1
|
Daly E, Defourneaux M, Legrand C, Renault D. The consequences of heatwaves for the reproductive success and physiology of the wingless sub-Antarctic fly Anatalanta aptera. J Therm Biol 2024; 123:103910. [PMID: 38981304 DOI: 10.1016/j.jtherbio.2024.103910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Sub-lethal effects of warming temperatures are an important, yet sometimes overlooked impact of climate change that may threaten the long-term survival of numerous species. This, like many other effects of climate change, is especially concerning for cold-adapted ectotherms living in rapidly warming polar regions. This study examines the effects of warmer temperatures on cold-adapted Diptera, using the long-lived sub-Antarctic sphaerocerid fly, Anatalanta aptera, as a focal species. We conducted two experiments to assess heat stress in adult flies, one varying the intensity of the heat stress (daily heating from 4 °C to 8 °C, 20 °C, or 24 °C) and one varying the frequency of heat stress exposure (heating from 4 °C to 12 °C every one, two, or three days) and examined consequences for reproductive success and metabolic responses. We found that more heat stress reduced reproductive output, but not timing of reproduction. Surprisingly, individuals sampled at different times during heat stress exposure were undifferentiable when all metabolite concentrations were analysed with redundancy analysis, however some individual metabolites did exhibit significant differences. Overall, our findings suggest that warmer temperatures in the sub-Antarctic may put this species at greater risk, especially when combined with other concurrent threats from biological invasions.
Collapse
Affiliation(s)
- Ella Daly
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Mathilde Defourneaux
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - Camille Legrand
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France
| | - David Renault
- UMR CNRS 6553 ECOBIO [(Ecosystèmes, Biodiversité, évolution)], Université Rennes, Avenue du Général Leclerc, 35042, Rennes Cedex, France.
| |
Collapse
|
2
|
Rueda Moreno G, Sasaki MC. Starvation reduces thermal limits of the widespread copepod Acartia tonsa. Ecol Evol 2023; 13:e10586. [PMID: 37799447 PMCID: PMC10547671 DOI: 10.1002/ece3.10586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023] Open
Abstract
Organismal thermal limits affect a wide range of biogeographical and ecological processes. Copepods are some of the most abundant animals on the planet and play key roles in aquatic habitats. Despite their abundance and ecological importance, there is limited data on the factors that affect copepod thermal limits, impeding our ability to predict how aquatic ecosystems will be affected by anthropogenic climate change. In a warming ocean, one factor that may have particularly important effects on thermal limits is the availability of food. A recently proposed feedback loop known as "metabolic meltdown" suggests that starvation and exposure to high temperatures interact to drastically reduce organismal thermal limits, increasing vulnerability to warming. To investigate one component of this feedback loop, we examined how starvation affects thermal limits (critical thermal maxima: CTmax) of Acartia tonsa, a widespread estuarine copepod. We found that there was no effect of short-duration exposure to starvation (up to 2 days). However, after 3 days, there was a significant decrease in the CTmax of starved copepods relative to the fed controls. Our results provide empirical evidence that extended periods of starvation reduce thermal limits, potentially initiating "metabolic meltdown" in this key species of coastal copepod. This suggests that changes in food availability may increase the vulnerability of copepods to increasing temperatures, amplifying the effects of climate change on coastal systems.
Collapse
Affiliation(s)
| | - Matthew C. Sasaki
- Department of Marine SciencesUniversity of ConnecticutGrotonConnecticutUSA
- Department of BiologyUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
3
|
Weaving H, Lord JS, Haines L, English S. No evidence for direct thermal carryover effects on starvation tolerance in the obligate blood-feeder, Glossina morsitans morsitans. Ecol Evol 2023; 13:e10652. [PMID: 37869424 PMCID: PMC10585125 DOI: 10.1002/ece3.10652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/10/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023] Open
Abstract
Thermal stress during development can prime animals to cope better with similar conditions in later life. Alternatively, negative effects of thermal stress can persist across life stages and result in poorer quality adults (negative carryover effects). As mean temperatures increase due to climate change, evidence for such effects across diverse taxa is required. Using Glossina morsitans morsitans, a species of tsetse fly and vector of trypanosomiasis, we asked whether (i) adaptive developmental plasticity allows flies to survive for longer under food deprivation when pupal and adult temperatures are matched; or (ii) temperature stress during development persists into adulthood, resulting in a greater risk of death. We did not find any advantage of matched pupal and adult temperature in terms of improved starvation tolerance, and no direct negative carryover effects were observed. There was some evidence for indirect carryover effects-high pupal temperature produced flies of lower body mass, which, in turn, resulted in greater starvation risk. However, adult temperature had the largest impact on starvation tolerance by far: flies died 60% faster at 31°C than those experiencing 25°C, consequently reducing survival time from a median of 8 (interquartile range (IQR) 7-9) to 5 (IQR 5-5.25) days. This highlights differences in temperature sensitivity between life stages, as there was no direct effect of pupal temperature on starvation tolerance. Therefore, for some regions of sub-Saharan Africa, climate change may result in a higher mortality rate in emerging tsetse while they search for their first blood meal. This study reinforces existing evidence that responses to temperature are life stage specific and that plasticity may have limited capacity to buffer the effects of climate change.
