1
|
Konno N, Togashi A, Miyanishi H, Azuma M, Nakamachi T, Matsuda K. Regulation of Branchial Anoctamin 1 Expression in Freshwater- and Seawater-Acclimated Japanese Medaka, Oryzias latipes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024. [PMID: 39718083 DOI: 10.1002/jez.2894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
In euryhaline teleosts, the cystic fibrosis transmembrane conductance regulator (CFTR) in seawater (SW)-type chloride cells facilitates apical Cl- secretion for SW adaptation, while alternative Cl- excretion pathways remain understudied. This study investigates the role of the calcium-activated chloride channel, Anoctamin 1 (ANO1), in the gills of the euryhaline Japanese medaka (Oryzias latipes) under hyperosmolality and cortisol (CORT) influence. Acclimation to artificial SW, NaCl, mannitol, or glucose significantly upregulated ANO1 and CFTR mRNA expression in gills, unlike urea treatment. In situ hybridization revealed ANO1 mRNA in chloride cells co-expressing CFTR and Na+, K+-ATPase under hyperosmotic conditions. ANO1 inhibition elevated plasma Cl- concentration, indicating impaired Cl- excretion. CORT or dexamethasone administration in freshwater (FW) fish significantly increased branchial ANO1 and CFTR mRNA expression, an effect attenuated by the glucocorticoid receptor (GR) antagonist RU486. Hyperosmotic treatment of isolated gill tissues rapidly induced ANO1 mRNA expression independent of CFTR mRNA changes, and this induction was unaffected by RU486. These findings highlight the dual regulation of ANO1 expression via hyperosmolality-induced cellular response and the CORT-GR system. Thus, branchial ANO1 may likely complement CFTR in Cl⁻ excretion, playing a key role in the hyperosmotic adaptation of euryhaline teleosts.
Collapse
Affiliation(s)
- Norifumi Konno
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| | - Ayane Togashi
- Departement of Biology, Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tomoya Nakamachi
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| | - Kouhei Matsuda
- Departement of Biology, Faculty of Science, Academic Assembly, University of Toyama, Gofuku, Toyama, Japan
| |
Collapse
|
2
|
Tao YT, Breves JP. Hypersalinity tolerance of mummichogs (Fundulus heteroclitus): A branchial transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101338. [PMID: 39413658 DOI: 10.1016/j.cbd.2024.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Along the east coast of North America, mummichogs (Fundulus heteroclitus) are subjected to a broad range of salinities in their nearshore habitats. However, there is a paucity of information regarding the molecular and cellular processes that mummichogs (and other highly osmotolerant fishes) engage to survive environmental salinities greater than seawater (SW). To reveal branchial processes underlying their extraordinarily broad salinity tolerance, we performed an RNA-Seq analysis to identify differentially expressed genes (DEGs) in mummichogs residing in 3, 35, and 105 ppt conditions. We identified a series of DEGs previously associated with both freshwater (FW)- and SW-type ionocytes; however, the heightened expression of anoctamin 1a, a Ca2+-activated Cl- channel, in 35 and 105 ppt indicates that an undescribed Cl--secretion pathway may operate within the SW-type ionocytes of mummichogs. Concerning FW-adaptive branchial processes, we identified claudin 5a as a gene whose product may limit the diffusive loss of ions between cellular tight junctions. Further, in response to hypersaline conditions, we identified DEGs linked with myo-inositol synthesis and kinase signaling. This study provides new molecular targets for future physiological investigations that promise to reveal the mechanistic bases for how mummichogs and other euryhaline species tolerate hypersaline conditions.
Collapse
Affiliation(s)
- Yixuan T Tao
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| |
Collapse
|
3
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
4
|
Zhou T, Meng Q, Sun R, Xu D, Zhu F, Jia C, Zhou S, Chen S, Yang Y. Structure and gene expression changes of the gill and liver in juvenile black porgy (Acanthopagrus schlegelii) under different salinities. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101228. [PMID: 38547756 DOI: 10.1016/j.cbd.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 05/27/2024]
Abstract
Black porgy (Acanthopagrus schlegelii) is an important marine aquaculture species in China. It is an ideal object for the cultivation of low-salinity aquaculture strains in marine fish and the study of salinity tolerance mechanisms in fish because of its strong low-salinity tolerance ability. Gill is the main osmoregulatory organ in fish, and the liver plays an important role in the adaptation of the organism to stressful environments. In order to understand the coping mechanisms of the gills and livers of black porgy in different salinity environments, this study explored these organs after 30 days of culture in hypoosmotic (0.5 ppt), isosmotic (12 ppt), and normal seawater (28 ppt) at histologic, physiologic, and transcriptomic levels. The findings indicated that gill exhibited a higher number of differentially expressed genes than the liver, emphasizing the gill's heightened sensitivity to salinity changes. Protein interaction networks and enrichment analyses highlighted energy metabolism as a key regulatory focus at both 0.5 ppt and 12 ppt salinity in gills. Additionally, gills showed enrichment in ions, substance transport, and other metabolic pathways, suggesting a more direct regulatory response to salinity stress. The liver's regulatory patterns at different salinities exhibited significant distinctions, with pathways and genes related to metabolism, immunity, and antioxidants predominantly activated at 0.5 ppt, and molecular processes linked to cell proliferation taking precedence at 12 ppt salinity. Furthermore, the study revealed a reduction in the volume of the interlamellar cell mass (ILCM) of the gills, enhancing the contact area of the gill lamellae with water. At 0.5 ppt salinity, hepatic antioxidant enzyme activity increased, accompanied by oxidative stress damage. Conversely, at 12 ppt salinity, gill NKA activity significantly decreased without notable changes in liver structure. These results underscore the profound impact of salinity on gill structure and function, highlighting the crucial role of the liver in adapting to salinity environments.
Collapse
Affiliation(s)
- Tangjian Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qian Meng
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Ruijian Sun
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Dafeng Xu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Fei Zhu
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Chaofeng Jia
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China
| | - Shimiao Zhou
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shuyin Chen
- Jiangsu Marine Fisheries Research Institute, Nantong 226007, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| | - Yunxia Yang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
5
|
Wang Y, Zhang X, Wang J, Wang C, Xiong F, Qian Y, Meng M, Zhou M, Chen W, Ding Z, Yu D, Liu Y, Chang Y, He S, Yang L. Genomic insights into the seawater adaptation in Cyprinidae. BMC Biol 2024; 22:87. [PMID: 38637780 PMCID: PMC11027309 DOI: 10.1186/s12915-024-01885-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Cyprinidae, the largest fish family, encompasses approximately 367 genera and 3006 species. While they exhibit remarkable adaptability to diverse aquatic environments, it is exceptionally rare to find them in seawater, with the Far Eastern daces being of few exceptions. Therefore, the Far Eastern daces serve as a valuable model for studying the genetic mechanisms underlying seawater adaptation in Cyprinidae. RESULTS Here, we sequenced the chromosome-level genomes of two Far Eastern daces (Pseudaspius brandtii and P. hakonensis), the two known cyprinid fishes found in seawater, and performed comparative genomic analyses to investigate their genetic mechanism of seawater adaptation. Demographic history reconstruction of the two species reveals that their population dynamics are correlated with the glacial-interglacial cycles and sea level changes. Genomic analyses identified Pseudaspius-specific genetic innovations related to seawater adaptation, including positively selected genes, rapidly evolving genes, and conserved non-coding elements (CNEs). Functional assays of Pseudaspius-specific variants of the prolactin (prl) gene showed enhanced cell adaptation to greater osmolarity. Functional assays of Pseudaspius specific CNEs near atg7 and usp45 genes suggest that they exhibit higher promoter activity and significantly induced at high osmolarity. CONCLUSIONS Our results reveal the genome-wide evidence for the evolutionary adaptation of cyprinid fishes to seawater, offering valuable insights into the molecular mechanisms supporting the survival of migratory fish in marine environments. These findings are significant as they contribute to our understanding of how cyprinid fishes navigate and thrive in diverse aquatic habitats, providing useful implications for the conservation and management of marine ecosystems.
