1
|
Abarzúa T, Camus I, Ortiz F, Ñunque A, Cubillos FA, Sabat P, Nespolo RF. Modeling heterothermic fitness landscapes in a marsupial hibernator using changes in body composition. Oecologia 2023; 203:79-93. [PMID: 37798536 PMCID: PMC10615951 DOI: 10.1007/s00442-023-05452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/16/2023] [Indexed: 10/07/2023]
Abstract
Hibernation is an adaptive strategy that allows animals to enter a hypometabolic state, conserving energy and enhancing their fitness by surviving harsh environmental conditions. However, addressing the adaptive value of hibernation, at the individual level and in natural populations, has been challenging. Here, we applied a non-invasive technique, body composition analysis by quantitative magnetic resonance (qMR), to calculate energy savings by hibernation in a population of hibernating marsupials (Dromiciops gliroides). Using outdoor enclosures installed in a temperate rainforest, and measuring qMR periodically, we determined the amount of fat and lean mass consumed during a whole hibernation cycle. With this information, we estimated the daily energy expenditure of hibernation (DEEH) at the individual level and related to previous fat accumulation. Using model selection approaches and phenotypic selection analysis, we calculated linear (directional, β), quadratic (stabilizing or disruptive, γ) and correlational (ρ) coefficients for DEEH and fat accumulation. We found significant, negative directional selection for DEEH (βDEEH = - 0.58 ± 0.09), a positive value for fat accumulation (βFAT = 0.34 ± 0.07), and positive correlational selection between both traits (ρDEEH × FAT = 0.24 ± 0.07). Then, individuals maximizing previous fat accumulation and minimizing DEEH were promoted by selection, which is visualized by a bi-variate selection surface estimated by generalized additive models. At the comparative level, results fall within the isometric allometry known for hibernation metabolic rate in mammals. Thus, by a combination of a non-invasive technique for body composition analysis and semi-natural enclosures, we were characterized the heterothermic fitness landscape in a semi-natural population of hibernators.
Collapse
Affiliation(s)
- Tamara Abarzúa
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Isidora Camus
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Felipe Ortiz
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Abel Ñunque
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
| | - Francisco A Cubillos
- Departamento de Biología y Química, Universidad de Santiago de Chile, Santiago, Chile
- Millenium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Pablo Sabat
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto F Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile.
- Millenium Nucleus of Patagonian Limit of Life (LiLi), Valdivia, Chile.
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Nespolo RF, Fontúrbel FE, Mejias C, Contreras R, Gutierrez P, Oda E, Sabat P, Hambly C, Speakman JR, Bozinovic F. A Mesocosm Experiment in Ecological Physiology: The Modulation of Energy Budget in a Hibernating Marsupial under Chronic Caloric Restriction. Physiol Biochem Zool 2021; 95:66-81. [PMID: 34875208 DOI: 10.1086/717760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractDuring the past 60 years, mammalian hibernation (i.e., seasonal torpor) has been interpreted as a physiological adaptation for energy economy. However, direct field comparisons of energy expenditure and torpor use in hibernating and active free-ranging animals are scarce. Here, we followed the complete hibernation cycle of a fat-storing hibernator, the marsupial Dromiciops gliroides, in its natural habitat. Using replicated mesocosms, we experimentally manipulated energy availability and measured torpor use, hibernacula use, and social clustering throughout the entire hibernation season. Also, we measured energy flow using daily food intake, daily energy expenditure (DEE), and basal metabolic rate (BMR) in winter. We hypothesized that when facing chronic caloric restriction (CCR), a hibernator should maximize torpor frequency to compensate for the energetic deficit, compared with individuals fed ad lib. (controls). However, being torpid at low temperatures could increase other burdens (e.g., cost of rewarming, freezing risks). Our results revealed that CCR animals, compared with control animals, did not promote heat conservation strategies (i.e., clustering and hibernacula use). Instead, they gradually increased torpor frequency and reduced DEE and, as a consequence, recovered weight at the end of the season. Also, CCR animals consumed food at a rate of 50.8 kJ d-1, whereas control animals consumed food at a rate of 98.4 kJ d-1. Similarly, the DEE of CCR animals in winter was 47.3±5.64 kJ d-1, which was significantly lower than control animals (DEE=88.0±5.84 kJ d-1). However, BMR and lean mass of CCR and control animals did not vary significantly, suggesting that animals maintained full metabolic capacities. This study shows that the use of torpor can be modulated depending on energy supply, thus optimizing energy budgeting. This plasticity in the use of heterothermy as an energy-saving strategy would explain the occurrence of this marsupial in a broad latitudinal and altitudinal range. Overall, this study suggests that hibernation is a powerful strategy to modulate energy expenditure in mammals from temperate regions.
