1
|
Seliverstova EV, Prutskova NP. Renal protein reabsorption impairment related to a myxosporean infection in the grass frog (Rana temporaria L.). Parasitol Res 2023; 122:1303-1316. [PMID: 37012507 DOI: 10.1007/s00436-023-07830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
A morphophysiological study of tubular reabsorption and mechanisms of protein endocytosis in the kidney of frogs (Rana temporaria L.) during parasitic infection was carried out. Pseudoplasmodia and spores of myxosporidia, beforehand assigned to the genus Sphaerospora, were detected in Bowman's capsules and in the lumen of individual renal tubules by light and electron microscopy. Remarkable morphological alteration and any signs of pathology in kidney tissue related to this myxosporean infection have not been noted. At the same time, significant changes in protein reabsorption and distribution of molecular markers of endocytosis in the proximal tubule (PT) cells in infected animals were detected by immunofluorescence confocal microscopy. In lysozyme injection experiments, the endocytosed protein and megalin expression in the infected PTs were not revealed. Tubular expression of cubilin and clathrin decreased, but endosomal recycling marker Rab11 increased or remained unchanged. Thus, myxosporean infection resulted in the alterations in lysozyme uptake and expression of the main molecular determinants of endocytosis. The inhibition of receptor-mediated clathrin-dependent protein endocytosis in amphibian kidneys due to myxosporidiosis was shown for the first time. Established impairment of the endocytic process is a clear marker of tubular cell dysfunction that can be used to assess the functioning of amphibian kidneys during adaptation to adverse environmental factors.
Collapse
Affiliation(s)
- Elena V Seliverstova
- Laboratory of Renal Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Torez Av., 44, Saint Petersburg, 194223, Russian Federation.
| | - Natalya P Prutskova
- Laboratory of Renal Physiology, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Torez Av., 44, Saint Petersburg, 194223, Russian Federation
| |
Collapse
|
2
|
Molecular determinants of protein reabsorption in the amphibian kidneys. Acta Histochem 2021; 123:151760. [PMID: 34303296 DOI: 10.1016/j.acthis.2021.151760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/28/2021] [Accepted: 07/11/2021] [Indexed: 11/23/2022]
Abstract
Participation of molecular determinants of endocytosis in the processes of glomerular filtration and tubular reabsorption of albumin and lysozyme in the mesonephros of grass frogs (Rana temporaria L.), lake frogs (Rana ridibunda P.), and newts (Triturus vulgaris L.) is investigated. In all studied species, the constitutive expression of endocytic receptors in proximal tubule (PT) cells is established using immunofluorescence microscopy and immunoblotting. The certain stages of lysozyme and albumin endocytosis involving megalin/LRP2, cubilin, clathrin and protein Rab11 are detailed, and the central role of ligand-induced megalin/LRP2 activity in this process is shown. Increased ligand-induced expression for clathrin and Rab11was also found. In grass frogs, the different patterns of endocytic receptors and both absorbed proteins in the initial parts of proximal tubules suggest the proximo-distal specialization of absorptive processes along these tubule segments, similar to this in more complex mammalian nephrons. This data, as well as the revealed peculiarities of ligand-receptor interactions during intracellular trafficking of proteins prove that megalin is mainly involved in the absorption of lysozyme. At the same time, albumin absorption is mediated by both receptors, or cubilin contributes the most. The detection of endocytic receptor in glomerular structural elements in frogs and newts suggests the participation of filtration barrier components in endocytosis of filterable proteins. The results represent a new contribution to the study of the fundamental mechanisms of renal protein uptake in the amphibian mesonephros as a more primitive kidney compared to mammalian metanephros.