Collapse
Affiliation(s)
- Ying Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China.
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS81TQ, UK.
| | - Xuejing Zhang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Cheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Xiong
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Yuting Qian
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Meng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Min Zhou
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Sciences, Jianghan University, Wuhan, 430056, China
| | - Wenjun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zufa Ding
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yumei Chang
- National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang Province's Key Laboratory of Fish Stress Resistance Breeding and Germplasm Characteristics On Special Habitats, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, Heilongjiang, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China.
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, 810016, China.
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS81TQ, UK.
| |
Collapse
|
6
|
Zheng S, Wang WX. Physiological and immune profiling of tilapia Oreochromis niloticus gills by high-throughput single-cell transcriptome sequencing. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109070. [PMID: 37709178 DOI: 10.1016/j.fsi.2023.109070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
The physiological and immune functions of fish gills are largely recognized, but their following functional heterogeneity at the single cell scale has been rarely reported. Here, we performed single cell RNA sequencing (scRNA-seq) on the gills of tilapia fish Oreochromis niloticus. We identified a total of 12 cell populations and analyzed their functional heterogeneity. To investigate the physiological function of O. niloticus gills, expression patterns of genes encoding ion transporters were selected from the identified H+-ATPase-rich cells (HR cells), Na+/K+-ATPase-rich cells (NaR cells), and pavement cells. Specific enrichment of ca4a, slc9a1a, and LOC100692482 in the HR cells of O. niloticus gills explained their functions in acid-base regulation. Genes encoding Ca2+ transporters, including atp2b1, LOC100696627, and LOC 100706765, were specifically expressed in the NaR cells. Pavement cells were presumably the main sites responsible for ammonia and urea transports in O. niloticus gills with specific enrichment of Rhbg and LOC100693008, respectively. The expression patterns of the four immune cell subtypes varied greatly, with B cells being enriched with the most immune-related GO terms. KEGG enrichment analysis showed that MAPK signaling pathway was the most enriched pathway among the four types of immune cells in O. niloticus gills. Our results are important in understanding the physiological and immune responses of fish gills at the cellular resolution.
Collapse
Affiliation(s)
- Siwen Zheng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
7
|
Zhou B, Qi D, Liu S, Qi H, Wang Y, Zhao K, Tian F. Physiological, morphological and transcriptomic responses of Tibetan naked carps (Gymnocypris przewalskii) to salinity variations. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100982. [PMID: 35279439 DOI: 10.1016/j.cbd.2022.100982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Gymnocypris przewalskii is a native cyprinid fish that dwells in the Lake Qinghai with salinity of 12-13‰. It migrates annually to the freshwater rivers for spawning, experiencing the significant changes in salinity. In the present study, we performed the physiological, morphological and transcriptomic analyses to understand the osmoregulation in G. przewalskii. The physiological assay showed that the osmotic pressure of G. przewalskii was almost isosmotic to the brackish lake water. The low salinity reduced its ionic concentrations and osmotic pressure. The plasticity of gill microstructure was linked to the salinity variations, including the presence of mucus and intact tight junctions in brackish water and the development of the mitochondria-rich cells and the loosened tight junctions in freshwater. RNA-seq analysis identified 1926 differentially expressed genes, including 710 and 1216 down- and up-regulated genes in freshwater, which were enriched in ion transport, cell-cell adhesion, and mucus secretion. Genes in ion uptake were activated in low salinity, and mucus pathways and tight junction showed the higher transcription in brackish water. The isosmoticity between the body fluid and the environment suggested G. przewalskii was in the metabolic-saving condition in the brackish water. The decreased salinity disrupted this balance, which activated the ion uptake in freshwater to maintain osmotic homeostasis. The gill remodeling was involved in this process through the development of the mitochondria-rich cells to enhance ion uptake. The current finding provided insights into the potential mechanisms of G. przewalskii to cope with salinity alteration.
Collapse
Affiliation(s)
- Bingzheng Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Gymnocypris przewalskii breeding and reproduction, Xining 810008, China
| | - Yang Wang
- Qinghai Provincial Key Laboratory of Gymnocypris przewalskii breeding and reproduction, Xining 810008, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
8
|
Doyle D, Carney Almroth B, Sundell K, Simopoulou N, Sundh H. Transport and Barrier Functions in Rainbow Trout Trunk Skin Are Regulated by Environmental Salinity. Front Physiol 2022; 13:882973. [PMID: 35634157 PMCID: PMC9136037 DOI: 10.3389/fphys.2022.882973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/29/2022] [Indexed: 11/20/2022] Open
Abstract
The mechanisms underpinning ionic transport and barrier function have been relatively well characterised in amphibians and fish. In teleost fish, these processes have mostly been characterised in the gill and intestine. In contrast, these processes remain much less clear for the trunk skin of fish. In this study, we measured barrier function and active transport in the trunk skin of the rainbow trout, using the Ussing chamber technique. The effects of epithelial damage, skin region, salinity, and pharmacological inhibition were tested. Skin barrier function decreased significantly after the infliction of a superficial wound through the removal of scales. Wound healing was already underway after 3 h and, after 24 h, there was no significant difference in barrier function towards ions between the wounded and control skin. In relation to salinity, skin permeability decreased drastically following exposure to freshwater, and increased following exposure to seawater. Changes in epithelial permeability were accompanied by salinity-dependent changes in transepithelial potential and short-circuit current. The results of this study support the idea that barrier function in rainbow trout trunk skin is regulated by tight junctions that rapidly respond to changes in salinity. The changes in transepithelial permeability and short circuit current also suggest the presence of an active transport component. Immunostaining and selective inhibition suggest that one active transport component is an apical V-ATPase. However, further research is required to determine the exact role of this transporter in the context of the trunk skin.
Collapse
Affiliation(s)
- D Doyle
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - B Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - K Sundell
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - N Simopoulou
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - H Sundh
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Integrated Omics Approaches Revealed the Osmotic Stress-Responsive Genes and Microbiota in Gill of Marine Medaka. mSystems 2022; 7:e0004722. [PMID: 35285678 PMCID: PMC9040874 DOI: 10.1128/msystems.00047-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This is the first study using the transcriptome and 16S rRNA gene sequencing to report the hypotonic responsive genes in gill cells and the compositions of gill microbiota in marine medaka. The overlapped glycosaminoglycan- and chitin-related pathways suggest host-bacterium interaction in fish gill during osmotic stress.
