1
|
Demir F, Niedermaier S, Villamor JG, Huesgen PF. Quantitative proteomics in plant protease substrate identification. THE NEW PHYTOLOGIST 2018; 218:936-943. [PMID: 28493421 DOI: 10.1111/nph.14587] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/07/2017] [Indexed: 05/17/2023]
Abstract
Contents Summary 936 I. Introduction 936 II. The quest for plant protease substrates - proteomics to the rescue? 937 III. Quantitative proteome comparison reveals candidate substrates 938 IV. Dynamic metabolic stable isotope labeling to measure protein turnover in vivo 938 V. Terminomics - large-scale identification of protease cleavage sites 939 VI. Substrate or not substrate, that is the question 940 VII. Concluding remarks 941 Acknowledgements 941 References 941 SUMMARY: Proteolysis is a central regulatory mechanism of protein homeostasis and protein function that affects all aspects of plant life. Higher plants encode for hundreds of proteases, but their physiological substrates and hence their molecular functions remain mostly unknown. Current quantitative mass spectrometry-based proteomics enables unbiased large-scale interrogation of the proteome and its modifications. Here we provide an overview of proteomics techniques that allow profiling of changes in protein abundance, measurement of proteome turnover rates, identification of protease cleavage sites in vivo and in vitro and determination of protease sequence specificity. We discuss how these techniques can help to reveal protease substrates and determine plant protease function, illustrated by recent studies on selected plant proteases.
Collapse
Affiliation(s)
- Fatih Demir
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Stefan Niedermaier
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Joji Grace Villamor
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| | - Pitter Florian Huesgen
- ZEA-3 Analytics, Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Str., Jülich, 52425, Germany
| |
Collapse
|
2
|
Leitner A. A review of the role of chemical modification methods in contemporary mass spectrometry-based proteomics research. Anal Chim Acta 2018; 1000:2-19. [DOI: 10.1016/j.aca.2017.08.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 12/20/2022]
|
3
|
Tholey A, Becker A. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2191-2199. [PMID: 28711385 DOI: 10.1016/j.bbamcr.2017.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023]
Abstract
Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Alexander Becker
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
4
|
|
5
|
Schlage P, Egli FE, Auf dem Keller U. Time-Resolved Analysis of Matrix Metalloproteinase Substrates in Complex Samples. Methods Mol Biol 2017; 1579:185-198. [PMID: 28299737 DOI: 10.1007/978-1-4939-6863-3_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Identification of physiological substrates is the key to understanding the pleiotropic functions of matrix metalloproteinases (MMPs) in health and disease. Quantitative mass spectrometry-based proteomics has revolutionized current approaches in protease substrate discovery and helped to unravel many new MMP activities in complex biological systems. Multiplexing further extended the capabilities of these techniques and facilitated more complicated experimental designs that include multiple proteases or monitoring the activity of a single protease at more than one concentration or at multiple time points with a complex test proteome. In this chapter, we provide a protocol for time-resolved iTRAQ-based Terminal Amine Isotopic Labeling of Substrates (TAILS), with the focus on MMP substrate identification and characterization in cell culture supernatants and introduce an automated procedure for the interpretation of time-resolved iTRAQ-TAILS datasets.
Collapse
Affiliation(s)
- Pascal Schlage
- ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Fabian E Egli
- ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Ulrich Auf dem Keller
- ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Otto-Stern-Weg 7, 8093, Zurich, Switzerland.
