Weir ANM, Willis CL, Crump MP. Polyketide β-branching: diversity, mechanism and selectivity. Nat Prod Rep 2021; 38:723-756. [PMID: 33057534 DOI: 10.1039/d0np00045k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 2008 to August 2020 Polyketides are a family of natural products constructed from simple building blocks to generate a diverse range of often complex chemical structures with biological activities of both pharmaceutical and agrochemical importance. Their biosynthesis is controlled by polyketide synthases (PKSs) which catalyse the condensation of thioesters to assemble a functionalised linear carbon chain. Alkyl-branches may be installed at the nucleophilic α- or electrophilic β-carbon of the growing chain. Polyketide β-branching is a fascinating biosynthetic modification that allows for the conversion of a β-ketone into a β-alkyl group or functionalised side-chain. The overall transformation is catalysed by a multi-protein 3-hydroxy-3-methylglutaryl synthase (HMGS) cassette and is reminiscent of the mevalonate pathway in terpene biosynthesis. The first step most commonly involves the aldol addition of acetate to the electrophilic carbon of the β-ketothioester catalysed by a 3-hydroxy-3-methylglutaryl synthase (HMGS). Subsequent dehydration and decarboxylation selectively generates either α,β- or β,γ-unsaturated β-alkyl branches which may be further modified. This review covers 2008 to August 2020 and summarises the diversity of β-branch incorporation and the mechanistic details of each catalytic step. This is extended to discussion of polyketides containing multiple β-branches and the selectivity exerted by the PKS to ensure β-branching fidelity. Finally, the application of HMGS in data mining, additional β-branching mechanisms and current knowledge of the role of β-branches in this important class of biologically active natural products is discussed.
Collapse
Affiliation(s)
- P D Walker
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - A N M Weir
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - C L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| | - M P Crump
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
7
|
Asai S, Tsunematsu Y, Masuya T, Otaka J, Osada H, Watanabe K. Uncovering hidden sesquiterpene biosynthetic pathway through expression boost area-mediated productivity enhancement in basidiomycete. J Antibiot (Tokyo) 2020; 73:721-728. [DOI: 10.1038/s41429-020-0355-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022]
|
8
|
Masuya T, Tsunematsu Y, Hirayama Y, Sato M, Noguchi H, Nakazawa T, Watanabe K. Biosynthesis of lagopodins in mushroom involves a complex network of oxidation reactions. Org Biomol Chem 2019; 17:234-239. [DOI: 10.1039/c8ob02814a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Targeted gene knockout in Coprinopsis cinerea, yeast in vivo bioconversion and in vitro assays elucidated the lagopodin biosynthetic pathway, including a complexity-generating network of oxidation steps.
Collapse
Affiliation(s)
- Takahiro Masuya
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Yuichiro Hirayama
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Hiroshi Noguchi
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
- Nihon Pharmaceutical University
| | | | - Kenji Watanabe
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| |
Collapse
|
9
|
Preparation and Characterization of the Favorskiiase Flavoprotein EncM and Its Distinctive Flavin-N5-Oxide Cofactor. Methods Enzymol 2018; 604:523-540. [DOI: 10.1016/bs.mie.2018.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Flavin-catalyzed redox tailoring reactions in natural product biosynthesis. Arch Biochem Biophys 2017; 632:20-27. [DOI: 10.1016/j.abb.2017.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/09/2017] [Accepted: 06/10/2017] [Indexed: 11/21/2022]
|
11
|
Kishimoto S, Tsunematsu Y, Sato M, Watanabe K. Elucidation of Biosynthetic Pathways of Natural Products. CHEM REC 2017; 17:1095-1108. [PMID: 28387469 DOI: 10.1002/tcr.201700015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 01/22/2023]
Abstract
During the last decade, we have revealed biosynthetic pathways responsible for the formation of important and chemically complex natural products isolated from various organisms through genetic manipulation. Detailed in vivo and in vitro characterizations enabled elucidation of unexpected mechanisms of secondary metabolite biosynthesis. This personal account focuses on our recent efforts in identifying the genes responsible for the biosynthesis of spirotryprostatin, aspoquinolone, Sch 210972, pyranonigrin, fumagillin and pseurotin. We exploit heterologous reconstitution of biosynthetic pathways of interest in our study. In particular, extensive involvement of oxidation reactions is discussed. Heterologous hosts employed here are Saccharomyces cerevisiae, Aspergillus nidulans and A. niger that can also be used to prepare biosynthetic intermediates and product analogs by engineering the biosynthetic pathways using the knowledge obtained by detailed characterizations of the enzymes. (998 char.).