Collapse
Affiliation(s)
- Hester Weaving
- School of Biological SciencesUniversity of BristolBristolUK
| | - Jennifer S. Lord
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Lee Haines
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Sinead English
- School of Biological SciencesUniversity of BristolBristolUK
| |
Collapse
|
4
|
Pullock DA, Malod K, Manrakhan A, Weldon CW. Larval and adult diet affect phenotypic plasticity in thermal tolerance of the marula fly, Ceratitis cosyra (Walker) (Diptera: Tephritidae). FRONTIERS IN INSECT SCIENCE 2023; 3:1122161. [PMID: 38469504 PMCID: PMC10926529 DOI: 10.3389/finsc.2023.1122161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/13/2024]
Abstract
Introduction Temperature fluctuations are important for the distribution and survival of insects. Rapid hardening, a type of phenotypic plasticity, is an adaptation that can help individuals better tolerate lethal temperatures because of earlier exposure to a sublethal but stressful temperature. Nutrition and sex are also known to influence a species ability to tolerate thermal stress. This study determined the effects of larval diet, adult diet, sex and hardening on the thermal tolerance of Ceratitis cosyra (Walker) (Diptera: Tephritidae) at lower and upper lethal temperatures. Methods Larvae were raised on either an 8% torula yeast (high) or a 1% torula yeast (low) larval diet and then introduced to one of three dietary regimes as adults for thermal tolerance and hardening assays: no adult diet, sugar only, or sugar and hydrolysed yeast diet. Flies of known weight were then either heat- or cold-hardened for 2 hours before being exposed to a potentially lethal high or low temperature, respectively. Results Both nutrition and hardening as well as their interaction affected C. cosyra tolerance of stressful temperatures. However, this interaction was dependent on the type of stress, with nutrient restriction and possible adult dietary compensation resulting in improved cold temperature resistance only. Discussion The ability of the insect to both compensate for a low protein larval diet and undergo rapid cold hardening after a brief exposure to sublethal cold temperatures even when both the larva and the subsequent adult fed on low protein diets indicates that C. cosyra have a better chance of survival in environments with extreme temperature variability, particularly at low temperatures. However, there appears to be limitations to the ability of C. cosyra to cold harden and the species may be more at risk from long term chronic effects than from any exposure to acute thermal stress.
Collapse
Affiliation(s)
- Dylan A. Pullock
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Kévin Malod
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Aruna Manrakhan
- Citrus Research International, Mbombela, South Africa
- Department of Conservation Ecology and Entomology, Faculty of AgriSciences, Stellenbosch University, Stellenbosch, South Africa
| | - Christopher W. Weldon
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Interactive effects of food deprivation state and hypoxia on the respiratory responses of postprandial rock crabs, Cancer irroratus. J Comp Physiol B 2023; 193:37-55. [PMID: 36166090 DOI: 10.1007/s00360-022-01462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 01/24/2023]
Abstract
Under the background of climate change, increasing attention has focused on the effects of ocean deoxygenation on marine organisms. However, few studies address the effects of different food deprivation states on hypoxia tolerance. We therefore investigated the metabolic responses of the Atlantic rock crab, Cancer irroratus (starved 28-35 days, fasted 3-5 days and recently fed). Starved-crab exhibited the lowest critical oxygen saturation (Scrit), while fed-crab had the highest Scrit. The fed-crab maintained an elevated postprandial oxygen consumption (MO2) even below the Scrit of fasted-crab indicating reserved aerobic scopes for critical activities in severe hypoxia. Following feeding, hypoxia (50% and 20% oxygen saturation, SO2) retarded the specific dynamic action resulting in lower peak MO2 and longer duration. The starved-crab exhibited a lower peak MO2, prolonged duration and higher energy expenditure than fasted-crab after feeding. The decline in arterial PO2 was most pronounced below the Scrit for both fasted- and starved-crab. The higher hemocyanin concentration ([Hc]) of fasted-crab (than starved-crab) suggested they had improved oxygen transport capacity, but hypoxia did not increase [Hc] during the 72-h experiment. Following feeding, the fasted-crab significantly increased L-lactate concentration ([L-lactate]) in 20% SO2, which was not observed in starved-crab. These results suggest starvation may trigger a cross-tolerance to hypoxia. Because crabs can undergo long periods of food deprivation in their natural environment, future studies should consider how this may affect their ability to deal with environmental perturbations.