Collapse
|
3
|
Nespolo RF, Mejías C, Espinoza A, Quintero-Galvis J, Rezende EL, Fontúrbel FE, Bozinovic F. Heterothermy as the Norm, Homeothermy as the Exception: Variable Torpor Patterns in the South American Marsupial Monito del Monte ( Dromiciops gliroides). Front Physiol 2021; 12:682394. [PMID: 34322034 PMCID: PMC8311349 DOI: 10.3389/fphys.2021.682394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Hibernation (i.e., multiday torpor) is considered an adaptive strategy of mammals to face seasonal environmental challenges such as food, cold, and/or water shortage. It has been considered functionally different from daily torpor, a physiological strategy to cope with unpredictable environments. However, recent studies have shown large variability in patterns of hibernation and daily torpor ("heterothermic responses"), especially in species from tropical and subtropical regions. The arboreal marsupial "monito del monte" (Dromiciops gliroides) is the last living representative of the order Microbiotheria and is known to express both short torpor episodes and also multiday torpor depending on environmental conditions. However, only limited laboratory experiments have documented these patterns in D. gliroides. Here, we combined laboratory and field experiments to characterize the heterothermic responses in this marsupial at extreme temperatures. We used intraperitoneal data loggers and simultaneous measurement of ambient and body temperatures (T A and T B, respectively) for analyzing variations in the thermal differential, in active and torpid animals. We also explored how this differential was affected by environmental variables (T A, natural photoperiod changes, food availability, and body mass changes), using mixed-effects generalized linear models. Our results suggest that: (1) individuals express short bouts of torpor, independently of T A and even during the reproductive period; (2) seasonal torpor also occurs in D. gliroides, with a maximum bout duration of 5 days and a mean defended T B of 3.6 ± 0.9°C (one individual controlled T B at 0.09°C, at sub-freezing T A); (3) the best model explaining torpor occurrence (Akaike information criteria weight = 0.59) discarded all predictor variables except for photoperiod and a photoperiod by food interaction. Altogether, these results confirm that this marsupial expresses a dynamic form of torpor that progresses from short torpor to hibernation as daylength shortens. These data add to a growing body of evidence characterizing tropical and sub-tropical heterothermy as a form of opportunistic torpor, expressed as daily or seasonal torpor depending on environmental conditions.