Collapse
|
10
|
Chen CC, Marshall WS, Robertson GN, Cozzi RRF, Kelly SP. Mummichog gill and operculum exhibit functionally consistent claudin-10 paralog profiles and Claudin-10c hypersaline response. Biol Open 2021; 10:271020. [PMID: 34308991 PMCID: PMC8351317 DOI: 10.1242/bio.058868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Claudin (Cldn)-10 tight junction (TJ) proteins are hypothesized to form the paracellular Na+ secretion pathway of hyposmoregulating mummichog (Fundulus heteroclitus) branchial epithelia. Organ-specific expression profiles showed that only branchial organs [the gill and opercular epithelium (OE)] exhibited abundant cldn-10 paralog transcripts, which typically increased following seawater (SW) to hypersaline (2SW) challenge. Post-translational properties, protein abundance, and ionocyte localization of Cldn-10c, were then examined in gill and OE. Western blot analysis revealed two Cldn-10c immunoreactive bands in the mummichog gill and OE at ∼29 kDa and ∼40 kDa. The heavier protein could be eliminated by glycosidase treatment, demonstrating the novel presence of a glycosylated Cldn-10c. Protein abundance of Cldn-10c increased in gill and OE of 2SW-exposed fish. Cldn-10c localized to the sides of gill and OE ionocyte apical crypts and partially colocalized with cystic fibrosis transmembrane conductance regulator and F-actin, consistent with TJ complex localization. Cldn-10c immunofluorescent intensity increased but localization was unaltered by 2SW conditions. In support of our hypothesis, cldn-10/Cldn-10 TJ protein dynamics in gill and OE of mummichogs and TJ localization are functionally consistent with the creation and maintenance of salinity-responsive, cation-selective pores that facilitate Na+ secretion in hyperosmotic environments. Summary: The role of claudin-10 tight junction proteins in paracellular salt secretion across fish branchial epithelia is indicated by organ-specific responses to hyperosmotic conditions and their association with salt secreting transcellular proteins
Collapse
Affiliation(s)
- Chun Chih Chen
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - William S Marshall
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - George N Robertson
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Regina R F Cozzi
- Department of Biology, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
11
|
Takei Y. The digestive tract as an essential organ for water acquisition in marine teleosts: lessons from euryhaline eels. ZOOLOGICAL LETTERS 2021; 7:10. [PMID: 34154668 PMCID: PMC8215749 DOI: 10.1186/s40851-021-00175-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/16/2021] [Indexed: 05/17/2023]
Abstract
Adaptation to a hypertonic marine environment is one of the major topics in animal physiology research. Marine teleosts lose water osmotically from the gills and compensate for this loss by drinking surrounding seawater and absorbing water from the intestine. This situation is in contrast to that in mammals, which experience a net osmotic loss of water after drinking seawater. Water absorption in fishes is made possible by (1) removal of monovalent ions (desalinization) by the esophagus, (2) removal of divalent ions as carbonate (Mg/CaCO3) precipitates promoted by HCO3- secretion, and (3) facilitation of NaCl and water absorption from diluted seawater by the intestine using a suite of unique transporters. As a result, 70-85% of ingested seawater is absorbed during its passage through the digestive tract. Thus, the digestive tract is an essential organ for marine teleost survival in the hypertonic seawater environment. The eel is a species that has been frequently used for osmoregulation research in laboratories worldwide. The eel possesses many advantages as an experimental animal for osmoregulation studies, one of which is its outstanding euryhalinity, which enables researchers to examine changes in the structure and function of the digestive tract after direct transfer from freshwater to seawater. In recent years, the molecular mechanisms of ion and water transport across epithelial cells (the transcellular route) and through tight junctions (the paracellular route) have been elucidated for the esophagus and intestine. Thanks to the rapid progress in analytical methods for genome databases on teleosts, including the eel, the molecular identities of transporters, channels, pumps and junctional proteins have been clarified at the isoform level. As 10 y have passed since the previous reviews on this subject, it seems relevant and timely to summarize recent progress in research on the molecular mechanisms of water and ion transport in the digestive tract in eels and to compare the mechanisms with those of other teleosts and mammals from comparative and evolutionary viewpoints. We also propose future directions for this research field to achieve integrative understanding of the role of the digestive tract in adaptation to seawater with regard to pathways/mechanisms including the paracellular route, divalent ion absorption, metabolon formation and cellular trafficking of transporters. Notably, some of these have already attracted practical attention in laboratories.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan.
| |
Collapse
|
12
|
Brain RA, Anderson JC, Hanson ML. Acute and early life-stage toxicity of atrazine in sheepshead minnow (Cyprinodon variegatus). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112303. [PMID: 33975221 DOI: 10.1016/j.ecoenv.2021.112303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Given the limited data available for estuarine/marine fish species and potential risk of being exposed to the herbicide atrazine, additional toxicity data regarding sensitive life-stages are needed. As such, this work sought to characterize: 1) the acute larval toxicity, and 2) early life-stage toxicity of technical atrazine in the model marine species sheepshead minnow (Cyprinodon variegatus). Atrazine was observed to be slightly to moderately toxic towards C. variegatus under acute conditions (as per U.S. EPA 2017 criteria). After 96 h exposure, mortality rates of 5%, 15%, 35%, and 90% were observed among fish exposed to atrazine at 4.6, 7.6, 13, and 22 mg a.i./L, respectively. Sub-lethal effects were observed among surviving fish exposed to > 3.2 mg a.i/L. The 96 h LC50 was 13 mg a.i./L and the NOEC was 3.2 mg a.i./L. In the 33 d early-life stage test, mean embryo survival rates in 0.15, 0.30, 0.57, 1.1, and 2.2 mg a.i./L treatments ranged from 71% to 79% and were not different from survival in the control (78%). Following 28 d post-hatch exposure (Day 33), mean larval survival ranged from 98% to 100% in all treatments and the control. Larval length and wet weight were the most sensitive indicators of the toxicity of atrazine to early life-stage sheepshead minnow. The NOEC for growth was 1.1 mg a.i./L and the LOEC was 2.2 mg a.i./L. Based on these, the MATC for atrazine to sheepshead minnow embryos and larvae was estimated to be 1.6 mg a.i./L. These results were consistent with previous investigations in sheepshead minnow and other marine fish species. Based on the results, atrazine would not be expected to pose unacceptable risks for sheepshead minnow early life-stages at environmentally relevant concentrations.
Collapse
Affiliation(s)
- R A Brain
- Syngenta Crop Protection, LLC, Greensboro, NC 27409, USA.
| | - J C Anderson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - M L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
13
|
Zimmer AM, Goss GG, Glover CN. Reductionist approaches to the study of ionoregulation in fishes. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110597. [PMID: 33781928 DOI: 10.1016/j.cbpb.2021.110597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms underlying ionoregulation in fishes have been studied for nearly a century, and reductionist methods have been applied at all levels of biological organization in this field of research. The complex nature of ionoregulatory systems in fishes makes them ideally suited to reductionist methods and our collective understanding has been dramatically shaped by their use. This review provides an overview of the broad suite of techniques used to elucidate ionoregulatory mechanisms in fishes, from the whole-animal level down to the gene, discussing some of the advantages and disadvantages of these methods. We provide a roadmap for understanding and appreciating the work that has formed the current models of organismal, endocrine, cellular, molecular, and genetic regulation of ion balance in fishes and highlight the contribution that reductionist techniques have made to some of the fundamental leaps forward in the field throughout its history.