Collapse
|
6
|
Li X, Ma W, Jiang Y. Honeybees (Hymenoptera: Apidae) Adapt to the Shock of High Temperature and High Humidity Through Changes in Sugars and Polyols and Free Amino Acids. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:4. [PMID: 36695003 PMCID: PMC9874260 DOI: 10.1093/jisesa/iead002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 06/17/2023]
Abstract
Temperature and humidity are important factors affecting the honeybees physiological metabolism. When honeybees are stressed by high temperature and high humidity, various physiological stress mechanisms evolved by bees are activated in response to injury. The accumulation of some sugars, polyols, and free amino acids can effectively protect cell structure stability and resist temperature stress. In this study, the changes of glucose, trehalose, cholesterol, sorbitol, sorbitol dehydrogenase, mannitol, and free amino acids content of worker honeybees [Apis cerana cerana Fabricius and Apis mellifera Ligustica (Hymenoptera: Apidae)] under different temperature and humidity conditions were measured. Our research results show that high temperature has an important impact on the metabolism of honeybees. Heat stress can cause the accumulation of various antistress substances in worker. The contents of sugars, polyols, and some free amino acids accumulated in high temperature were significantly higher than those in the control, while the influence of high humidity was less. Although high humidity was improved compared with the control, the difference was not obvious. It provides a theoretical basis for exploring the physiological mechanism of individual heat resistance of honeybees.
Collapse
Affiliation(s)
- Xinyu Li
- Shandong Vocational College of Light Industry, Zibo, Shandong Province, China
| | - Weihua Ma
- College of Horticulture, Shanxi Agricultural University, Taiyuan, Shanxi Province, China
| | | |
Collapse
|
7
|
Bomble P, Nath BB. Differential manifestation of RONS and antioxidant enzymes in response to singular versus combinatorial stress in Chironomus ramosus. STRESS BIOLOGY 2022; 2:56. [PMID: 37676561 PMCID: PMC10442003 DOI: 10.1007/s44154-022-00077-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/24/2022] [Indexed: 09/08/2023]
Abstract
In nature, organisms face multiple abiotic stress concurrently. Our previous study has indicated how threshold level of lethality depends on the type and combination of stressors. Many mechanisms exist by which organisms respond to stressors and maintain homeostasis. We examined the homeostatic pliability in an extremophilic oriental midge Chironomus ramosus larvae under various combinatorial stress conditions of desiccation (DS), heat (HS) and starvation (SS). Exposure to these stressors led to activation of a common response pathway of oxidative stress. Abundance of antioxidant enzymes like superoxide dismutase, catalase, glutathione reductase and glutathione peroxidase along with selective as well as stressor specific increase in total antioxidant capacity were reflected from the corresponding level of reactive oxygen and nitrogen species (RONS) in larvae exposed to various combinatorial stress. Additionally, we found stressor specific increment in lipid peroxidation level, protein carbonyl content and advanced oxidative protein products during the stress regime. Further investigation revealed a sharp decline in the activity of mitochondrial aconitase enzyme activity in response to abiotic stress induced oxidative stress. The combinatorial stressor specific comparative study based on biochemical and fluorescence based redox-endpoint assays confirmed that the generation of oxidative stress is the consequential convergent pathway of DS, HS and SS, but the quantum of RONS decides the redox potential of homeostatic response and survival rate.
Collapse
Affiliation(s)
- Pratibha Bomble
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India
| | - Bimalendu B Nath
- Stress Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India.