| |
Collapse
|
6
|
Wilson CH, Zhang HE, Gorrell MD, Abbott CA. Dipeptidyl peptidase 9 substrates and their discovery: current progress and the application of mass spectrometry-based approaches. Biol Chem 2016; 397:837-56. [DOI: 10.1515/hsz-2016-0174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/04/2016] [Indexed: 12/16/2022]
Abstract
Abstract
The enzyme members of the dipeptidyl peptidase 4 (DPP4) gene family have the very unusual capacity to cleave the post-proline bond to release dipeptides from the N-terminus of peptide/protein substrates. DPP4 and related enzymes are current and potential therapeutic targets in the treatment of type II diabetes, inflammatory conditions and cancer. Despite this, the precise biological function of individual dipeptidyl peptidases (DPPs), other than DPP4, and knowledge of their in vivo substrates remains largely unknown. For many years, identification of physiological DPP substrates has been difficult due to limitations in the available tools. Now, with advances in mass spectrometry based approaches, we can discover DPP substrates on a system wide-scale. Application of these approaches has helped reveal some of the in vivo natural substrates of DPP8 and DPP9 and their unique biological roles. In this review, we provide a general overview of some tools and approaches available for protease substrate discovery and their applicability to the DPPs with a specific focus on DPP9 substrates. This review provides comment upon potential approaches for future substrate elucidation.
Collapse
|
7
|
Sirota FL, Maurer-Stroh S, Eisenhaber B, Eisenhaber F. Single-residue posttranslational modification sites at the N-terminus, C-terminus or in-between: To be or not to be exposed for enzyme access. Proteomics 2016; 15:2525-46. [PMID: 26038108 PMCID: PMC4745020 DOI: 10.1002/pmic.201400633] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/17/2015] [Accepted: 05/29/2015] [Indexed: 11/30/2022]
Abstract
Many protein posttranslational modifications (PTMs) are the result of an enzymatic reaction. The modifying enzyme has to recognize the substrate protein's sequence motif containing the residue(s) to be modified; thus, the enzyme's catalytic cleft engulfs these residue(s) and the respective sequence environment. This residue accessibility condition principally limits the range where enzymatic PTMs can occur in the protein sequence. Non‐globular, flexible, intrinsically disordered segments or large loops/accessible long side chains should be preferred whereas residues buried in the core of structures should be void of what we call canonical, enzyme‐generated PTMs. We investigate whether PTM sites annotated in UniProtKB (with MOD_RES/LIPID keys) are situated within sequence ranges that can be mapped to known 3D structures. We find that N‐ or C‐termini harbor essentially exclusively canonical PTMs. We also find that the overwhelming majority of all other PTMs are also canonical though, later in the protein's life cycle, the PTM sites can become buried due to complex formation. Among the remaining cases, some can be explained (i) with autocatalysis, (ii) with modification before folding or after temporary unfolding, or (iii) as products of interaction with small, diffusible reactants. Others require further research how these PTMs are mechanistically generated in vivo.
Collapse
Affiliation(s)
- Fernanda L Sirota
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore.,School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science and Technology (A*STAR), Matrix, Singapore.,Department of Biological Sciences (DBS), National University of Singapore (NUS), Singapore.,School of Computer Engineering (SCE), Nanyang Technological University (NTU), Singapore
| |
Collapse
|
8
|
Vizovišek M, Vidmar R, Fonović M, Turk B. Current trends and challenges in proteomic identification of protease substrates. Biochimie 2016; 122:77-87. [DOI: 10.1016/j.biochi.2015.10.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/23/2015] [Indexed: 10/22/2022]
|
9
|
Eckhard U, Marino G, Butler GS, Overall CM. Positional proteomics in the era of the human proteome project on the doorstep of precision medicine. Biochimie 2016; 122:110-8. [DOI: 10.1016/j.biochi.2015.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 10/28/2015] [Indexed: 12/30/2022]
|
10
|
Walton A, Tsiatsiani L, Jacques S, Stes E, Messens J, Van Breusegem F, Goormachtig S, Gevaert K. Diagonal chromatography to study plant protein modifications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:945-51. [PMID: 26772901 DOI: 10.1016/j.bbapap.2016.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/01/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