Collapse
Affiliation(s)
- Alex M Zimmer
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chris N Glover
- Department of Biological Sciences, CW 405, Biological Sciences Bldg., University of Alberta, Edmonton, AB T6G 2E9, Canada; Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, AB T9S 3A3, Canada
| |
Collapse
|
14
|
Characterization and molecular evolution of claudin genes in the Pungitius sinensis. J Comp Physiol B 2020; 190:749-759. [PMID: 32778926 DOI: 10.1007/s00360-020-01301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Claudins are a family of integrated membrane-bound proteins involving in paracellular tightness, barrier forming, ion permeability, and substrate selection at tight junctions of chordate epithelial and endothelial cells. Here, 39 putative claudin genes were identified in the Pungitius sinensis based on the high throughput RNA-seq. Conservative motif distribution in each group suggested functional relevance. Divergence of duplicated genes implied the species' adaptation to the environment. In addition, selective pressure analyses identified one site, which may accelerate functional divergence in this protein family. Pesticides cause environmental pollution and have a serious impact on aquatic organisms when entering the water. The expression pattern of most claudin genes was affected by organophosphorus pesticide, indicating that they may be involved in the immune regulation of organisms and the detoxification of xenobiotics. Protein-protein network analyses also exhibited 439 interactions, which implied the functional diversity. It will provide some references for the functional study on claudin genes.
Collapse
|
15
|
Madsen SS, Bollinger RJ, Brauckhoff M, Engelund MB. Gene expression profiling of proximal and distal renal tubules in Atlantic salmon ( Salmo salar) acclimated to fresh water and seawater. Am J Physiol Renal Physiol 2020; 319:F380-F393. [PMID: 32628538 DOI: 10.1152/ajprenal.00557.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Euryhaline teleost kidneys undergo a major functional switch from being filtratory in freshwater (FW) to being predominantly secretory in seawater (SW) conditions. The transition involves both vascular and tubular effects. There is consensus that the glomerular filtration rate is greatly reduced upon exposure to hyperosmotic conditions. Yet, regulation at the tubular level has only been examined sporadically in a few different species. This study aimed to obtain a broader understanding of transcriptional regulation in proximal versus distal tubular segments during osmotic transitions. Proximal and distal tubule cells were dissected separately by laser capture microdissection, RNA was extracted, and relative mRNA expression levels of >30 targets involved in solute and water transport were quantified by quantitative PCR in relation to segment type in fish acclimated to FW or SW. The gene categories were aquaporins, solute transporters, fxyd proteins, and tight junction proteins. aqp8bb1, aqp10b1, nhe3, sglt1, slc41a1, cnnm3, fxyd12a, cldn3b, cldn10b, cldn15a, and cldn12 were expressed at a higher level in proximal compared with distal tubules. aqp1aa, aqp1ab, nka-a1a, nka-a1b, nkcc1a, nkcc2, ncc, clc-k, slc26a6C, sglt2, fxyd2, cldn3a, and occln were expressed at a higher level in distal compared with proximal tubules. Expression of aqp1aa, aqp3a1, aqp10b1, ncc, nhe3, cftr, sglt1, slc41a1, fxyd12a, cldn3a, cldn3b, cldn3c, cldn10b, cldn10e, cldn28a, and cldn30c was higher in SW- than in FW-acclimated salmon, whereas the opposite was the case for aqp1ab, slc26a6C, and fxyd2. The data show distinct segmental distribution of transport genes and a significant regulation of tubular transcripts when kidney function is modulated during salinity transitions.
Collapse
Affiliation(s)
- Steffen S Madsen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | | | - Melanie Brauckhoff
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | | |
Collapse
|
16
|
Thorstensen MJ, Jeffrey JD, Treberg JR, Watkinson DA, Enders EC, Jeffries KM. Genomic signals found using RNA sequencing show signatures of selection and subtle population differentiation in walleye ( Sander vitreus) in a large freshwater ecosystem. Ecol Evol 2020; 10:7173-7188. [PMID: 32760520 PMCID: PMC7391302 DOI: 10.1002/ece3.6418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
RNA sequencing is an effective approach for studying aquatic species yielding both physiological and genomic data. However, its population genetic applications are not well-characterized. We investigate this possible role for RNA sequencing for population genomics in Lake Winnipeg, Manitoba, Canada, walleye (Sander vitreus). Lake Winnipeg walleye represent the largest component of the second-largest freshwater fishery in Canada. In the present study, large female walleye were sampled via nonlethal gill biopsy over two years at three spawning sites representing a latitudinal gradient in the lake. Genetic variation from sequenced mRNA was analyzed for neutral and adaptive markers to investigate population structure and possible adaptive variation. We find low population divergence (F ST = 0.0095), possible northward gene flow, and outlier loci that vary latitudinally in transcripts associated with cell membrane proteins and cytoskeletal function. These results indicate that Lake Winnipeg walleye may be effectively managed as a single demographically connected metapopulation with contributing subpopulations and suggest genomic differences possibly underlying observed phenotypic differences. Despite its high cost relative to other genotyping methods, RNA sequencing data can yield physiological in addition to genetic information discussed here. We therefore argue that it is useful for addressing diverse molecular questions in the conservation of freshwater species.
Collapse
Affiliation(s)
| | | | - Jason R. Treberg
- Department of Biological SciencesUniversity of ManitobaWinnipegMBCanada
| | | | - Eva C. Enders
- Freshwater Institute, Fisheries and Oceans CanadaWinnipegMBCanada
| | - Ken M. Jeffries
- Department of Biological SciencesUniversity of ManitobaWinnipegMBCanada
| |
Collapse
|
17
|
Meoli L, Günzel D. Channel functions of claudins in the organization of biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183344. [PMID: 32442419 DOI: 10.1016/j.bbamem.2020.183344] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Abstract
Claudins are tight junction proteins mostly appreciated in their function of paracellular barrier-formation. Compared to a virtual absence of any tight junctions, their paracellular sealing role certainly stands out. Yet, it was recognized immediately after the discovery of the first claudins, that some members of the claudin protein family were able to convey size and charge selectivity to the paracellular pathway. Thus, paracellular permeability can be fine-tuned according to the physiological needs of a tissue by inserting these channel-forming claudins into tight junction strands. Precise permeability adjustment is further suggested by the presence of numerous isoforms of channel-forming claudins (claudin-10b-, -15-, -16-like isoforms) in various vertebrate taxa. Moreover, their expression and localization are controlled by multiple transcriptional and posttranslational mechanisms. Consequently, mutation or dysregulation of channel-forming claudins can cause severe diseases. The present review therefore aims at providing an up-to-date report of the current research on these aspects of channel-forming claudins and their possible implications on future developments.
Collapse
Affiliation(s)
- Luca Meoli
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany
| | - Dorothee Günzel
- Institute of Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité - Universitätsmedizin Berlin, 12203 Berlin, Germany.
| |
Collapse
|
18
|
Tipsmark CK, Nielsen AM, Bossus MC, Ellis LV, Baun C, Andersen TL, Dreier J, Brewer JR, Madsen SS. Drinking and Water Handling in the Medaka Intestine: A Possible Role of Claudin-15 in Paracellular Absorption? Int J Mol Sci 2020; 21:ijms21051853. [PMID: 32182691 PMCID: PMC7085193 DOI: 10.3390/ijms21051853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/27/2022] Open
Abstract
When euryhaline fish move between fresh water (FW) and seawater (SW), the intestine undergoes functional changes to handle imbibed SW. In Japanese medaka, the potential transcellular aquaporin-mediated conduits for water are paradoxically downregulated during SW acclimation, suggesting paracellular transport to be of principal importance in hyperosmotic conditions. In mammals, intestinal claudin-15 (CLDN15) forms paracellular channels for small cations and water, which may participate in water transport. Since two cldn15 paralogs, cldn15a and cldn15b, have previously been identified in medaka, we examined the salinity effects on their mRNA expression and immunolocalization in the intestine. In addition, we analyzed the drinking rate and intestinal water handling by adding non-absorbable radiotracers, 51-Cr-EDTA or 99-Tc-DTPA, to the water. The drinking rate was >2-fold higher in SW than FW-acclimated fish, and radiotracer experiments showed anterior accumulation in FW and posterior buildup in SW intestines. Salinity had no effect on expression of cldn15a, while cldn15b was approximately 100-fold higher in FW than SW. Despite differences in transcript dynamics, Cldn15a and Cldn15b proteins were both similarly localized in the apical tight junctions of enterocytes, co-localizing with occludin and with no apparent difference in localization and abundance between FW and SW. The stability of the Cldn15 protein suggests a physiological role in water transport in the medaka intestine.