- MIE-SPPU Institute of Higher Education, Doha, Qatar.
| |
Collapse
|
8
|
Tarusikirwa VL, Cuthbert RN, Mutamiswa R, Nyamukondiwa C. Context-dependent integrated stress resistance promotes a global invasive pest. INSECT SCIENCE 2022; 29:1790-1804. [PMID: 35290720 PMCID: PMC10084016 DOI: 10.1111/1744-7917.13035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In nature, insects concurrently face multiple environmental stressors, a scenario likely increasing with climate change. Integrated stress resistance (ISR) thus often improves fitness and could drive invasiveness, but how physiological mechanisms influence invasion has lacked examination. Here, we investigated cross-tolerance to abiotic stress factors which may influence range limits in the South American tomato pinworm-a global invader that is an ecologically and socially damaging crop pest. Specifically, we tested the effects of prior rapid cold- and heat-hardening (RCH and RHH), fasting, and desiccation on cold and heat tolerance traits, as well as starvation and desiccation survivability between T. absoluta life stages. Acclimation effects on critical thermal minima (CTmin ) and maxima (CTmax ) were inconsistent, showing significantly deleterious effects of RCH on adult CTmax and CTmin and, conversely, beneficial acclimation effects of RCH on larval CTmin . While no beneficial effects of desiccation acclimation were recorded for desiccation tolerance, fasted individuals had significantly higher survival in adults, whereas fasting negatively affected larval tolerances. Furthermore, fasted and desiccation acclimated adults had significantly higher starvation tolerance, showing strong evidence for cross-tolerance. Our results show context-dependent ISR traits that may promote T. absoluta fitness and competitiveness. Given the frequent overlapping occurrence of these divergent stressors, ISR reported here may thus partly elucidate the observed rapid global spread of T. absoluta into more stressful environments than expected. This information is vital in determining the underpinnings of multistressor responses, which are fundamental in forecasting species responses to changing environments and management responses.
Collapse
Affiliation(s)
- Vimbai L. Tarusikirwa
- Department of Biological Sciences and BiotechnologyBotswana International University of Science and TechnologyPalapyeBotswana
| | - Ross N. Cuthbert
- GEOMAR Helmholtz‐Zentrum für Ozeanforschung KielKielGermany
- School of Biological SciencesQueen's University BelfastNorthern IrelandUnited Kingdom
| | - Reyard Mutamiswa
- Department of Zoology and EntomologyUniversity of the Free StateBloemfonteinSouth Africa
- Tugwi‐Mukosi Multidisciplinary Research InstituteMidlands State UniversityGweruZimbabwe
| | - Casper Nyamukondiwa
- Department of Biological Sciences and BiotechnologyBotswana International University of Science and TechnologyPalapyeBotswana
- Department of Zoology and EntomologyRhodes UniversityMakhandaSouth Africa
| |
Collapse
|
9
|
Adaptive changes in energy reserves and effects of body melanization on thermal tolerance in Drosophila simulans. Comp Biochem Physiol A Mol Integr Physiol 2022; 271:111258. [PMID: 35705113 DOI: 10.1016/j.cbpa.2022.111258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/11/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Seasonally polyphenic types have been documented in many Drosophilids, which differ significantly during thermal stress. Although Drosophila simulans is a sibling species to Drosophila melanogaster, both thrive in the temperate and tropical climates, but various climatic factors are expected to impact their distribution and abundance. As a result, D. simulans may use phenotypic plasticity to adapt to colder and drier circumstances in temperate zones, although such studies are less known. In the present study, our main aim was to find a link between adaptive plasticity and thermal tolerance in D. simulans. We characterized two morphs in D. simulans flies based on the abdominal melanization collected from the same locality and season, as this trait is highly associated with the larval developmental conditions. Our results suggested that flies reared from dark and light morph showed significant differences in the basal level of proline, carbohydrates (trehalose, glycogen), and lipids (cuticular lipids and total body lipids) within simulated seasons and morph lineages in D. simulans flies. We further showed that D. simulans reared from dark morph are better adapted to cold conditions, whereas light flies are more adapted to warm conditions. The flies, both from light and dark morph lineages, when reared at 15 °C, showed an increase in the level of total body lipids after acclimation at 0 °C but a decrease in the level of proline and carbohydrates (trehalose, glycogen). Heat acclimation increases glycogen levels in the flies from light morph lineage while decreases trehalose and proline.