An interesting asset of diagonal chromatography, which we have introduced for contemporary proteome research, is its high versatility concerning proteomic applications. Indeed, the peptide modification or sorting step that is required between consecutive peptide separations can easily be altered and thereby allows for the enrichment of specific, though different types of peptides. Here, we focus on the application of diagonal chromatography for the study of modifications of plant proteins. In particular, we show how diagonal chromatography allows for studying proteins processed by proteases, protein ubiquitination, and the oxidation of protein-bound methionines. We discuss the actual sorting steps needed for each of these applications and the obtained results. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Alan Walton
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Liana Tsiatsiani
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Silke Jacques
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Elisabeth Stes
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium; Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
11
|
Berry IJ, Steele JR, Padula MP, Djordjevic SP. The application of terminomics for the identification of protein start sites and proteoforms in bacteria. Proteomics 2015; 16:257-72. [DOI: 10.1002/pmic.201500319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/21/2015] [Accepted: 09/30/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Iain J. Berry
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Joel R. Steele
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Matthew P. Padula
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| | - Steven P. Djordjevic
- The ithree Institute; University of Technology Sydney; Broadway NSW Australia
- Proteomics Core Facility; University of Technology Sydney; Broadway NSW Australia
| |
Collapse
|
12
|
Schlage P, Kockmann T, Kizhakkedathu JN, auf dem Keller U. Monitoring matrix metalloproteinase activity at the epidermal-dermal interface by SILAC-iTRAQ-TAILS. Proteomics 2015; 15:2491-502. [PMID: 25871442 DOI: 10.1002/pmic.201400627] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 02/18/2015] [Accepted: 04/09/2015] [Indexed: 11/07/2022]
Abstract
Secreted proteases act on interstitial tissue secretomes released from multiple cell types. Thus, substrate proteins might be part of higher molecular complexes constituted by many proteins with diverse and potentially unknown cellular origin. In cell culture, these may be reconstituted by mixing native secretomes from different cell types prior to incubation with a test protease. Although current degradomics techniques could identify novel substrate proteins in these complexes, all information on the cellular origin is lost. To address this limitation, we combined iTRAQ-based terminal amine isotopic labeling of substrates (iTRAQ-TAILS) with SILAC to assign proteins to a specific cell type by MS1- and their cleavage by MS2-based quantification in the same experiment. We demonstrate the power of our newly established workflow by monitoring matrix metalloproteinase (MMP) 10 dependent cleavages in mixtures from light-labeled keratinocyte and heavy-labeled fibroblast secretomes. This analysis correctly assigned extracellular matrix components, such as laminins and collagens, to their respective cellular origins and revealed their processing in an MMP10-dependent manner. Hence, our newly devised degradomics workflow facilitates deeper insight into protease activity in complex intercellular compartments such as the epidermal-dermal interface by integrating multiple modes of quantification with positional proteomics. All MS data have been deposited in the ProteomeXchange with identifier PXD001643 (http://proteomecentral.proteomexchange.org/dataset/PXD001643).
Collapse
Affiliation(s)
- Pascal Schlage
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Tobias Kockmann
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ulrich auf dem Keller
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Detection of protease activity in cells and animals. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:130-42. [PMID: 25960278 DOI: 10.1016/j.bbapap.2015.04.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 01/05/2023]
Abstract
Proteases are involved in a wide variety of biologically and medically important events. They are entangled in a complex network of processes that regulate their activity, which makes their study intriguing, but challenging. For comprehensive understanding of protease biology and effective drug discovery, it is therefore essential to study proteases in models that are close to their complex native environments such as live cells or whole organisms. Protease activity can be detected by reporter substrates and activity-based probes, but not all of these reagents are suitable for intracellular or in vivo use. This review focuses on the detection of proteases in cells and in vivo. We summarize the use of probes and substrates as molecular tools, discuss strategies to deliver these tools inside cells, and describe sophisticated read-out techniques such as mass spectrometry and various imaging applications. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions.
