1
|
Li M, Wu J, Yang R, Fu Z, Yu G, Ma Z. Effects of Ammonia Concentration on Sperm Vitality, Motility Rates, and Morphology in Three Marine Bivalve Species: A Comparative Study of the Noble Scallop Mimachlamys nobilis, Chinese Pearl Oyster Pinctada fucata martensii, and Small Rock Oyster Saccostrea mordax. BIOLOGY 2024; 13:589. [PMID: 39194527 DOI: 10.3390/biology13080589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Ammonium (NH4+) plays a crucial role in the reproductive processes of key biotic groups in aquatic ecosystems-bivalves. This study aims to elucidate the effects of three different ammonium ion concentrations on sperm vitality, swimming kinematics, and morphology of Mimachlamys nobilis, Pinctada fucata martensii, and Saccostrea mordax. The results indicate that the sperm vitality and motility rates of M.nobilis and S. mordax are inversely proportional to the ammonium concentration, especially in the treatment group with an ammonium concentration of 3 mmol/L, where the decrease in sperm vitality and motility is most significant. In contrast, the sperm of P. fucata martensii reacted differently to increasing ammonium concentrations. After the addition of 2 mmol/L of ammonium, the sperm vitality and motility of P. fucata martensii reached a peak, showing a significant stimulatory effect. Additionally, as the ammonium concentration increased, the curling of the sperm flagella in M.nobilis and S. mordax increased. However, sperm flagella curling in P. fucata martensii showed no change compared to the control group. This study provides insights into the effects of ammonium concentrations on the sperm vitality and motility of three marine bivalve species and highlights the importance of sperm flagella curling as a factor affecting sperm.
Collapse
Affiliation(s)
- Minghao Li
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Jiong Wu
- College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Rui Yang
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
| | - Zhengyi Fu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Gang Yu
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
| | - Zhenhua Ma
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Hainan Engineering Research Center for Deep-Sea Aquaculture and Processing, Sanya 572018, China
- International Joint Research Center for Conservation and Application of Fishery Resources in the South China Sea, Sanya 572018, China
- College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| |
Collapse
|
2
|
Elmi A, Casalini A, Bertocchi M, Emmanuele P, Aniballi C, Parmeggiani A, Govoni N, Ventrella D, Mordenti O, Bacci ML. Comparative evaluation of the effects of different activating media and temperatures on European eel (Anguilla anguilla) sperm motility assessed by computer assisted sperm analysis. Res Vet Sci 2023; 164:105045. [PMID: 37812988 DOI: 10.1016/j.rvsc.2023.105045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
The European eel is a critically endangered teleost fish with very poor success rate for captive breeding and artificial reproduction. Therefore, to support its conservation, new strategies are needed to ensure fertilization. Objective analysis of sperm motility may be critical as it potentially represents one of the most important reproductive quality parameters. Spermatozoa acquire motility once in contact with hyperosmotic solutions as saltwater, yet the exact mechanisms and the role of temperature are still to be clarified. The main aim of the study was to assess the effects of 3 activating media (artificial sea water, tank water and commercial Actifish®) at 4 and 20 °C on sperm motility, by means of computer assisted sperm analysis. Secondary aim was to test 2 different concentrations of Actifish® mimicking sea water pH/osmolality, at 4 °C. The results suggested how both temperature and activating media have effects on spermatozoa motility and kinematics, with temperature mainly acting upon interaction with the media type. The samples activated with tank water at 20 °C showed the poorest motility outcomes (mean 38.1%), while the ones activated with Actifish® diluted 1:4 and artificial sea water, at 4 °C, the highest (means 51.8 and 51.5% respectively). Additionally, diluting Actifish® to reach same pH and osmolality of seawater led to worse motility outcomes, suggesting that composition may be the critical factor for activation rather than osmolality itself.
Collapse
Affiliation(s)
- Alberto Elmi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Università di Bologna, Ozzano dell'Emilia, 40064, BO, Italy
| | - Antonio Casalini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Università di Bologna, Ozzano dell'Emilia, 40064, BO, Italy
| | - Martina Bertocchi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Università di Bologna, Ozzano dell'Emilia, 40064, BO, Italy
| | - Pietro Emmanuele
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Università di Bologna, Ozzano dell'Emilia, 40064, BO, Italy
| | - Camilla Aniballi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Università di Bologna, Ozzano dell'Emilia, 40064, BO, Italy
| | - Albamaria Parmeggiani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Università di Bologna, Ozzano dell'Emilia, 40064, BO, Italy
| | - Nadia Govoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Università di Bologna, Ozzano dell'Emilia, 40064, BO, Italy
| | - Domenico Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Università di Bologna, Ozzano dell'Emilia, 40064, BO, Italy.