Collapse
Affiliation(s)
- Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, City of Shizuoka, 422-8526, JAPAN
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, City of Shizuoka, 422-8526, JAPAN
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, City of Shizuoka, 422-8526, JAPAN
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, City of Shizuoka, 422-8526, JAPAN
| |
Collapse
|
12
|
|
13
|
Zhang X, Li S. Expansion of chemical space for natural products by uncommon P450 reactions. Nat Prod Rep 2017; 34:1061-1089. [DOI: 10.1039/c7np00028f] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on unusual P450 reactions related to new chemistry, skeleton construction, structure re-shaping, and protein–protein interactions in natural product biosynthesis, which play significant roles in chemical space expansion for natural products.
Collapse
Affiliation(s)
- Xingwang Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology
- CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology
- CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology
- Chinese Academy of Sciences
- Qingdao
- China
| |
Collapse
|
14
|
Osberger TJ, Rogness DC, Kohrt JT, Stepan AF, White MC. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis. Nature 2016; 537:214-219. [PMID: 27479323 PMCID: PMC5161617 DOI: 10.1038/nature18941] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/14/2016] [Indexed: 02/08/2023]
Abstract
Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.
Collapse
Affiliation(s)
- Thomas J Osberger
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Donald C Rogness
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Jeffrey T Kohrt
- Pfizer Worldwide Research and Development, Groton Laboratories, Eastern Point Road, Groton, Connecticut 06340, USA
| | - Antonia F Stepan
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development, Cambridge, Massachusetts 02139, USA
| | - M Christina White
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
15
|
Kato H, Tsunematsu Y, Yamamoto T, Namiki T, Kishimoto S, Noguchi H, Watanabe K. New natural products isolated from Metarhizium robertsii ARSEF 23 by chemical screening and identification of the gene cluster through engineered biosynthesis in Aspergillus nidulans A1145. J Antibiot (Tokyo) 2016; 69:561-6. [DOI: 10.1038/ja.2016.54] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/05/2016] [Accepted: 04/21/2016] [Indexed: 11/09/2022]
|
16
|
Wu LF, Meng S, Tang GL. Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:453-70. [DOI: 10.1016/j.bbapap.2016.01.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 01/29/2023]
|
17
|
Sato M, Winter JM, Kishimoto S, Noguchi H, Tang Y, Watanabe K. Combinatorial Generation of Chemical Diversity by Redox Enzymes in Chaetoviridin Biosynthesis. Org Lett 2016; 18:1446-9. [PMID: 26959241 DOI: 10.1021/acs.orglett.6b00380] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chaetoviridins constitute a large family of structurally related secondary metabolites isolated from Chaetomium fungi. To elucidate the biosynthesis pathway and understand how the chemical diversity of chaetoviridins is generated, gene deletion and in vitro characterization of the four post-PKS modifications enzymes were undertaken. CazL and CazP were identified to have substrate promiscuity that facilitates the formation of nonchlorinated analogues. In addition, enzymatic oxidation and reduction combined with spontaneous dehydration and lactonization of the intermediates further expand the chemical diversity.
Collapse
Affiliation(s)
- Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka , Shizuoka 422-8526, Japan
| | - Jaclyn M Winter
- Department of Chemical and Biomolecular Engineering, University of California , Los Angeles, California 90095, United States
| | - Shinji Kishimoto
- Department of Pharmaceutical Sciences, University of Shizuoka , Shizuoka 422-8526, Japan
| | - Hiroshi Noguchi
- Department of Pharmaceutical Sciences, University of Shizuoka , Shizuoka 422-8526, Japan
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California , Los Angeles, California 90095, United States.,Department of Chemical and Biomolecular Engineering, and Department of Chemistry and Biochemistry, University of California , Los Angeles, California 90095, United States
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka , Shizuoka 422-8526, Japan
| |
Collapse
|
18
|
Yamamoto T, Tsunematsu Y, Noguchi H, Hotta K, Watanabe K. Elucidation of Pyranonigrin Biosynthetic Pathway Reveals a Mode of Tetramic Acid, Fused γ-Pyrone, and exo-Methylene Formation. Org Lett 2015; 17:4992-5. [DOI: 10.1021/acs.orglett.5b02435] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Tsuyoshi Yamamoto
- Department
of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuta Tsunematsu
- Department
of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroshi Noguchi
- Department
of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kinya Hotta
- School