Collapse
Affiliation(s)
- Christian K. Tipsmark
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA; (M.C.B.); (L.V.E.); (S.S.M.)
- Correspondence: ; Tel.: +1-479-575-8436
| | - Andreas M. Nielsen
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark;
| | - Maryline C. Bossus
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA; (M.C.B.); (L.V.E.); (S.S.M.)
- Department of Math and Sciences, Lyon College, 2300 Highland Rd, Batesville, AR 72501, USA
| | - Laura V. Ellis
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA; (M.C.B.); (L.V.E.); (S.S.M.)
| | - Christina Baun
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark; (C.B.); (T.L.A.)
| | - Thomas L. Andersen
- Department of Nuclear Medicine, Odense University Hospital, Sdr. Boulevard 29, 5000 Odense C, Denmark; (C.B.); (T.L.A.)
| | - Jes Dreier
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (J.D.); (J.R.B.)
| | - Jonathan R. Brewer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark; (J.D.); (J.R.B.)
| | - Steffen S. Madsen
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA; (M.C.B.); (L.V.E.); (S.S.M.)
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark;
| |
Collapse
|
19
|
Huang C, Feng L, Liu XA, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhou XQ. The toxic effects and potential mechanisms of deoxynivalenol on the structural integrity of fish gill: Oxidative damage, apoptosis and tight junctions disruption. Toxicon 2020; 174:32-42. [DOI: 10.1016/j.toxicon.2019.12.151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/14/2019] [Accepted: 12/19/2019] [Indexed: 12/15/2022]
|
20
|
Differential Expression and Localization of Branchial AQP1 and AQP3 in Japanese Medaka ( Oryzias latipes). Cells 2019; 8:cells8050422. [PMID: 31072010 PMCID: PMC6562476 DOI: 10.3390/cells8050422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/08/2023] Open
Abstract
Aquaporins (AQPs) facilitate transmembrane water and solute transport, and in addition to contributing to transepithelial water transport, they safeguard cell volume homeostasis. This study examined the expression and localization of AQP1 and AQP3 in the gills of Japanese medaka (Oryzias latipes) in response to osmotic challenges and osmoregulatory hormones, cortisol, and prolactin (PRL). AQP3 mRNA was inversely regulated in response to salinity with high levels in ion-poor water (IPW), intermediate levels in freshwater (FW), and low levels in seawater (SW). AQP3 protein levels decreased upon SW acclimation. By comparison, AQP1 expression was unaffected by salinity. In ex vivo gill incubation experiments, AQP3 mRNA was stimulated by PRL in a time- and dose-dependent manner but was unaffected by cortisol. In contrast, AQP1 was unaffected by both PRL and cortisol. Confocal microscopy revealed that AQP3 was abundant in the periphery of gill filament epithelial cells and co-localized at low intensity with Na+,K+-ATPase in ionocytes. AQP1 was present at a very low intensity in most filament epithelial cells and red blood cells. No epithelial cells in the gill lamellae showed immunoreactivity to AQP3 or AQP1. We suggest that both AQPs contribute to cellular volume regulation in the gill epithelium and that AQP3 is particularly important under hypo-osmotic conditions, while expression of AQP1 is constitutive.
Collapse
|
21
|
Bollinger RJ, Ellis LV, Bossus MC, Tipsmark CK. Prolactin controls Na +,Cl - cotransporter via Stat5 pathway in the teleost gill. Mol Cell Endocrinol 2018; 477:163-171. [PMID: 29959978 DOI: 10.1016/j.mce.2018.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 01/06/2023]
Abstract
In some freshwater fish species, the control of gill Na, Cl cotransporter (Ncc2b) by prolactin appears to be instrumental to ionic homeostasis. This study was carried out to examine the signaling pathways involved in prolactin-mediated salt retention using gill explants from Japanese medaka (Oryzias latipes). Ovine prolactin induced a concentration-dependent stimulation of ncc2b with significant effects of 10, 100 and 1000 ng of hormone per mL media (2-6 fold). To understand the molecular mechanisms mediating prolactin control of gill function, we analyzed effects on signaling pathways known to be involved in the hormones action in other systems, namely Stat5, Akt and Erk1/2. Their activation was examined in a time course and concentration response experiment. Prolactin (1 μg mL-1) induced a rapid phosphorylation (stimulation) of Stat5 (10 min) that reached a plateau after 30 min and was maintained for at least 120 min. The effect of prolactin on Stat5 phosphorylation was concentration-dependent (4-12 fold). No activation of Akt or Erk1/2 was observed in either experiment. The Stat5 activation was further investigated in localization studies that demonstrated strong nuclear expression of phosphorylated Stat5 in prolactin-treated gill ionocytes. Using specific inhibitors, we analyzed the signalling pathways mediating prolactin induction of gill ncc2b. Co-incubation experiments showed that Stat5 inhibition blocked prolactin's stimulation of ncc2b expression, while PI3K-Akt and Mek1/2-Erk1/2 pathway inhibitors had no effect. These findings show that ncc2b expression is dependent on prolactin's downstream activation of Stat5 and its subsequent nuclear translocation within branchial ionocytes.
Collapse
Affiliation(s)
- Rebecca J Bollinger
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
| | - Laura V Ellis
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
| | - Maryline C Bossus
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA; Lyon College, Math and Science Department, 2300 Highland Rd, Batesville, AR, 72501, USA
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA.