| | - Oliviero Mordenti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Università di Bologna, Ozzano dell'Emilia, 40064, BO, Italy
| | - Maria Laura Bacci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Università di Bologna, Ozzano dell'Emilia, 40064, BO, Italy
| |
Collapse
|
3
|
Marc AF, Guppy JL, Marshall H, Jerry DR, Rudd D, Paris DBBP. Optimization of a non-activating medium for short-term chilled storage of barramundi (Lates calcarifer) testicular spermatozoa. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:559-576. [PMID: 37193910 PMCID: PMC10415525 DOI: 10.1007/s10695-023-01191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 04/06/2023] [Indexed: 05/18/2023]
Abstract
Reliable short-term chilled sperm storage is a critical prerequisite to using advanced reproductive techniques for captive breeding of barramundi (Asian sea bass; Lates calcarifer). Marine Ringer's solution (MRS) is a common non-activating medium (NAM) and has previously been used to store sperm from wild-caught barramundi. However, MRS-stored spermatozoa from captive-bred barramundi were observed to lyse within 30 min incubation. Therefore, this study aimed to optimize the composition of NAM for short-term chilled storage by characterizing and mimicking the biochemical profile of seminal and blood plasma of captive-bred barramundi. To further understand the effect of each component, osmolality was first examined to determine its effect on sperm viability. Thereafter, the effects of NaHCO3, pH, and Na+ and K+ concentrations on sperm motility were investigated. Optimization of the NAM formula was achieved through iterative adaptions. The increase in NAM osmolality from 260 to 400 mOsm/kg led to a significant improvement in sperm viability. Moreover, using HEPES instead of NaHCO3 as buffering agent significantly enhanced sperm motility and velocity. As a result, sperm samples diluted with optimized NAM (185 mM NaCl, 5.1 mM KCl, 1.6 mM CaCl2·2H2O, 1.1 mM MgSO4·7H2O, 10.0 mM HEPES, 5.6 mM D+ glucose, 400 mOsm/kg, pH 7.4) and stored at 4 °C showed no significant loss in total motility for up to 48 h and retained progressive motility for up to 72 h. The optimized NAM developed in this study significantly extended the functional lifespan of spermatozoa during chilled storage, permitting the ongoing development of advanced reproductive technologies for barramundi.
Collapse
Affiliation(s)
- Adrien F. Marc
- Gamete and Embryology (GAME) Laboratory, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD 4811 Australia
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, QLD 4811 Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811 Australia
| | - Jarrod L. Guppy
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811 Australia
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811 Australia
| | - Hayley Marshall
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, QLD 4811 Australia
| | - Dean R. Jerry
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811 Australia
- Australian Research Council Industrial Transformation Research Hub for Advanced Prawn Breeding, James Cook University, Townsville, QLD 4811 Australia
- Tropical Futures Institute, James Cook University, Geylang, Singapore
| | - Donna Rudd
- College of Public Health, Medical, and Veterinary Sciences, James Cook University, Townsville, QLD 4811 Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811 Australia
| | - Damien B. B. P. Paris
- Gamete and Embryology (GAME) Laboratory, College of Public Health, Medical & Veterinary Sciences, James Cook University, Townsville, QLD 4811 Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811 Australia
| |
Collapse
|
4
|
Castro-Arnau J, Chauvigné F, Cerdà J. Role of Ion Channels in the Maintenance of Sperm Motility and Swimming Behavior in a Marine Teleost. Int J Mol Sci 2022; 23:ijms232012113. [PMID: 36292967 PMCID: PMC9603624 DOI: 10.3390/ijms232012113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
In oviparous marine fishes, the hyperosmotic induction of sperm motility in seawater (SW) is well established, however, the potential function of ion channels in the maintenance of post activated spermatozoon swimming performance remains largely unknown. Here, we investigated the influence of ion channels on the spermatozoon swimming parameters using the gilthead seabream (Sparus aurata) as a model for modern marine teleosts. Our data show that the SW-induced activation of seabream sperm motility requires three concomitant processes, the hyperosmotic shock, an ion-flux independent increase of the intracellular concentration of Ca2+ ([Ca2+]i), but not of [K+]i or [Na+]i, and the alkalization of the cytosol. The combination of all three processes is obligatory to trigger flagellar beating. However, the time-course monitoring of sperm motion kinetics and changes in the [Ca2+]i, [K+]i and [Na+]i in SW or in non-ionic activation media, showed that the post activated maintenance of spermatozoa motility is dependent on extracellular Ca2+ and K+. A meta-analysis of a seabream sperm transcriptome uncovered the expression of multiple ion channels, some of which were immunolocalized in the head and/or tail of the spermatozoon. Selective pharmacological inhibition of these ion channel families impaired the long-term motility, progressivity, and velocity of SW-activated spermatozoa. The data further revealed that some antagonists of K+-selective or Ca2+-selective channels, as well as of stretch-activated and mechanosensitive channels, altered the trajectory of spermatozoa, suggesting that these ion channels are likely involved in the control of the swimming pattern of the post activated spermatozoon. These combined findings provide new insight into the signaling pathways regulating spermatozoon activation and swimming performance in marine fishes.