Collapse
Affiliation(s)
- Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Angelo Espinoza
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Julián Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Enrico L. Rezende
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Francisco Bozinovic
- Center of Applied Ecology and Sustainability (CAPES), Departamento de Ecología Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
4
|
Affiliation(s)
- Thomas E Tomasi
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Briana N Anderson
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California – Riverside, Riverside, CA, USA
| |
Collapse
|
5
|
Nespolo RF, Gaitan-Espitia JD, Quintero-Galvis JF, Fernandez FV, Silva AX, Molina C, Storey KB, Bozinovic F. A functional transcriptomic analysis in the relict marsupial Dromiciops gliroides
reveals adaptive regulation of protective functions during hibernation. Mol Ecol 2018; 27:4489-4500. [DOI: 10.1111/mec.14876] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Valdivia Chile
- Departamento de Ecología; Center of Applied Ecology and Sustainability (CAPES); Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
- Millennium Institute for Integrative Biology (iBio); Santiago Chile
| | - Juan Diego Gaitan-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences; The University of Hong Kong; Hong Kong SAR China
- CSIRO Oceans & Atmosphere; Hobart Tasmania Australia
| | - Julian F. Quintero-Galvis
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Valdivia Chile
| | - Fernanda V. Fernandez
- Instituto de Fisiología; Facultad de Medicina; Universidad Austral de Chile; Valdivia Chile
| | - Andrea X. Silva
- AUSTRALomics, Vicerrectoría de Investigación, Desarrollo y Creación Artística; Universidad Austral de Chile; Valdivia Chile
| | - Cristian Molina
- AUSTRALomics, Vicerrectoría de Investigación, Desarrollo y Creación Artística; Universidad Austral de Chile; Valdivia Chile
| | - Kenneth B. Storey
- Department of Biology and Institute of Biochemistry; Carleton University; Ottawa Ontario Canada
| | - Francisco Bozinovic
- Departamento de Ecología; Center of Applied Ecology and Sustainability (CAPES); Facultad de Ciencias Biológicas; Pontificia Universidad Católica de Chile; Santiago Chile
| |
Collapse
|
6
|
Yuan L, Wilder S, Raubenheimer D, Simpson SJ, Shaw M, McAllan BM. Dietary protein supplementation and its consequences for intake, digestion, and physical activity of a carnivorous marsupial, Sminthopsis crassicaudata. Ecol Evol 2018; 8:3636-3647. [PMID: 29686845 PMCID: PMC5901163 DOI: 10.1002/ece3.3843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022] Open
Abstract
Diet regulation behavior can mediate the consequences of imbalanced diets for animal well-being, particularly for captive species that have little dietary choice. Dasyurids (carnivorous marsupials) are of conservation concern in Australia, and many species are in captive breeding programmes. However, their nutrient targets and dietary regulation behaviors are poorly understood, a limitation that may decrease the breeding success and well-being of captive animals. We tested how dietary protein content influenced the intake and utilization of nutrients, physical activity, and body mass of fat-tailed dunnarts Sminthopsis crassicaudata. Twelve adult dunnarts from six sibling pairs (one female and one male per pair) were provided ad libitum access to three diets in a repeated measures design: cat food, cat food supplemented with raw lean beef (1:1), and cat food supplemented with cooked lean beef (1:1). Food intake, activity level, and fecal output were measured daily. Dunnarts significantly decreased food intake, increased protein digestion, and physical activity, but body mass was unchanged when on the high-protein diet compared to the normal cat food diet. These observations suggest a capacity of dunnarts to maintain constant body mass using a dynamic balance of feeding, digestion, and activity. We also found a significant effect of family, with differences between families as large as the difference between the diet treatments, suggesting a genetic component to diet selection. The nutrient regulation responses of dunnarts to high-protein diets and the strong family effects provide important messages for the management of populations of small carnivores, including the aspects of dietary manipulation and conservation of genetic diversity.
Collapse
Affiliation(s)
- Lihong Yuan
- School of Public Health Sun Yat-Sen University Guangzhou Guangdong Province China.,School of Medical Sciences University of Sydney Sydney NSW Australia.,Present address: School of Public Health Sun Yat-Sen University Guangzhou Guangdong Province China
| | - Shawn Wilder
- School of Life and Environmental Sciences and Charles Perkins Centre University of Sydney Sydney NSW Australia.,Department of Integrative Biology Oklahoma State University Stillwater OK USA
| | - David Raubenheimer
- School of Life and Environmental Sciences and Charles Perkins Centre University of Sydney Sydney NSW Australia
| | - Stephen J Simpson
- School of Life and Environmental Sciences and Charles Perkins Centre University of Sydney Sydney NSW Australia
| | - Michelle Shaw
- Department of Animal Nutrition Taronga Conservation Society Mosman NSW 2088 Australia
| | - Bronwyn M McAllan