| |
Collapse
|
22
|
Huang C, Wu P, Jiang WD, Liu Y, Zeng YY, Jiang J, Kuang SY, Tang L, Zhang YA, Zhou XQ, Feng L. Deoxynivalenol decreased the growth performance and impaired intestinal physical barrier in juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2018; 80:376-391. [PMID: 29906621 DOI: 10.1016/j.fsi.2018.06.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
Deoxynivalenol (DON) is one of the most common mycotoxin contaminants of animal feed worldwide and brings significant threats to the animal production. However, studies concerning the effect of DON on fish intestine are scarce. This study explored the effects of DON on intestinal physical barrier in juvenile grass carp (Ctenopharyngodon idella). A total of 1440 juvenile grass carp (12.17 ± 0.01 g) were fed six diets containing graded levels of DON (27, 318, 636, 922, 1243 and 1515 μg/kg diet) for 60 days. This study for the first time documented that DON caused body malformation in fish, and histopathological lesions, oxidative damage, declining antioxidant capacity, cell apoptosis and destruction of tight junctions in the intestine of fish. The results indicated that compared with control group (27 μg/kg diet), DON: (1) increased the reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) content, and up-regulated the mRNA levels of Kelch-like-ECH-associated protein 1 (Keap1: Keap1a but not Keap1b), whereas decreased glutathione (GSH) content and antioxidant enzymes activities, and down-regulated the mRNA levels of antioxidant enzymes (except GSTR in MI) and NF-E2-related factor 2 (Nrf2), as well as the protein levels of Nrf2 in fish intestine. (2) up-regulated cysteinyl aspartic acid-protease (caspase) -3, -7, -8, -9, apoptotic protease activating factor-1 (Apaf-1), Bcl2-associated X protein (Bax), Fas ligand (FasL) and c-Jun N-terminal protein kinase (JNK) mRNA levels, whereas down-regulated B-cell lymphoma-2 (bcl-2) and myeloid cell leukemia-1 (Mcl-1) mRNA levels in fish intestine. (3) down-regulated the mRNA levels of ZO-1, ZO-2b, occludin, claudin-c, -f, -7a, -7b, -11 (except claudin-b and claudin-3c), whereas up-regulated the mRNA levels of claudin-12, -15a (not -15b) and myosin light chain kinase (MLCK) in fish intestine. All above data indicated that DON caused the oxidative damage, apoptosis and the destruction of tight junctions via Nrf2, JNK and MLCK signaling in the intestine of fish, respectively. Finally, based on PWG, FE, PC and MDA, the safe dose of DON for grass carp were all estimated to be 318 μg/kg diet.
Collapse
Affiliation(s)
- Chen Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
23
|
Marshall WS, Breves JP, Doohan EM, Tipsmark CK, Kelly SP, Robertson GN, Schulte PM. claudin-10 isoform expression and cation selectivity change with salinity in salt-secreting epithelia of Fundulusheteroclitus. ACTA ACUST UNITED AC 2018; 221:jeb.168906. [PMID: 29150449 DOI: 10.1242/jeb.168906] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/13/2017] [Indexed: 12/11/2022]
Abstract
To provide insight into claudin (Cldn) tight junction (TJ) protein contributions to branchial salt secretion in marine teleost fishes, this study examined cldn-10 TJ protein isoforms of a euryhaline teleost (mummichog; Fundulus heteroclitus) in association with salinity change and measurements of transepithelial cation selectivity. Mummichogs were transferred from freshwater (FW) to seawater (SW, 35‰) and from SW to hypersaline SW (2SW, 60‰) in a time course with transfer control groups (FW to FW, and SW to SW). FW to SW transfer increased mRNA abundance of cldn-10d and cldn-10e twofold, whilst cldn-10c and cldn-10f transcripts were unchanged. Transfer from SW to 2SW did not alter cldn-10d, and transiently altered cldn-10e abundance, but increased cldn-10c and cldn-10f fourfold. This was coincident with an increased number of single-stranded junctions (observed by transmission electron microscopy). For both salinity transfers, (1) cldn-10e mRNA was acutely responsive (i.e. after 24 h), (2) other responsive cldn-10 isoforms increased later (3-7 days), and (3) cystic fibrosis transmembrane conductance regulator (cftr) mRNA was elevated in accordance with established changes in transcellular Cl- movement. Changes in mRNA encoding cldn-10c and -10f appeared linked, consistent with the tandem repeat locus in the Fundulus genome, whereas mRNA for tandem cldn-10d and cldn-10e seemed independent of each other. Cation selectivity sequence measured by voltage and conductance responses to artificial SW revealed Eisenman sequence VII: Na+>K+>Rb+∼Cs+>Li+ Collectively, these data support the idea that Cldn-10 TJ proteins create and maintain cation-selective pore junctions in salt-secreting tissues of teleost fishes.
Collapse
Affiliation(s)
- William S Marshall
- Department of Biology, St Francis Xavier University, Antigonish, NS, Canada B2G 2W5
| | - Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Ellen M Doohan
- Department of Biology, St Francis Xavier University, Antigonish, NS, Canada B2G 2W5
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, Fayetteville, AK 72701, USA
| | - Scott P Kelly
- Department of Biology, York University, Toronto, ON, Canada M3J 1P3
| | - George N Robertson
- Department of Biology, St Francis Xavier University, Antigonish, NS, Canada B2G 2W5
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
24
|
Pang M, Fu B, Yu X, Liu H, Wang X, Yin Z, Xie S, Tong J. Quantitative trait loci mapping for feed conversion efficiency in crucian carp (Carassius auratus). Sci Rep 2017; 7:16971. [PMID: 29209087 PMCID: PMC5717303 DOI: 10.1038/s41598-017-17269-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/21/2017] [Indexed: 11/29/2022] Open
Abstract
QTL is a chromosomal region including single gene or gene clusters that determine a quantitative trait. While feed efficiency is highly important in aquaculture fish, little genetic and genomic progresses have been made for this trait. In this study, we constructed a high-resolution genetic linkage map in a full-sib F1 family of crucian carp (Carassius auratus) consisting of 113 progenies with 8,460 SNP markers assigning onto 50 linkage groups (LGs). This genetic map spanned 4,047.824 cM (0.478 cM/marker) and covered 98.76% of the crucian carp genome. 35 chromosome-wide QTL affecting feed conversion efficiency (FCE, 8 QTL), relative growth rate (RGR, 9 QTL), average daily gain (ADG, 13 QTL) and average daily feed intake (ADFI, 5 QTL) were detected on 14 LGs, explaining 14.0–20.9% of the phenotypic variations. In LGs of LG16, LG25, LG36 and LG49, several QTL affecting different traits clustered together at the identical or close regions of the same linkage group. Seven candidate genes, whose biological functions may involve in the energy metabolism, digestion, biosynthesis and signal transduction, were identified from these QTL intervals by comparative genomics analysis. These results provide a basis for elucidating genetic mechanism of feed efficiency and potential marker-assisted selection in crucian carp.