Collapse
Affiliation(s)
- Júlia Castro-Arnau
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - François Chauvigné
- Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain
| | - Joan Cerdà
- Institute of Agrifood Research and Technology (IRTA)-Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence:
| |
Collapse
|
5
|
Herrera F, Boryshpolets S, Mraz J, Knowles J, Bondarenko O. Pikeperch (Sander lucioperca) spermatozoa motility and volume regulation under different osmotic and ionic conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:899-910. [PMID: 35697911 DOI: 10.1007/s10695-022-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Pikeperch (Sander lucioperca) is a highly profitable commercial species whose economic value has greatly increased in the last decade. As in other species, the quality of spermatozoa in this species is a principal feature inherent in fertilization success and efficient natural and artificial reproduction. The capacity of fish spermatozoa to be activated and tolerate environmental changes (in osmolality, ion composition, external pH, temperature, etc.) during the motility period contributes to fertilization success. In this study, we investigated the effects of environmental osmolality and ion composition on spermatozoa motility. To determine if the activation mechanism is affected by sperm quality parameters, we measured semen characteristics such as semen volume, spermatozoa concentration, seminal fluid osmolality and ion composition, and spermatozoa lipid composition. An additional parameter of sperm quality reflecting spermatozoa osmoresistance, the swelling rate, was measured by the nephelometry method. We detected that sperm samples with the highest content of palmitic (C16:0) and palmitoleic (C16:1) acids showed the lowest motility activation under the studied conditions, suggesting that these fatty acids are possible markers for the determination of spermatozoa quality in fish. Our results show that pikeperch spermatozoa can be activated under different osmotic conditions and that cell swelling always accompanies motility. However, spermatozoa sustain their volume under hypotonic conditions when motility is not initiated, suggesting that pikeperch spermatozoa activation is mainly controlled by ion composition rather than the osmolarity of the surrounding medium.
Collapse
Affiliation(s)
- Fabio Herrera
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Sergey Boryshpolets
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jan Mraz
- Faculty of Fisheries and Protection of Waters, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Jindriska Knowles
- Faculty of Fisheries and Protection of Waters, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, Na Sádkách 1780, 370 05, České Budějovice, Czech Republic
| | - Olga Bondarenko
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
6
|
Herrera F, Bondarenko O, Boryshpolets S. Osmoregulation in fish sperm. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:785-795. [PMID: 34076793 DOI: 10.1007/s10695-021-00958-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
In most fish exhibiting external fertilization, spermatozoa become motile after release into water, triggered by differences between intracellular and extracellular conditions such as osmotic pressure, ion composition, and pH. The rapid change in osmolarity initiating spermatozoon motility induces osmotic pressure, resulting in active water movement across the cell membrane. Mechanisms of ion and water transport across the plasma membrane and cell volume regulation are important in maintaining structure and functional integrity of the cell. The capacity of the fish spermatozoon plasma membrane to adapt to dramatic environmental changes is an essential prerequisite for motility and successful fertilization. Adaptation to change in external osmolality may be the basis of spermatozoon function and an indicator of sperm quality. The involvement of specific water channels (aquaporins) in cell volume regulation and motility is highly likely. The goal of this review is to describe basic mechanisms of water transport and their role in fish spermatozoon physiology, focusing on osmoresistance, cell volume regulation, motility, and survival.
Collapse
Affiliation(s)
- Fabio Herrera
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| | - Olga Bondarenko
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Sergii Boryshpolets
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| |
Collapse
|
7
|
Servili A, Canario AVM, Mouchel O, Muñoz-Cueto JA. Climate change impacts on fish reproduction are mediated at multiple levels of the brain-pituitary-gonad axis. Gen Comp Endocrinol 2020; 291:113439. [PMID: 32061640 DOI: 10.1016/j.ygcen.2020.113439] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 11/30/2022]
Abstract
Anthropogenic emissions of carbon dioxide in the atmosphere have generated rapid variations in atmospheric composition which drives major climate changes. Climate change related effects include changes in physico-chemical proprieties of sea and freshwater, such as variations in water temperature, salinity, pH/pCO2 and oxygen content, which can impact fish critical physiological functions including reproduction. In this context, the main aim of the present review is to discuss how climate change related effects (variation in water temperature and salinity, increases in duration and frequency of hypoxia events, water acidification) would impact reproduction by affecting the neuroendocrine axis (brain-pituitary-gonad axis). Variations in temperature and photoperiod regimes are known to strongly affect sex differentiation and the timing and phenology of spawning period in several fish species. Temperature mainly acts at the level of gonad by interfering with steroidogenesis, (notably on gonadal aromatase activity) and gametogenesis. Temperature is also directly involved in the quality of released gametes and embryos development. Changes in salinity or water acidification are especially associated with reduction of sperm quality and reproductive output. Hypoxia events are able to interact with gonad steroidogenesis by acting on the steroids precursor cholesterol availability or directly on aromatase action, with an impact on the quality of gametes and reproductive success. Climate change related effects on water parameters likely influence also the reproductive behavior of fish. Although the precise mechanisms underlying the regulation of these effects are not always understood, in this review we discuss different hypothesis and propose future research perspectives.