Collapse
|
14
|
Zhang H, Deery MJ, Gannon L, Powers SJ, Lilley KS, Theodoulou FL. Quantitative proteomics analysis of the Arg/N-end rule pathway of targeted degradation in Arabidopsis roots. Proteomics 2015; 15:2447-57. [PMID: 25728785 PMCID: PMC4692092 DOI: 10.1002/pmic.201400530] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/29/2015] [Accepted: 02/24/2015] [Indexed: 12/03/2022]
Abstract
According to the Arg/N-end rule pathway, proteins with basic N-termini are targeted for degradation by the Arabidopsis thaliana E3 ligase, PROTEOLYSIS6 (PRT6). Proteins can also become PRT6 substrates following post-translational arginylation by arginyltransferases ATE1 and 2. Here, we undertook a quantitative proteomics study of Arg/N-end rule mutants, ate1/2 and prt6, to investigate the impact of this pathway on the root proteome. Tandem mass tag labelling identified a small number of proteins with increased abundance in the mutants, some of which represent downstream targets of transcription factors known to be N-end rule substrates. Isolation of N-terminal peptides using terminal amine isotope labelling of samples (TAILS) combined with triple dimethyl labelling identified 1465 unique N-termini. Stabilising residues were over-represented among the free neo-N-termini, but destabilising residues were not markedly enriched in N-end rule mutants. The majority of free neo-N-termini were revealed following cleavage of organellar targeting signals, thus compartmentation may account in part for the presence of destabilising residues in the wild-type N-terminome. Our data suggest that PRT6 does not have a marked impact on the global proteome of Arabidopsis roots and is likely involved in the controlled degradation of relatively few regulatory proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD001719 (http://proteomecentral.proteomexchange.org/dataset/PXD001719).
Collapse
Affiliation(s)
- Hongtao Zhang
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, UK.,Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Lucy Gannon
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden, UK
| | - Stephen J Powers
- Computational and Systems Biology Department, Rothamsted Research, Harpenden, UK
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
15
|
Vizovišek M, Vidmar R, Van Quickelberghe E, Impens F, Andjelković U, Sobotič B, Stoka V, Gevaert K, Turk B, Fonović M. Fast profiling of protease specificity reveals similar substrate specificities for cathepsins K, L and S. Proteomics 2015; 15:2479-90. [PMID: 25626674 DOI: 10.1002/pmic.201400460] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/02/2014] [Accepted: 01/22/2015] [Indexed: 11/12/2022]
Abstract
Proteases are important effectors of numerous physiological and pathological processes. Reliable determination of a protease's specificity is crucial to understand protease function and to develop activity-based probes and inhibitors. During the last decade, various proteomic approaches for profiling protease substrate specificities were reported. Although most of these approaches can identify up to thousands of substrate cleavage events in a single experiment, they are often time consuming and methodologically challenging as some of these approaches require rather complex sample preparation procedures. For such reasons their application is often limited to those labs that initially introduced them. Here, we report on a fast and simple approach for proteomic profiling of protease specificities (fast profiling of protease specificity (FPPS)), which can be applied to complex protein mixtures. FPPS is based on trideutero-acetylation of novel N-termini generated by the action of proteases and subsequent peptide fractionation on Stage Tips containing ion-exchange and reverse phase chromatographic resins. FPPS can be performed in 2 days and does not require extensive fractionation steps. Using this approach, we have determined the specificity profiles of the cysteine cathepsins K, L and S. We further validated our method by comparing the results with the specificity profiles obtained by the N-terminal combined fractional diagonal chromatography method. This comparison pointed to almost identical substrate specificities for all three cathepsins and confirmed the reliability of the FPPS approach. All MS data have been deposited in the ProteomeXchange with identifiers PXD001536 and PXD001553 (http://proteomecentral.proteomexchange.org/dataset/PXD001536; http://proteomecentral.proteomexchange.org/dataset/PXD001553).