of Biosciences, The University of Nottingham Malaysia Campus, Semenyih, Selangor Darul Ehsan 43500, Malaysia
| | - Kenji Watanabe
- Department
of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
19
|
Watanabe K. Effective use of heterologous hosts for characterization of biosynthetic enzymes allows production of natural products and promotes new natural product discovery. Chem Pharm Bull (Tokyo) 2015; 62:1153-65. [PMID: 25450623 DOI: 10.1248/cpb.c14-00471] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the past few years, there has been impressive progress in elucidating the mechanism of biosynthesis of various natural products accomplished through the use of genetic, molecular biological and biochemical techniques. Here, we present a comprehensive overview of the current results from our studies on fungal natural product biosynthetic enzymes, including nonribosomal peptide synthetase and polyketide synthase-nonribosomal peptide synthetase hybrid synthetase, as well as auxiliary enzymes, such as methyltransferases and oxygenases. Specifically, biosynthesis of the following compounds is described in detail: (i) Sch210972, potentially involving a Diels-Alder reaction that may be catalyzed by CghA, a functionally unknown protein identified by targeted gene disruption in the wild type fungus; (ii) chaetoglobosin A, formed via multi-step oxidations catalyzed by three redox enzymes, one flavin-containing monooxygenase and two cytochrome P450 oxygenases as characterized by in vivo biotransformation of relevant intermediates in our engineered Saccharomyces cerevisiae; (iii) (-)-ditryptophenaline, formed by a cytochrome P450, revealing the dimerization mechanism for the biosynthesis of diketopiperazine alkaloids; (iv) pseurotins, whose variations in the C- and O-methylations and the degree of oxidation are introduced combinatorially by multiple redox enzymes; and (v) spirotryprostatins, whose spiro-carbon moiety is formed by a flavin-containing monooxygenase or a cytochrome P450 as determined by heterologous de novo production of the biosynthetic intermediates and final products in Aspergillus niger. We close our discussion by summarizing some of the key techniques that have facilitated the discovery of new natural products, production of their analogs and identification of biosynthetic mechanisms in our study.
Collapse
Affiliation(s)
- Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
20
|
Liu Y, Zhang W, Xie L, Liu H, Gong G, Zhu B, Hu Y. Acthi, a thiazole biosynthesis enzyme, is essential for thiamine biosynthesis and CPC production in Acremonium chrysogenum. Microb Cell Fact 2015; 14:50. [PMID: 25886533 PMCID: PMC4416257 DOI: 10.1186/s12934-015-0235-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 03/30/2015] [Indexed: 11/13/2022] Open
Abstract
Background The filamentous fungus Acremonium chrysogenum is an important industrial fungus and is used in the production of the β-lactam antibiotic cephalosporin C. Little is known regarding the molecular and biological mechanisms of how this industrial strain was improved by mutagenesis and molecular breeding. Comparative proteomics is one of the most powerful methods to evaluate the influence of gene expression on metabolite production. Results In this study, we used comparative proteomics to investigate the molecular mechanisms involved in the biosynthesis of cephalosporin C between a high-producer (HY) strain and a wide-type (WT) strain. We found that the expression levels of thiamine biosynthesis-related enzymes, including the thiazole biosynthesis enzyme (Acthi), pyruvate oxidase, flavin adenine dinucleotide (FAD)-dependent oxidoreductase and sulfur carrier protein-thiS, were up-regulated in the HY strain. An Acthi-silencing mutant of the WT strain grew poorly on chemically defined medium (MMC) in the absence of thiamine, and its growth was recovered on MMC medium supplemented with thiamine. The intracellular thiamine content was changed in the Acthi silencing or over-expression mutants. In addition, we demonstrated that the manipulation of the Acthi gene can affect the hyphal growth of Acremonium chrysogenum, the transcription levels of cephalosporin C biosynthetic genes, the quantification levels of precursor amino acids for cephalosporin C synthesis and the expression levels of thiamine diphosphate-dependent enzymes. Over-expression of Acthi can significantly increase the cephalosporin C yield in both the WT strain and the HY mutant strain. Conclusions Using comparative proteomics, four differently expressed proteins were exploited, whose functions may be involved in thiamine diphosphate metabolism. Among these proteins, the thiazole biosynthesis enzyme (ActhiS) may play an important role in cephalosporin C biosynthesis. Our studies suggested that Acthi might be involved in the transcriptional regulation of cephalosporin C biosynthesis. Therefore, the thiamine metabolic pathway could be a potential target for the molecular breeding of this cephalosporin C producer for industrial applications.