Collapse
|
4
|
Prutskova NP, Seliverstova EV. Changes in Vesicular Transport of a Model Fluorescent Protein in the Renal Proximal Tubular Epithelium of the Frog Ranatemporaria after Lysozime Loading. J EVOL BIOCHEM PHYS+ 2019. [DOI: 10.1134/s0022093019020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Figueira MF, Castiglione RC, de Lemos Barbosa CM, Ornellas FM, da Silva Feltran G, Morales MM, da Fonseca RN, de Souza-Menezes J. Diabetic rats present higher urinary loss of proteins and lower renal expression of megalin, cubilin, ClC-5, and CFTR. Physiol Rep 2018; 5:5/13/e13335. [PMID: 28676554 PMCID: PMC5506523 DOI: 10.14814/phy2.13335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 01/27/2023] Open
Abstract
Diabetic nephropathy (DN) occurs in around 40% of those with diabetes. Proteinuria is the main characteristic of DN and develops as a result of increased permeability of the glomerulus capillary wall and/or decreased proximal tubule endocytosis. The goal of this work was to evaluate renal function and the expression of megalin, cubilin, CFTR (cystic fibrosis transmembrane conductance regulator), and ClC-5 in the proximal tubule and renal cortex of rats with type 1 diabetes. Male Wistar rats were randomly assigned to control (CTRL) and diabetic (DM) groups for 4 weeks. Renal function was assessed in 24-h urine sample by calculating clearance and fractional excretion of solutes. The RNA and protein contents of ClC-5, CFTR, megalin, and cubilin were determined in the renal proximal tubule and cortex using real-time polymerase chain reaction and western blotting techniques, respectively. The results showed higher creatinine clearance and higher urinary excretion of proteins, albumin, and transferrin in the DM group than in the CTRL group. Furthermore, the renal cortex and proximal tubule of diabetic animals showed downregulation of megalin, cubilin, ClC-5, and CFTR, critical components of the endocytic apparatus. These data suggest dysfunction in proximal tubule low-molecular-weight endocytosis and protein glomerulus filtration in the kidney of diabetic rats.
Collapse
Affiliation(s)
- Miriam F Figueira
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.,Laboratório de Fisiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel C Castiglione
- Laboratório de Fisiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina M de Lemos Barbosa
- Laboratório de Fisiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe M Ornellas
- Laboratório de Fisiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geórgia da Silva Feltran
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Laboratório de Fisiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo N da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Jackson de Souza-Menezes
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Prutskova NP, Seliverstova EV. Immunohistochemical Analysis of Renal Endocytic Receptors in the Frog Rana temporaria during the Spring–Summer Period. J EVOL BIOCHEM PHYS+ 2018. [DOI: 10.1134/s0022093018010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Seliverstova EV, Prutskova NP. Receptor-mediated endocytosis of lysozyme in renal proximal tubules of the frog Rana temporaria. Eur J Histochem 2015; 59:2482. [PMID: 26150156 PMCID: PMC4503969 DOI: 10.4081/ejh.2015.2482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 12/23/2022] Open
Abstract
The mechanism of protein reabsorption in the kidney of lower vertebrates remains insufficiently investigated in spite of raising interest to the amphibian and fish kidneys as a useful model for physiological and pathophysiological examinations. In the present study, we examined the renal tubular uptake and the internalization rote of lysozyme after its intravenous injection in the wintering frog Rana temporaria using immunohisto- and immunocytochemistry and specific markers for some endocytic compartments. The distinct expression of megalin and cubilin in the proximal tubule cells of lysozyme-injected frogs was revealed whereas kidney tissue of control animals showed no positive immunoreactivity. Lysozyme was detected in the apical endocytic compartment of the tubular cells and colocalized with clathrin 10 min after injection. After 20 min, lysozyme was located in the subapical compartment negative to clathrin (endo-somes), and intracellular trafficking of lysozyme was coincided with the distribution of megalin and cubilin. However, internalized protein was retained in the endosomes and did not reach lysosomes within 30 min after treatment that may indicate the inhibition of intra-cellular trafficking in hibernating frogs. For the first time, we provided the evidence that lysozyme is filtered through the glomeruli and absorbed by receptor-mediated clathrin-dependent endocytosis in the frog proximal tubule cells. Thus, the protein uptake in the amphibian mesonephros is mediated by megalin and cubilin that confirms a critical role of endocytic receptors in the renal reabsorption of proteins in amphibians as in mammals.
Collapse
Affiliation(s)
- E V Seliverstova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences.
| | | |
Collapse
|
12
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|