Collapse
|
10
|
Cao JY, Xing K, Zhao F. Complex delayed and transgenerational effects driven by the interaction of heat and insecticide in the maternal generation of the wheat aphid, Sitobion avenae. PEST MANAGEMENT SCIENCE 2021; 77:4453-4461. [PMID: 34002463 DOI: 10.1002/ps.6480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Experience of an earlier environment plays an important role in the induction of delayed and even intergenerational phenotypes of an organism. Evidence suggests that rapid adaptation to an environmental stressor can change the performance of organisms, and even enable them to deal with other stressors. The goal of this study was to determine the effects of adult imidacloprid exposure on life-history traits within and between generations of the cereal aphid, Sitobion avenae, under three developmental conditions: constant temperature, 22°C; a low-intensity thermal condition, 22 + 34°C for 2 h per day; and a high-intensity thermal condition, 22 + 38°C for 2 h per day. RESULTS Early thermal experience not only changed the tolerance of S. avenae to the insecticide, imidacloprid, but also caused adults to incur fitness costs: the higher the heat intensity, the higher the costs. Negative transgenerational impacts of combined heat and insecticide stressors were limited to the developmental stage, whereas positive stimulation of heat intensity was observed during the adult stage. Overall, nymphal thermal experience exacerbated the detrimental effects of adult insecticidal exposure on the intrinsic rate of population increase in the maternal generation, but stimulated a net reproductive rate in the succeeding offspring generation. CONCLUSION These findings underpin the importance of considering the experience of the early developmental environment, but also enhance our understanding of the transgenerational effects of combined thermal and insecticide stressors on the population fate of S. avenae. They also help to assess the efficacy of chemical control in a warming world. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun-Yu Cao
- Department of Life Science, Lvliang University, Lvliang, China
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
| | - Kun Xing
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Agroecosystem National Observation and Research Station, Taiyuan, China
| | - Fei Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan, China
- Shanxi Shouyang Agroecosystem National Observation and Research Station, Taiyuan, China
| |
Collapse
|
11
|
Ben-Yosef M, Verykouki E, Altman Y, Nemni-Lavi E, Papadopoulos NT, Nestel D. Effects of Thermal Acclimation on the Tolerance of Bactrocera zonata (Diptera: Tephritidae) to Hydric Stress. Front Physiol 2021; 12:686424. [PMID: 34539427 PMCID: PMC8446596 DOI: 10.3389/fphys.2021.686424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
Insects, similarly to other small terrestrial invertebrates, are particularly susceptible to climatic stress. Physiological adjustments to cope with the environment (i.e., acclimation) together with genetic makeup eventually determine the tolerance of a species to climatic extremes, and constrain its distribution. Temperature and desiccation resistance in insects are both conditioned by acclimation and may be interconnected, particularly for species inhabiting xeric environments. We determined the effect of temperature acclimation on desiccation resistance of the peach fruit fly (Bactrocera zonata, Tephritidae) – an invasive, polyphagous pest, currently spreading through both xeric and mesic environments in Africa and the Eurasian continent. Following acclimation at three constant temperatures (20, 25, and 30°C), the survival of adult flies deprived of food and water was monitored in extreme dry and humid conditions (<10 and >90% relative humidity, respectively). We found that flies acclimated at higher temperatures were significantly heavier, and contained more lipids and protein. Acclimation temperature significantly and similarly affected the survival of males and females at both high and low humidity conditions. In both cases, flies maintained at 30°C survived longer compared to 20 and 25°C – habituated counterparts. Regardless of the effect of acclimation temperature on survival, overall life expectancy was significantly shortened when flies were assayed under desiccating conditions. Additionally, our experiments indicate no significant difference in survival patterns between males and females, and that acclimation temperature had similar effects after both short (5–10 days) and long (11–20 days) acclimation periods. We conclude that acclimation at 30°C prolongs the survival of B. zonata, regardless of ambient humidity levels. Temperature probably affected survival through modulating feeding and metabolism, allowing for accumulation of larger energetic reserves, which in turn, promoted a greater ability to resist starvation, and possibly desiccation as well. Our study set the grounds for understanding the phenotypic plasticity of B. zonata from the hydric perspective, and for further evaluating the invasion potential of this pest.