Collapse
Affiliation(s)
- Yan Liu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 1599 Zhangheng Road, Shanghai, 201203, China. .,Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W), Shanghai, 200040, China.
| | - Wei Zhang
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 1599 Zhangheng Road, Shanghai, 201203, China.
| | - Liping Xie
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 1599 Zhangheng Road, Shanghai, 201203, China.
| | - Hong Liu
- Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W), Shanghai, 200040, China. .,Present address: Luye Pharma Group Ltd., Yantai, Shandong, 264003, China.
| | - Guihua Gong
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 1599 Zhangheng Road, Shanghai, 201203, China.
| | - Baoquan Zhu
- Shanghai Institute of Pharmaceutical Industry, 1320 Beijing Road (W), Shanghai, 200040, China.
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, 1599 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
21
|
|
22
|
Sato M, Yamada H, Hotta K, Watanabe K. Elucidation of the shanorellin biosynthetic pathway and functional analysis of associated enzymes. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00352g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since fungal natural products biosynthesized by polyketide synthases frequently exhibit useful biological activities, identifying and understanding the mechanism of biosynthetic steps taken by PKSs are of great interest.
Collapse
Affiliation(s)
- Michio Sato
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Haruka Yamada
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| | - Kinya Hotta
- School of Biosciences
- The University of Nottingham Malaysia Campus
- Malaysia
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences
- University of Shizuoka
- Shizuoka 422-8526
- Japan
| |
Collapse
|
23
|
Aldemir H, Richarz R, Gulder TAM. Das biokatalytische Repertoire natürlicher Biarylbildung. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201401075] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
24
|
Aldemir H, Richarz R, Gulder TAM. The Biocatalytic Repertoire of Natural Biaryl Formation. Angew Chem Int Ed Engl 2014; 53:8286-93. [DOI: 10.1002/anie.201401075] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 02/04/2023]
|
25
|
Tsunematsu Y, Fukutomi M, Saruwatari T, Noguchi H, Hotta K, Tang Y, Watanabe K. Elucidation of Pseurotin Biosynthetic Pathway Points to Trans-ActingC-Methyltransferase: Generation of Chemical Diversity. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Tsunematsu Y, Fukutomi M, Saruwatari T, Noguchi H, Hotta K, Tang Y, Watanabe K. Elucidation of pseurotin biosynthetic pathway points to trans-acting C-methyltransferase: generation of chemical diversity. Angew Chem Int Ed Engl 2014; 53:8475-9. [PMID: 24939566 DOI: 10.1002/anie.201404804] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 11/08/2022]
Abstract
Pseurotins comprise a family of structurally related Aspergillal natural products having interesting bioactivity. However, little is known about the biosynthetic steps involved in the formation of their complex chemical features. Systematic deletion of the pseurotin biosynthetic genes in A. fumigatus and in vivo and in vitro characterization of the tailoring enzymes to determine the biosynthetic intermediates, and the gene products responsible for the formation of each intermediate, are described. Thus, the main biosynthetic steps leading to the formation of pseurotin A from the predominant precursor, azaspirene, were elucidated. The study revealed the combinatorial nature of the biosynthesis of the pseurotin family of compounds and the intermediates. Most interestingly, we report the first identification of an epoxidase C-methyltransferase bifunctional fusion protein PsoF which appears to methylate the nascent polyketide backbone carbon atom in trans.
Collapse
Affiliation(s)
- Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526 (Japan)
| | | | | | | | | | | | | |
Collapse
|
27
|
Hillwig ML, Zhu Q, Liu X. Biosynthesis of ambiguine indole alkaloids in cyanobacterium Fischerella ambigua. ACS Chem Biol 2014; 9:372-7. [PMID: 24180436 DOI: 10.1021/cb400681n] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ambiguines belong to a family of hapalindole-type indole alkaloid natural products, with many of the members possessing up to eight consecutive carbon stereocenters in a fused pentacyclic 6-6-6-5-7 ring scaffold. Here, we report the identification of a 42 kbp ambiguine (amb) biosynthetic gene cluster that harbors 32 protein-coding genes in its native producer Fischerella ambigua UTEX1903. Association of the amb cluster with ambiguine biosynthesis was confirmed by both bioinformatic analysis and in vitro characterizations of enzymes responsible for 3-((Z)-2'-isocyanoethenyl) indole and geranyl pyrophosphate biosynthesis and a C-2 indole dimethylallyltransferase that regiospecifically tailors hapalindole G to ambiguine A. The presence of five nonheme iron-dependent oxygenase coding genes (including four Rieske-type oxygenases) within the amb cluster suggests late-stage C-H activations are likely responsible for the structural diversities of ambiguines by regio- and stereospecific chlorination, hydroxylation, epoxidation, and sp(2)-sp(3) C-C bond formation.