Collapse
Affiliation(s)
- Meixia Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xinhua Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.,University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Shouqi Xie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
25
|
Li SA, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Tang X, Shi HQ, Zhou XQ. Dietary myo-inositol deficiency decreased the growth performances and impaired intestinal physical barrier function partly relating to nrf2, jnk, e2f4 and mlck signaling in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 67:475-492. [PMID: 28610850 DOI: 10.1016/j.fsi.2017.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
In this study, we investigated the effects of dietary myo-inositol on the growth and intestinal physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (221.83 ± 0.84 g) were fed six diets containing graded levels of myo-inositol (27.0, 137.9, 286.8, 438.6, 587.7 and 737.3 mg/kg) for 10 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila for 14 days. The results indicated that compared with optimal myo-inositol levels, myo-inositol deficiency (27.0 mg/kg diet): (1) decreased glutathione (GSH) contents and antioxidant enzymes activities, and down-regulated the mRNA levels of antioxidant enzymes [not glutathione-S-transferase (gst) p1 and gstp2] and NF-E2-related factor 2 (nrf2), whereas up-regulated the reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents, and the mRNA levels of Kelch-like-ECH-associated protein 1 (keap1) in three intestinal segments of young grass carp (P < 0.05). (2) Up-regulated cysteinyl aspartic acid-protease (caspase)-2, -3, -7, -8, -9, apoptotic protease activating factor-1 (apaf-1), Bcl2-associated X protein (bax), fas ligand (fasl), gen-activated protein kinase (p38mapk) and c-Jun N-terminal protein kinase (jnk) mRNA levels, whereas down-regulated B-cell lymphoma-2 (bcl-2), inhibitor of apoptosis proteins (iap) and myeloid cell leukemia-1 (mcl-1) mRNA levels in three intestinal segments of young grass carp (P < 0.05). (3) Down-regulated mRNA levels of cell cycle proteins cyclin b, cyclin d, cyclin e and E2F transcription factor 4 (e2f4) in three intestinal segments of young grass carp (P < 0.05). (4) Down-regulated the mRNA levels of zonula occludens (zo) 1, zo-2, occludin, claudin-b, -c, -f, -3c, -7a, -7b as well as -11, and up-regulated the mRNA levels of claudin-12, -15a (not -15b) and myosin light chain kinase (mlck) in three intestinal segments of young grass carp (P < 0.05). All above data indicated that dietary myo-inositol deficiency could damage physical barrier function in three intestinal segments of fish. Finally, the myo-inositol requirements based on the percent weight gain (PWG), reactive oxygen species (ROS) contents in the proximal intestine (PI), relative mRNA levels of caspase-2 (PI), cyclin b (MI) as well as claudin-b (PI) were estimated to be 276.7, 304.1, 327.9, 416.7 and 313.2 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Shuang-An Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xu Tang
- Chengdu Mytech Biotech Co., Ltd., Chengdu 610222, Sichuan, China
| | - He-Qun Shi
- Guangzhou Cohoo Bio-tech Research & Development Centre, Guangzhou 510663, Guangdong, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
26
|
Chen K, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Effect of dietary phosphorus deficiency on the growth, immune function and structural integrity of head kidney, spleen and skin in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 63:103-126. [PMID: 28192254 DOI: 10.1016/j.fsi.2017.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 05/20/2023]
Abstract
This study evaluates the effects of dietary phosphorus on the growth, immune function and structural integrity (head kidney, spleen and skin) of young grass carp (Ctenopharyngodon idella) that were fed graded levels of available phosphorus (0.95-8.75 g/kg diet). Results indicated that phosphorus deficiency decreased the growth performance of young grass carp. In addition, the results first demonstrated that compared with the optimal phosphorus level, phosphorus deficiency depressed the lysozyme (LZ) and acid phosphatase (ACP) activities and the complement 3 (C3), C4 and immunoglobulin M (IgM) contents, and down-regulated the mRNA levels of antimicrobial peptides, anti-inflammatory cytokines, inhibitor of κBα (IκBα) and target of rapamycin (TOR), whereas it up-regulated pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) p65 and NF-κB p52 mRNA levels to decrease fish head kidney and spleen immune functions. Moreover, phosphorus deficiency up-regulated the mRNA levels of Kelch-like-ECH-associated protein 1a (Keap1a), Fas ligand (FasL), apoptotic protease activating factor-1 (Apaf-1), Bcl-2 associated X protein (Bax), caspase -2, -3, -7, -8 and -9, p38 mitogen-activated protein kinase (MAPK) and myosin light chain kinase (MLCK), whereas it depressed the glutathione (GSH) contents and antioxidant enzymes activities, and down-regulated the mRNA levels of antioxidant enzymes, NF-E2-related factor 2 (Nrf2), B-cell lymphoma protein-2 (Bcl-2), myeloid cell leukemia-1 (Mcl-1) and tight junction complexes to attenuate fish head kidney and spleen structural integrity. In addition, phosphorus deficiency increased skin hemorrhage and lesions morbidity. Finally, based on the percent weight gain (PWG) and the ability to combat skin hemorrhage and lesions, the dietary available phosphorus requirements for young grass carp (254.56-898.23 g) were estimated to be 4.10 and 4.13 g/kg diet, respectively. In summary, phosphorus deficiency decreases the growth performance, and impairs immune function and structural integrity in the head kidney, spleen and skin of young grass carp.
Collapse
Affiliation(s)
- Kang Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
27
|
Bossus MC, Bollinger RJ, Reed PJ, Tipsmark CK. Prolactin and cortisol regulate branchial claudin expression in Japanese medaka. Gen Comp Endocrinol 2017; 240:77-83. [PMID: 27663882 DOI: 10.1016/j.ygcen.2016.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/14/2016] [Accepted: 09/19/2016] [Indexed: 12/28/2022]
Abstract
Several gill claudin (Cldn) tight junction proteins in Japanese medaka are regulated by salinity (cldn10 paralogs and cldn28b), while others are constitutively expressed (cldn27a, cldn28a and cldn30c). The role of the endocrine system in this regulation has yet to be understood. The in vitro effects of cortisol and prolactin on cldn expression in gill explant cultures were investigated in medaka. ncc2b and cftr were used as markers of specific ionocytes associated with freshwater- and seawater-acclimation, respectively. Concentration-response experiments were performed by overnight incubation with 0, 0.1, 1 and 10μgmL-1 cortisol or 0, 0.01, 0.1 and 1μgmL-1 ovine prolactin. Cortisol significantly up-regulated cftr, ncc2b, cldn10 paralogs, cldn27a and cldn30c from 1.2- to 5-fold control levels at 10μgmL-1. Cortisol had no effect on cldn28a and cldn28b. Prolactin had a concentration-dependent effect, decreasing expression of cftr (1μgmL-1, 2.2-fold) while increasing ncc2b (from 0.1μgmL-1, 6-7-fold). Prolactin up-regulated expression of 3 cldns: cldn28b (0.1 and 1μgmL-1), cldn10c and cldn10f (1μgmL-1), with up to 2-, 2.5- and 2-fold of control level, respectively. A combination experiment with both hormones showed that they act in synergy on cldn28b and have an additive effect on cftr, ncc2b, cldn10c and cldn10f. Our results showed that cortisol and prolactin are essential to maintain the expression of specific branchial claudins. This work also provides evidence that both hormones act directly on gill of medaka to modulate determinants of paracellular ion movement.
Collapse
Affiliation(s)
- Maryline C Bossus
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA; Lyon College, Derby Center for Science and Mathematics, 2300 Highland Road, Batesville, AR 72501, USA
| | - Rebecca J Bollinger
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA
| | - P Justin Reed
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA.
