1
|
Harvey TN, Gillard GB, Røsæg LL, Grammes F, Monsen Ø, Vik JO, Hvidsten TR, Sandve SR. The genome regulatory landscape of Atlantic salmon liver through smoltification. PLoS One 2024; 19:e0302388. [PMID: 38648207 PMCID: PMC11034671 DOI: 10.1371/journal.pone.0302388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Abstract
The anadromous Atlantic salmon undergo a preparatory physiological transformation before seawater entry, referred to as smoltification. Key molecular developmental processes involved in this life stage transition, such as remodeling of gill functions, are known to be synchronized and modulated by environmental cues like photoperiod. However, little is known about the photoperiod influence and genome regulatory processes driving other canonical aspects of smoltification such as the large-scale changes in lipid metabolism and energy homeostasis in the developing smolt liver. Here we generate transcriptome, DNA methylation, and chromatin accessibility data from salmon livers across smoltification under different photoperiod regimes. We find a systematic reduction of expression levels of genes with a metabolic function, such as lipid metabolism, and increased expression of energy related genes such as oxidative phosphorylation, during smolt development in freshwater. However, in contrast to similar studies of the gill, smolt liver gene expression prior to seawater transfer was not impacted by photoperiodic history. Integrated analyses of gene expression, chromatin accessibility, and transcription factor (TF) binding signatures highlight chromatin remodeling and TF dynamics underlying smolt gene regulatory changes. Differential peak accessibility patterns largely matched differential gene expression patterns during smoltification and we infer that ZNF682, KLFs, and NFY TFs are important in driving a liver metabolic shift from synthesis to break down of organic compounds in freshwater. Overall, chromatin accessibility and TFBS occupancy were highly correlated to changes in gene expression. On the other hand, we identified numerous differential methylation patterns across the genome, but associated genes were not functionally enriched or correlated to observed gene expression changes across smolt development. Taken together, this work highlights the relative importance of chromatin remodeling during smoltification and demonstrates that metabolic remodeling occurs as a preadaptation to life at sea that is not to a large extent driven by photoperiod history.
Collapse
Affiliation(s)
- Thomas N. Harvey
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Gareth B. Gillard
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Line L. Røsæg
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Øystein Monsen
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Torgeir R. Hvidsten
- Faculty of Chemistry, Biotechnology and Food Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Simen R. Sandve
- Centre for Integrative Genetics (CIGENE), Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Rubira RJG, Batista VRG, Correia RR, Pazin WM, Maximino MD, Ruiz GCM, Teixeira GR, Job AE. Biological responses to imazapic and methyl parathion pesticides in bioinspired lipid membranes and Tilapia fish. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131943. [PMID: 37390683 DOI: 10.1016/j.jhazmat.2023.131943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/02/2023]
Abstract
Pesticide misuse has well-documented detrimental effects on ecosystems, with Nile tilapia (Oreochromis niloticus) being particularly vulnerable. The current study focuses on the impact of widely used sugarcane crop pesticides, Imazapic (IMZ) and Methyl Parathion (MP), on tilapia gill tissues and their lipid membranes. This investigation was motivated by the specific role of the lipid membrane in transport regulation. Bioinspired cell membrane models, including Langmuir monolayers and liposomes (LUVs and GUVs), were utilized to explore the interaction of IMZ and MP. The results revealed electrostatic interactions between IMZ and MP and the polar head groups of lipids, inducing morphological alterations in the lipid bilayer. Tilapia gill tissue exposed to the pesticides exhibited hypertrophic increases in primary and secondary lamellae, total lamellar fusion, vasodilation, and lifting of the secondary lamellar epithelium. These alterations can lead to compromised oxygen absorption by fish and subsequent mortality. This study not only highlights the harmful effects of the pesticides IMZ and MP, but also emphasizes the crucial role of water quality in ecosystem well-being, even at minimal pesticide concentrations. Understanding these impacts can better inform management practices to safeguard aquatic organisms and preserve ecosystem health in pesticide-affected environments.
Collapse
Affiliation(s)
- Rafael J G Rubira
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil.