- School of Medical Sciences University of Sydney Sydney NSW Australia
| |
Collapse
|
7
|
Garba L, Shukuri Mo M, Nurbaya Os S, Noor Zalih R. Review on Fatty Acid Desaturases and their Roles in Temperature Acclimatisation. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/jas.2017.282.295] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Trefna M, Goris M, Thissen CMC, Reitsema VA, Bruintjes JJ, de Vrij EL, Bouma HR, Boerema AS, Henning RH. The influence of sex and diet on the characteristics of hibernation in Syrian hamsters. J Comp Physiol B 2017; 187:725-734. [PMID: 28324158 PMCID: PMC5486544 DOI: 10.1007/s00360-017-1072-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/24/2016] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
Research on deep hibernators almost exclusively uses species captured from the wild or from local breeding. An exception is Syrian hamster (Mesocricetus auratus), the only standard laboratory animal showing deep hibernation. In deep hibernators, several factors influence hibernation quality, including body mass, sex and diet. We examined hibernation quality in commercially obtained Syrian hamsters in relation to body mass, sex and a diet enriched in polyunsaturated fatty acids. Animals (M/F:30/30, 12 weeks of age) were obtained from Harlan (IN, USA) and individually housed at 21 °C and L:D 14:10 until 20 weeks of age, followed by L:D 8:16 until 27 weeks. Then conditions were changed to 5 °C and L:D 0:24 for 9 weeks to induce hibernation. Movement was continuously monitored with passive infrared detectors. Hamsters were randomized to control diet or a diet 3× enriched in linoleic acid from 16 weeks of age. Hamsters showed a high rate of premature death (n = 24, 40%), both in animals that did and did not initiate torpor, which was unrelated to body weight, sex and diet. Time to death (31.7 ± 3.1 days, n = 12) or time to first torpor bout (36.6 ± 1.6 days, n = 12) was similar in prematurely deceased hamsters. Timing of induction of hibernation and duration of torpor and arousal was unaffected by body weight, sex or diet. Thus, commercially obtained Syrian hamsters subjected to winter conditions showed poor survival, irrespective of body weight, sex and diet. These factors also did not affect hibernation parameters. Possibly, long-term commercial breeding from a confined genetic background has selected against the hibernation trait.
Collapse
Affiliation(s)
- Marie Trefna
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Maaike Goris
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Cynthia M C Thissen
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Vera A Reitsema
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jojanneke J Bruintjes
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Edwin L de Vrij
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Hjalmar R Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.,Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Ate S Boerema
- Departments of Chronobiology and Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
9
|
The effect of body mass and diet composition on torpor patterns in a Malagasy primate (Microcebus murinus). J Comp Physiol B 2016; 187:677-688. [DOI: 10.1007/s00360-016-1045-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 10/20/2022]
|
10
|
Leptin levels, seasonality and thermal acclimation in the Microbiotherid marsupial Dromiciops gliroides: Does photoperiod play a role? Comp Biochem Physiol A Mol Integr Physiol 2016; 203:233-240. [PMID: 27705753 DOI: 10.1016/j.cbpa.2016.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/15/2016] [Accepted: 09/29/2016] [Indexed: 01/09/2023]
Abstract
Mammals of the Neotropics are characterized by a marked annual cycle of activity, which is accompanied by several physiological changes at the levels of the whole organism, organs and tissues. The physiological characterization of these cycles is important, as it gives insight on the mechanisms by which animals adjust adaptively to seasonality. Here we studied the seasonal changes in blood biochemical parameters in the relict South American marsupial Dromiciops gliroides ("monito del monte" or "little mountain monkey"), under semi-natural conditions. We manipulated thermal conditions in order to characterize the effects of temperature and season on a battery of biochemical parameters, body mass and adiposity. Our results indicate that monitos experience an annual cycle in body mass and adiposity (measured as leptin levels), reaching a maximum in winter and a minimum in summer. Blood biochemistry confirms that the nutritional condition of animals is reduced in summer instead of winter (as generally reported). This was coincident with a reduction of several biochemical parameters in summer, such as betahydroxybutyrate, cholesterol, total protein concentration and globulins. Monitos seem to initiate winter preparation during autumn and reach maximum body reserves in winter. Hibernation lasts until spring, at which time they use fat reserves and become reproductively active. Sexual maturation during summer would be the strongest energetic bottleneck, which explains the reductions in body mass and other parameters in this season. Overall, this study suggests that monitos anticipate the cold season by a complex interaction of photoperiodic and thermal cues.
Collapse
|