Collapse
Affiliation(s)
- Arianna Servili
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzane, France.
| | - Adelino V M Canario
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Olivier Mouchel
- Ifremer, Univ Brest, CNRS, IRD, LEMAR, F-29280 Plouzane, France
| | - José Antonio Muñoz-Cueto
- Faculty of Marine and Environmental Sciences, INMAR, Department of Biology, University of Cádiz, Marine Campus of International Excellence (CEIMAR), Agrifood Campus of International Excellence (ceiA3) and European University of the Seas (SEA-EU), E11510 Puerto Real, Spain
| |
Collapse
|
8
|
Intracellular pH regulation and sperm motility in the European eel. Theriogenology 2020; 145:48-58. [DOI: 10.1016/j.theriogenology.2020.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 11/22/2022]
|
9
|
Gallego V, Asturiano JF. Sperm motility in fish: technical applications and perspectives through CASA-Mot systems. Reprod Fertil Dev 2019. [PMID: 29518349 DOI: 10.1071/rd17460] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Although a relatively high number of sperm quality biomarkers have been reported over the years in several fish species, sperm motility is nowadays considered the best biomarker for fish spermatozoa. The first scientific reports focusing on fish sperm motility date from a century ago, but the objective assessment allowed by computer-aided sperm analysis (CASA-Mot) systems was not applied to fish species until the mid-1980s. Since then, a high number of sperm kinetic parameters from more than 170 fish species have been reported in more than 700 scientific articles, covering a wide range of topics, such as sperm physiology, sperm storage, broodstock management, the phenomenon of sperm competition, ecotoxicology and understanding the life cycle of the species. The sperm kinetic parameters provided by CASA-Mot systems can serve as powerful and useful tools for aquaculture and ecological purposes, and this review provides an overview of the major research areas in which fish sperm motility assessment by a CASA-Mot system has been used successfully.
Collapse
Affiliation(s)
- V Gallego
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - J F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
10
|
Sun XH, Zhu YY, Wang L, Liu HL, Ling Y, Li ZL, Sun LB. The Catsper channel and its roles in male fertility: a systematic review. Reprod Biol Endocrinol 2017; 15:65. [PMID: 28810916 PMCID: PMC5558725 DOI: 10.1186/s12958-017-0281-2] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022] Open
Abstract
The Catsper channel is a sperm-specific, Ca2+-permeable, pH-dependent, and low voltage-dependent channel that is essential for the hyperactivity of sperm flagellum, chemotaxis towards the egg, capacitation and acrosome reaction. All of these physiological events require calcium entry into sperm cells. Remarkably, Catsper genes are exclusively expressed in the testis during spermatogenesis, and are sensitive to ion channel-induced pH change, such as NHEs, Ca2+ATPase, K+ channel, Hv1 channel and HCO3- transporters. Furthermore, the Catsper channel is regulated by some physiological stimulants, such as progesterone, cyclic nucleotides (e.g., cAMP, cGMP), zona pellucida (ZP) glycoproteins and bovine serum albumin (BSA). All of these factors normally stimulate Ca2+ entry into sperm through the Catsper channel. In addition, the Catsper channel may be a potential target for male infertility treatment or contraception. This review will focus on the structure, functions, regulation mechanisms and medicinal targets of the Catsper channel.
Collapse
Affiliation(s)
- Xiang-hong Sun
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Ying-ying Zhu
- 0000 0001 0455 0905grid.410645.2Department of pharmacy, College of pharmacy of Qingdao University, Qingdao, China
| | - Lin Wang
- grid.412521.1Department of clinical laboratory, the affiliated hospital of Qingdao University Medical College, Qingdao, China
| | - Hong-ling Liu
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Yong Ling
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Zong-li Li
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| | - Li-bo Sun
- grid.412521.1Department of pharmacy, the affiliated hospital of Qingdao University Medical College, Qingdao, 266555 China
| |
Collapse
|