Collapse
Affiliation(s)
- Matej Vizovišek
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia.,International Postgraduate School Jozef Stefan, Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,International Postgraduate School Jozef Stefan, Ljubljana, Slovenia
| | - Emmy Van Quickelberghe
- Department of Biochemistry, Ghent University, Ghent, Belgium.,Department of Medical Protein Research, Ghent, Belgium
| | - Francis Impens
- Department of Biochemistry, Ghent University, Ghent, Belgium.,Department of Medical Protein Research, Ghent, Belgium.,Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris, France
| | - Uroš Andjelković
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Barbara Sobotič
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,International Postgraduate School Jozef Stefan, Ljubljana, Slovenia
| | - Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium.,Department of Medical Protein Research, Ghent, Belgium
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry and Molecular and Structural Biology, Jozef Stefan Institute, Ljubljana, Slovenia.,Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins, Ljubljana, Slovenia
| |
Collapse
|
16
|
Proteomic approaches to uncover MMP function. Matrix Biol 2015; 44-46:232-8. [PMID: 25603365 DOI: 10.1016/j.matbio.2015.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/30/2022]
Abstract
Proteomics has revolutionized protease research and particularly contributed to the identification of novel substrates and their sites of cleavage as key determinants of protease function. New technologies and rapid advancements in development of powerful mass spectrometers allowed unprecedented insights into activities of matrix metalloproteinases (MMPs) within their complex extracellular environments. Mass spectrometry-based proteomics extended our knowledge on MMP cleavage specificities and will help to develop more specific inhibitors as new therapeutics. Quantitative proteomics and N-terminal enrichment strategies have revealed numerous novel MMP substrates and shed light on their modes of action in vitro and in vivo. In this review, we provide an overview of current proteomic technologies in protease research and their application to the functional characterization of MMPs.
Collapse
|
17
|
van Wijk KJ. Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:75-111. [PMID: 25580835 DOI: 10.1146/annurev-arplant-043014-115547] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plastids, mitochondria, and peroxisomes are key organelles with dynamic proteomes in photosynthetic eukaryotes. Their biogenesis and activity must be coordinated and require intraorganellar protein maturation, degradation, and recycling. The three organelles together are predicted to contain ∼200 presequence peptidases, proteases, aminopeptidases, and specific protease chaperones/adaptors, but the substrates and substrate selection mechanisms are poorly understood. Similarly, lifetime determinants of organellar proteins, such as N-end degrons and tagging systems, have not been identified, but the substrate recognition mechanisms likely share similarities between organelles. Novel degradomics tools for systematic analysis of protein lifetime and proteolysis could define such protease-substrate relationships, degrons, and protein lifetime. Intraorganellar proteolysis is complemented by autophagy of whole organelles or selected organellar content, as well as by cytosolic protein ubiquitination and degradation by the proteasome. This review summarizes (putative) plant organellar protease functions and substrate-protease relationships. Examples illustrate key proteolytic events.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
18
|
Tanco S, Gevaert K, Van Damme P. C-terminomics: Targeted analysis of natural and posttranslationally modified protein and peptide C-termini. Proteomics 2014; 15:903-14. [PMID: 25316308 DOI: 10.1002/pmic.201400301] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/03/2014] [Accepted: 10/09/2014] [Indexed: 01/03/2023]
Abstract
The C-terminus (where C is carboxyl) of a protein can serve as a recognition signature for a variety of biological processes, including protein trafficking and protein complex formation. Hence, the identity of the in vivo protein C-termini provides valuable information about biological processes. Analysis of protein C-termini is also crucial for the study of C-terminal PTMs, particularly for monitoring proteolytic processing by endopeptidases and carboxypeptidases. Although technical difficulties have limited the study of C-termini, a range of technologies have been proposed in the last couple of years. Here, we review the current proteomics technologies for C-terminal analysis, with a focus on the biological information that can be derived from C-terminomics studies.