| | - Victor R G Batista
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Rafael R Correia
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Wallance M Pazin
- São Paulo State University (Unesp), School of Sciences, Bauru, SP CEP 17033-360, Brazil
| | - Mateus D Maximino
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Gilia C M Ruiz
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Giovana R Teixeira
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| | - Aldo E Job
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, SP 19060-900, Brazil
| |
Collapse
|
3
|
Shwe A, Krasnov A, Visnovska T, Ramberg S, Østbye TKK, Andreassen R. Differential Expression of miRNAs and Their Predicted Target Genes Indicates That Gene Expression in Atlantic Salmon Gill Is Post-Transcriptionally Regulated by miRNAs in the Parr-Smolt Transformation and Adaptation to Sea Water. Int J Mol Sci 2022; 23:ijms23158831. [PMID: 35955964 PMCID: PMC9369087 DOI: 10.3390/ijms23158831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022] Open
Abstract
Smoltification (parr-smolt transformation) is a complex developmental process consisting of developmental changes that lead to remodeling of the Atlantic salmon gill. Here, the expression changes of miRNAs and mRNAs were studied by small-RNA sequencing and microarray analysis, respectively, to identify miRNAs and their predicted targets associated with smoltification and subsequent sea water adaptation (SWA). In total, 18 guide miRNAs were identified as differentially expressed (gDE miRNAs). Hierarchical clustering analysis of expression changes divided these into one cluster of 13 gDE miRNAs with decreasing expression during smoltification and SWA that included the miRNA-146, miRNA-30 and miRNA-7132 families. Another smaller cluster that showed increasing expression consisted of miR-101a-3p, miR-193b-5p, miR-499a-5p, miR-727a-3p and miR-8159-5p. The gDE miRNAs were predicted to target 747 of the genes (DE mRNAs), showing expression changes in the microarray analysis. The predicted targets included genes encoding NKA-subunits, aquaporin-subunits, cystic fibrosis transmembrane conductance regulator and the solute carrier family. Furthermore, the predicted target genes were enriched in biological processes associated with smoltification and SWA (e.g., immune system, reactive oxygen species, stress response and extracellular matrix organization). Collectively, the results indicate that remodeling of the gill involves the post-transcriptional regulation of gene expression by the characterized gDE miRNAs.
Collapse
Affiliation(s)
- Alice Shwe
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Aleksei Krasnov
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0372 Oslo, Norway
| | - Sigmund Ramberg
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
| | - Tone-Kari K. Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), 1430 Ås, Norway
| | - Rune Andreassen
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway
- Correspondence:
| |
Collapse
|
4
|
Soo HJ, Sam KK, Chong J, Lau NS, Ting SY, Kuah MK, Kwang SY, Ranjani M, Shu-Chien AC. Functional characterisation of fatty acyl desaturase, Fads2, and elongase, Elovl5, in the Boddart's goggle-eyed goby Boleophthalmus boddarti (Gobiidae) suggests an incapacity for long-chain polyunsaturated fatty acid biosynthesis. JOURNAL OF FISH BIOLOGY 2020; 97:83-99. [PMID: 32222967 DOI: 10.1111/jfb.14328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 06/10/2023]
Abstract
The biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFA), a process to convert C18 polyunsaturated fatty acids into eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) or arachidonic acid (ARA), requires the concerted activities of two enzymes, the fatty acyl desaturase (Fads) and elongase (Elovl). This study highlights the cloning, functional characterisation and tissue expression pattern of a Fads and an Elovl from the Boddart's goggle-eyed goby (Boleophthalmus boddarti), a mudskipper species widely distributed in the Indo-Pacific region. Phylogenetic analysis revealed that the cloned fads and elovl are clustered with other teleost orthologs, respectively. The investigation of the genome of several mudskipper species, namely Boleophthalmus pectinirostris, Periophthalmus schlosseri and Periophthalmus magnuspinnatus, revealed a single Fads2 and two elongases, Elovl5 and Elovl4 for each respective species. A heterologous yeast assay indicated that the B. boddarti Fads2 possessed low desaturation activity on C18 PUFA and no desaturation on C20 and C22 PUFA substrates. In comparison, the Elovl5 showed a wide range of substrate specificity, with a capacity to elongate C18, C20 and C22 PUFA substrates. An amino acid residue that affects the capacity to elongate C22:5n-3 was identified in the B. boddarti Elovl5. Both genes are highly expressed in brain tissue. Among all tissues, DHA is highly concentrated in neuron-rich tissues, whereas EPA is highly deposited in gills. Taken together, the results showed that due to the inability to perform desaturation steps, B. boddarti is unable to biosynthesise LC-PUFA, relying on dietary intake to acquire these nutrients.
Collapse
Affiliation(s)
- Han-Jie Soo
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Ka Kei Sam
- Centre for Chemical Biology, Sains@USM, Bayan Lepas, Malaysia
| | - Joey Chong
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Sains@USM, Bayan Lepas, Malaysia
| | - Seng Yeat Ting
- Centre for Chemical Biology, Sains@USM, Bayan Lepas, Malaysia
| | - Meng-Kiat Kuah
- Centre for Chemical Biology, Sains@USM, Bayan Lepas, Malaysia
| | - Sim Yee Kwang
- Center for Marine and Coastal Studies, Universiti Sains Malaysia, Minden, Malaysia
| | | | - Alexander Chong Shu-Chien
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Malaysia
- Centre for Chemical Biology, Sains@USM, Bayan Lepas, Malaysia
| |
Collapse
|
5
|
Development of a mass-spectrometry-based lipidomics platform for the profiling of phospholipids and sphingolipids in brain tissues. Anal Bioanal Chem 2015; 407:6543-55. [DOI: 10.1007/s00216-015-8822-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/26/2015] [Accepted: 06/02/2015] [Indexed: 10/23/2022]
|