| |
Collapse
|
28
|
Takei Y, Wong MKS, Pipil S, Ozaki H, Suzuki Y, Iwasaki W, Kusakabe M. Molecular mechanisms underlying active desalination and low water permeability in the esophagus of eels acclimated to seawater. Am J Physiol Regul Integr Comp Physiol 2016; 312:R231-R244. [PMID: 28003213 DOI: 10.1152/ajpregu.00465.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 11/22/2022]
Abstract
Marine teleosts can absorb imbibed seawater (SW) to maintain water balance, with esophageal desalination playing an essential role. NaCl absorption from luminal SW was enhanced 10-fold in the esophagus of SW-acclimated eels, and removal of Na+ or Cl- from luminal SW abolished the facilitated absorption, indicating coupled transport. Mucosal/serosal application of various blockers for Na+/Cl- transporters profoundly decreased the absorption. Among the transporter genes expressed in eel esophagus detected by RNA-seq, dimethyl amiloride-sensitive Na+/H+ exchanger (NHE3) and 4,4'-diisothiocyano-2,2'-disulfonic acid-sensitive Cl-/[Formula: see text] exchanger (AE) coupled by the scaffolding protein on the apical membrane of epithelial cells, and ouabain-sensitive Na+-K+-ATPases (NKA1α1c and NKA3α) and diphenylamine-2-carboxylic acid-sensitive Cl- channel (CLCN2) on the basolateral membrane, may be responsible for enhanced transcellular NaCl transport because of their profound upregulation after SW acclimation. Upregulated carbonic anhydrase 2a (CA2a) supplies H+ and [Formula: see text] for activation of the coupled NHE and AE. Apical hydrochlorothiazide-sensitive Na+-Cl- cotransporters and basolateral Na+-[Formula: see text] cotransporter (NBCe1) and AE1 are other possible candidates. Concerning the low water permeability that is typically seen in marine teleost esophagus, downregulated aquaporin genes (aqp1a and aqp3) and upregulated claudin gene (cldn15a) are candidates for transcellular/paracellular route. In situ hybridization showed that these upregulated transporters and tight-junction protein genes were expressed in the absorptive columnar epithelial cells of eel esophagus. These results allow us to provide a full picture of the molecular mechanism of active desalination and low water permeability that are characteristic to marine teleost esophagus and gain deeper insights into the role of gastrointestinal tracts in SW acclimation.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan;
| | - Marty K-S Wong
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | - Supriya Pipil
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | - Haruka Ozaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.,Bioinformatics Research Unit, Advanced Center for Computing and Communication, RIKEN, Wako, Saitama, Japan; and
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | - Wataru Iwasaki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Kusakabe
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
29
|
Kusakabe M, Ishikawa A, Ravinet M, Yoshida K, Makino T, Toyoda A, Fujiyama A, Kitano J. Genetic basis for variation in salinity tolerance between stickleback ecotypes. Mol Ecol 2016; 26:304-319. [DOI: 10.1111/mec.13875] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Makoto Kusakabe
- Atmosphere and Ocean Research Institute; The University of Tokyo; Kashiwanoha 5-1-5 Kashiwa Chiba 277-8564 Japan
- Department of Biological Science; Faculty of Science; Shizuoka University; 836 Ohya, Suruga-ku Shizuoka 422-8529 Japan
| | - Asano Ishikawa
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Mark Ravinet
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
- Centre for Ecological and Evolutionary Synthesis; University of Oslo; P.O. Box 1066 Blindern Oslo NO-0316 Oslo Norway
| | - Kohta Yoshida
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Takashi Makino
- Department of Ecology and Evolutionary Biology; Graduate School of Life Sciences; Tohoku University; Sendai Miyagi 980-8578 Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Asao Fujiyama
- Comparative Genomics Laboratory; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| | - Jun Kitano
- Division of Ecological Genetics; National Institute of Genetics; Yata 1111 Mishima Shizuoka 411-8540 Japan
| |
Collapse
|
30
|
Tipsmark CK, Breves JP, Rabeneck DB, Trubitt RT, Lerner DT, Grau EG. Regulation of gill claudin paralogs by salinity, cortisol and prolactin in Mozambique tilapia (Oreochromis mossambicus). Comp Biochem Physiol A Mol Integr Physiol 2016; 199:78-86. [DOI: 10.1016/j.cbpa.2016.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/26/2022]
|
31
|
Xu J, Wu P, Jiang WD, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Optimal dietary protein level improved growth, disease resistance, intestinal immune and physical barrier function of young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2016; 55:64-87. [PMID: 27211261 DOI: 10.1016/j.fsi.2016.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the effects of dietary proteins on the growth, disease resistance, intestinal immune and physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (264.11 ± 0.76 g) were fed six diets containing graded levels of protein (143.1, 176.7, 217.2, 257.5, 292.2 and 322.8 g digestible protein kg(-1) diet) for 8 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila and mortalities were recorded for 14 days. The results indicated that optimal dietary protein levels: increased the production of antibacterial components, up-regulated anti-inflammatory cytokines, inhibitor of κBα, target of rapamycin and ribosomal protein S6 kinases 1 mRNA levels, whereas down-regulated pro-inflammatory cytokines, nuclear factor kappa B (NF-κB) P65, NF-κB P52, c-Rel, IκB kinase β, IκB kinase γ and eIF4E-binding proteins 2 mRNA levels in three intestinal segments of young grass carp (P < 0.05), suggesting that optimal dietary protein level could enhance fish intestinal immune barrier function; up-regulated the mRNA levels of tight junction complexes, B-cell lymphoma protein-2, inhibitor of apoptosis proteins, myeloid cell leukemia-1 and NF-E2-related factor 2, and increased the activities and mRNA levels of antioxidant enzymes, whereas down-regulated myosin light chain kinase, cysteinyl aspartic acid-protease 2, 3, 7, 8, 9, fatty acid synthetase ligand, apoptotic protease activating factor-1, Bcl-2 associated X protein, p38 mitogen-activated protein kinase, c-Jun N-terminal protein kinase and Kelch-like-ECH-associated protein 1b mRNA levels, and decreased reactive oxygen species, malondialdehyde and protein carbonyl contents in three intestinal segments of young grass carp (P < 0.05), indicating that optimal dietary protein level could improve fish intestinal physical barrier function. Finally, the optimal dietary protein levels for the growth performance (PWG) and against enteritis morbidity of young grass carp were estimated to be 286.82 g kg(-1) diet (250.66 g digestible protein kg(-1) diet) and 292.10 g kg(-1) diet (255.47 g digestible protein kg(-1) diet), respectively.
Collapse
Affiliation(s)
- Jing Xu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu 611130, China.
| |
Collapse
|
32
|
Bollinger RJ, Madsen SS, Bossus MC, Tipsmark CK. Does Japanese medaka (Oryzias latipes) exhibit a gill Na(+)/K(+)-ATPase isoform switch during salinity change? J Comp Physiol B 2016; 186:485-501. [PMID: 26920794 DOI: 10.1007/s00360-016-0972-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/02/2016] [Accepted: 02/12/2016] [Indexed: 12/12/2022]
Abstract
Some euryhaline teleosts exhibit a switch in gill Na(+)/K(+)-ATPase (Nka) α isoform when moving between fresh water (FW) and seawater (SW). The present study tested the hypothesis that a similar mechanism is present in Japanese medaka and whether salinity affects ouabain, Mg(2+), Na(+) and K(+) affinity of the gill enzyme. Phylogenetic analysis classified six separate medaka Nka α isoforms (α1a, α1b, α1c, α2, α3a and α3b). Medaka acclimated long-term (>30 days) to either FW or SW had similar gill expression of α1c, α2, α3a and α3b, while both α1a and α1b were elevated in SW. Since a potential isoform shift may rely on early changes in transcript abundance, we conducted two short-term (1-3 days) salinity transfer experiments. FW to SW acclimation induced an elevation of α1b and α1a after 1 and 3 days. SW to FW acclimation reduced α1b after 3 days with no other α isoforms affected. To verify that the responses were typical, additional transport proteins were examined. Gill ncc and nhe3 expression were elevated in FW, while cftr and nkcc1a were up-regulated in SW. This is in accordance with putative roles in ion-uptake and secretion. SW-acclimated medaka had higher gill Nka V max and lower apparent K m for Na(+) compared to FW fish, while apparent affinities for K(+), Mg(2+) and ouabain were unchanged. The present study showed that the Japanese medaka does not exhibit a salinity-induced α isoform switch and therefore suggests that Na(+) affinity changes involve altered posttranslational modification or intermolecular interactions.
Collapse
Affiliation(s)
- Rebecca J Bollinger
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
| | - Steffen S Madsen
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Maryline C Bossus
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA.
| |
Collapse
|