Collapse
Affiliation(s)
- Sebastian Tanco
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
19
|
Ponnala L, Wang Y, Sun Q, van Wijk KJ. Correlation of mRNA and protein abundance in the developing maize leaf. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:424-40. [PMID: 24547885 DOI: 10.1111/tpj.12482] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/30/2014] [Accepted: 02/11/2014] [Indexed: 05/24/2023]
Abstract
To help understand regulation of maize leaf blade development, including sink-source transitions and induction of C4 photosynthesis, we compared large-scale quantitative proteome and transcriptomes collected at specific stages along the developmental maize leaf blade gradient. Proteome data were based on label-free shotgun proteomics (spectral counting) and transcript data were based on RNA-seq using the same source materials, and had been published previously (Nat Genet, 42, 2010, 1060-1067; The Plant Cell, 22, 2010, 3509-3542). Transcript and protein abundance followed near normal distributions, in contrast with several studies with other organisms. Protein observability correlated with transcript abundance following a 'lazy step function' similar to that in bacteria and yeast. mRNA and protein abundance showed significant positive correlations (up to 0.8) for log-transformed length-weighted normalized spectral abundance factor (NSAF) and reads per kilobase of exon model per million mapped reads (RPKM) and non-weighted abundances (NadjSPC and COV) in dependence of function and development. Correlations were much weaker in the leaf 'sink-source' transition zone, i.e. the zone with massive investments in leaf chloroplast biogenesis and build-up of photosynthetic capacity. Clustering analyses of gene-specific protein-mRNA ratios revealed co-ordinated shifts in control points in gene expression along the leaf blade developmental gradient. The highest protein-mRNA ratio for each gene generally corresponded to leaf developmental stages in which the protein function was most important, with the exception of the 80S ribosome. Specific examples are discussed in the context of C4 photosynthesis, leaf development and sink-source transitions. This large-scale mRNA-protein correlation analysis in plants (maize) using label-free spectral counting for protein quantification and RNA-seq for mRNA abundance will provide a template for future mRNA-protein correlation studies.
Collapse
Affiliation(s)
- Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | |
Collapse
|
20
|
Meissner F, Mann M. Quantitative shotgun proteomics: considerations for a high-quality workflow in immunology. Nat Immunol 2014; 15:112-7. [PMID: 24448568 DOI: 10.1038/ni.2781] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
21
|
Becker-Pauly C, Broder C, Prox J, Koudelka T, Tholey A. Mapping orphan proteases by proteomics: Meprin metalloproteases deciphered as potential therapeutic targets. Proteomics Clin Appl 2014; 8:382-8. [DOI: 10.1002/prca.201300079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/14/2013] [Accepted: 11/18/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Christoph Becker-Pauly
- Institute of Biochemistry; Unit for Degradomics of the Protease Web; University of Kiel; Kiel Germany
| | - Claudia Broder
- Institute of Biochemistry; Unit for Degradomics of the Protease Web; University of Kiel; Kiel Germany
| | - Johannes Prox
- Institute of Biochemistry; Unit for Degradomics of the Protease Web; University of Kiel; Kiel Germany
| | - Tomas Koudelka
- AG Systematic Proteome Research & Bioanalytics - Institute for Experimental Medicine; Christian-Albrechts-Universität; Kiel Germany
| | - Andreas Tholey
- AG Systematic Proteome Research & Bioanalytics - Institute for Experimental Medicine; Christian-Albrechts-Universität; Kiel Germany
| |
Collapse
|
22
|
Lange PF, Huesgen PF, Nguyen K, Overall CM. Annotating N termini for the human proteome project: N termini and Nα-acetylation status differentiate stable cleaved protein species from degradation remnants in the human erythrocyte proteome. J Proteome Res 2014; 13:2028-44. [PMID: 24555563 PMCID: PMC3979129 DOI: 10.1021/pr401191w] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A goal of the Chromosome-centric Human Proteome Project is to identify all human protein species. With 3844 proteins annotated as "missing", this is challenging. Moreover, proteolytic processing generates new protein species with characteristic neo-N termini that are frequently accompanied by altered half-lives, function, interactions, and location. Enucleated and largely void of internal membranes and organelles, erythrocytes are simple yet proteomically challenging cells due to the high hemoglobin content and wide dynamic range of protein concentrations that impedes protein identification. Using the N-terminomics procedure TAILS, we identified 1369 human erythrocyte natural and neo-N-termini and 1234 proteins. Multiple semitryptic N-terminal peptides exhibited improved mass spectrometric identification properties versus the intact tryptic peptide enabling identification of 281 novel erythrocyte proteins and six missing proteins identified for the first time in the human proteome. With an improved bioinformatics workflow, we developed a new classification system and the Terminus Cluster Score. Thereby we described a new stabilizing N-end rule for processed protein termini, which discriminates novel protein species from degradation remnants, and identified protein domain hot spots susceptible to cleavage. Strikingly, 68% of the N-termini were within genome-encoded protein sequences, revealing alternative translation initiation sites, pervasive endoproteolytic processing, and stabilization of protein fragments in vivo. The mass spectrometry proteomics data have been deposited to ProteomeXchange with the data set identifier <PXD000434>.