Collapse
Affiliation(s)
- Matthew L. Hillwig
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Qin Zhu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Xinyu Liu
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
28
|
Tsunematsu Y, Ishikawa N, Wakana D, Goda Y, Noguchi H, Moriya H, Hotta K, Watanabe K. Distinct mechanisms for spiro-carbon formation reveal biosynthetic pathway crosstalk. Nat Chem Biol 2013; 9:818-25. [PMID: 24121553 DOI: 10.1038/nchembio.1366] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 09/09/2013] [Indexed: 01/10/2023]
Abstract
Spirotryprostatins, an indole alkaloid class of nonribosomal peptides isolated from Aspergillus fumigatus, are known for their antimitotic activity in tumor cells. Because spirotryprostatins and many other chemically complex spiro-carbon-bearing natural products exhibit useful biological activities, identifying and understanding the mechanism of spiro-carbon biosynthesis is of great interest. Here we report a detailed study of spiro-ring formation in spirotryprostatins from tryprostatins derived from the fumitremorgin biosynthetic pathway, using reactants and products prepared with engineered yeast and fungal strains. Unexpectedly, FqzB, an FAD-dependent monooxygenase from the unrelated fumiquinazoline biosynthetic pathway, catalyzed spiro-carbon formation in spirotryprostatin A via an epoxidation route. Furthermore, FtmG, a cytochrome P450 from the fumitremorgin biosynthetic pathway, was determined to catalyze the spiro-ring formation in spirotryprostatin B. Our results highlight the versatile role of oxygenating enzymes in the biosynthesis of structurally complex natural products and indicate that cross-talk of different biosynthetic pathways allows product diversification in natural product biosynthesis.
Collapse
Affiliation(s)
- Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sato M, Nakazawa T, Tsunematsu Y, Hotta K, Watanabe K. Echinomycin biosynthesis. Curr Opin Chem Biol 2013; 17:537-45. [PMID: 23856054 DOI: 10.1016/j.cbpa.2013.06.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/19/2013] [Accepted: 06/19/2013] [Indexed: 01/28/2023]
Abstract
Echinomycin is an antitumor antibiotic secondary metabolite isolated from streptomycetes, whose core structure is biosynthesized by nonribosomal peptide synthetase (NRPS). The echinomycin biosynthetic pathway was successfully reconstituted in Escherichia coli. NRPS often contains a thioesterase domain at its C terminus for cyclorelease of the elongating peptide chain. Those thioesterase domains were shown to exhibit significant substrate tolerance. More recently, an oxidoreductase Ecm17, which forms the disulfide bridge in triostin A, was characterized. Surprisingly, an unrelated disulfide-forming enzyme GliT for gliotoxin biosynthesis was also able to catalyze the same reaction, providing another example of broad substrate specificity in secondary metabolite biosynthetic enzymes. Those promiscuous catalysts can be a valuable tool in generating diversity in natural products analogs we can produce heterologously.
Collapse
Affiliation(s)
- Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | | | | | | |
Collapse
|
30
|
Ishiuchi K, Nakazawa T, Yagishita F, Mino T, Noguchi H, Hotta K, Watanabe K. Combinatorial Generation of Complexity by Redox Enzymes in the Chaetoglobosin A Biosynthesis. J Am Chem Soc 2013; 135:7371-7. [DOI: 10.1021/ja402828w] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Kan’ichiro Ishiuchi
- Department of Pharmaceutical
Sciences, University of Shizuoka, Shizuoka
422-8526, Japan
| | - Takehito Nakazawa
- Department of Pharmaceutical
Sciences, University of Shizuoka, Shizuoka
422-8526, Japan
| | - Fumitoshi Yagishita
- Department
of Applied Chemistry
and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| | - Takashi Mino
- Department
of Applied Chemistry
and Biotechnology, Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
| | - Hiroshi Noguchi
- Department of Pharmaceutical
Sciences, University of Shizuoka, Shizuoka
422-8526, Japan
| | - Kinya Hotta
- School of Biosciences, The University of Nottingham Malaysia Campus, Semenyih,
Selangor Darul Ehsan 43500, Malaysia
| | - Kenji Watanabe
- Department of Pharmaceutical
Sciences, University of Shizuoka, Shizuoka
422-8526, Japan
| |
Collapse
|