Collapse
Affiliation(s)
- Philipp F Lange
- Centre for Blood Research, University of British Columbia , 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | |
Collapse
|
23
|
Plasman K, Maurer-Stroh S, Gevaert K, Van Damme P. Holistic View on the Extended Substrate Specificities of Orthologous Granzymes. J Proteome Res 2014; 13:1785-93. [DOI: 10.1021/pr401104b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kim Plasman
- Department
of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Sebastian Maurer-Stroh
- Bioinformatics
Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671
- School
of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore 637551
| | - Kris Gevaert
- Department
of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Petra Van Damme
- Department
of Medical Protein Research, VIB, B-9000 Ghent, Belgium
- Department
of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| |
Collapse
|
24
|
Tsiatsiani L, Stael S, Van Damme P, Van Breusegem F, Gevaert K. Preparation of Arabidopsis thaliana seedling proteomes for identifying metacaspase substrates by N-terminal COFRADIC. Methods Mol Biol 2014; 1133:255-261. [PMID: 24567107 DOI: 10.1007/978-1-4939-0357-3_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Proteome-wide discovery of in vivo metacaspase substrates can be obtained by positional proteomics approaches such as N-terminal COFRADIC, for example by comparing the N-terminal proteomes (or N-terminomes) of wild-type plants to transgenic plants not expressing a given metacaspase. In this chapter we describe a protocol for the preparation of plant tissue proteomes, including differential isotopic labelling allowing for a comparison of in vivo N-terminomes that serves as the starting point for N-terminal COFRADIC studies.
Collapse
Affiliation(s)
- Liana Tsiatsiani
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
25
|
Schlage P, Egli FE, Nanni P, Wang LW, Kizhakkedathu JN, Apte SS, auf dem Keller U. Time-resolved analysis of the matrix metalloproteinase 10 substrate degradome. Mol Cell Proteomics 2013; 13:580-93. [PMID: 24281761 DOI: 10.1074/mcp.m113.035139] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteolysis is an irreversible post-translational modification that affects intra- and intercellular communication by modulating the activity of bioactive mediators. Key to understanding protease function is the system-wide identification of cleavage events and their dynamics in physiological contexts. Despite recent advances in mass spectrometry-based proteomics for high-throughput substrate screening, current approaches suffer from high false positive rates and only capture single states of protease activity. Here, we present a workflow based on multiplexed terminal amine isotopic labeling of substrates for time-resolved substrate degradomics in complex proteomes. This approach significantly enhances confidence in substrate identification and categorizes cleavage events by specificity and structural accessibility of the cleavage site. We demonstrate concomitant quantification of cleavage site spanning peptides and neo-N and/or neo-C termini to estimate relative ratios of noncleaved and cleaved forms of substrate proteins. By applying this strategy to dissect the matrix metalloproteinase 10 (MMP10) substrate degradome in fibroblast secretomes, we identified the extracellular matrix protein ADAMTS-like protein 1 (ADAMTSL1) as a direct MMP10 substrate and revealed MMP10-dependent ectodomain shedding of platelet-derived growth factor receptor alpha (PDGFRα) as well as sequential processing of type I collagen. The data have been deposited to the ProteomeXchange Consortium with identifier PXD000503.
Collapse
Affiliation(s)
- Pascal Schlage
- ETH Zurich, Department of Biology, Institute of Molecular Health Sciences, Schafmattstr. 22, 8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
26
|
Lange PF, Overall CM. Protein TAILS: when termini tell tales of proteolysis and function. Curr Opin Chem Biol 2013; 17:73-82. [DOI: 10.1016/j.cbpa.2012.11.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/17/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|