Collapse
Affiliation(s)
- Michael Ben-Yosef
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - Eleni Verykouki
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Yam Altman
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - Esther Nemni-Lavi
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - David Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
12
|
Rodgers EM, Gomez Isaza DF. Harnessing the potential of cross-protection stressor interactions for conservation: a review. CONSERVATION PHYSIOLOGY 2021; 9:coab037. [PMID: 35692493 PMCID: PMC8193115 DOI: 10.1093/conphys/coab037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/15/2021] [Accepted: 05/09/2021] [Indexed: 05/07/2023]
Abstract
Conservation becomes increasingly complex as climate change exacerbates the multitude of stressors that organisms face. To meet this challenge, multiple stressor research is rapidly expanding, and the majority of this work has highlighted the deleterious effects of stressor interactions. However, there is a growing body of research documenting cross-protection between stressors, whereby exposure to a priming stressor heightens resilience to a second stressor of a different nature. Understanding cross-protection interactions is key to avoiding unrealistic 'blanket' conservation approaches, which aim to eliminate all forms of stress. But, a lack of synthesis of cross-protection interactions presents a barrier to integrating these protective benefits into conservation actions. To remedy this, we performed a review of cross-protection interactions among biotic and abiotic stressors within a conservation framework. A total of 66 publications were identified, spanning a diverse array of stressor combinations and taxonomic groups. We found that cross-protection occurs in response to naturally co-occurring stressors, as well as novel, anthropogenic stressors, suggesting that cross-protection may act as a 'pre-adaptation' to a changing world. Cross-protection interactions occurred in response to both biotic and abiotic stressors, but abiotic stressors have received far more investigation. Similarly, cross-protection interactions were present in a diverse array of taxa, but several taxonomic groups (e.g. mammals, birds and amphibians) were underrepresented. We conclude by providing an overview of how cross-protection interactions can be integrated into conservation and management actions and discuss how future research in this field may be directed to improve our understanding of how cross-protection may shield animals from global change.
Collapse
Affiliation(s)
- Essie M Rodgers
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Daniel F Gomez Isaza
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Liu WPA, Phillips LM, Terblanche JS, Janion-Scheepers C, Chown SL. An unusually diverse genus of Collembola in the Cape Floristic Region characterised by substantial desiccation tolerance. Oecologia 2021; 195:873-885. [PMID: 33792777 DOI: 10.1007/s00442-021-04896-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/13/2021] [Indexed: 10/21/2022]
Abstract
Trait-environment interactions have contributed to the remarkable plant radiations in the Cape Floristic Region (CFR) of southern Africa. Whether such interactions have also resulted in the diversification of the invertebrate fauna, independently of direct associations with plants is, however, not clear. One candidate where this may be the case is the unusually diverse Collembola genus Seira. Including 89 species in the CFR, many of which are localised habitat specialists, this genus includes many species inhabiting the warm, dry fynbos shrubland-a habitat atypical of usually desiccation-sensitive Collembola. Here, we investigate whether desiccation tolerance may have contributed to the considerable diversity of Seira in the CFR. First, we demonstrate, by measuring vapour pressure deficits (VPD) of the species' microhabitats (fynbos shrubland and moister Afrotemperate Forests), that the fynbos shrublands are dry environments (mean ± S.E. maximum VPD 5.2 ± 0.1 kPa) compared with the Afrotemperate Forest patches (0.3 ± 0.02 kPa) during the summer activity period of Seira. Then we show that Seira species living in these shrublands are more desiccation tolerant (mean ± S.E. survival time at 76% relative humidity: 74.3 ± 3.3 h) than their congeners in the cooler, moister Afrotemperate Forests (34.3 ± 2.8 h), and compared with Collembola species globally (3.7 ± 0.2 h). These results, and a previous demonstration of pronounced thermal tolerance in the fynbos shrubland species, suggest that the diversity of Seira in the CFR is at least partly due to pronounced desiccation and thermal tolerance, which has enabled species in the genus to exploit the hot and dry habitats of the CFR.
Collapse
Affiliation(s)
- W P Amy Liu
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia.
| | - Laura M Phillips
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | - John S Terblanche
- Department of Conservation Ecology and Entomology, Stellenbosch University, Matieland, 7602, South Africa
| | - Charlene Janion-Scheepers
- Department of Biological Sciences, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa.,Iziko South African Museum, Cape Town, 8001, South Africa
| | - Steven L Chown
- School of Biological Sciences, Monash University, Melbourne, VIC, 3800, Australia
| |
Collapse
|
14
|
Hector TE, Sgrò CM, Hall MD. The influence of immune activation on thermal tolerance along a latitudinal cline. J Evol Biol 2020; 33:1224-1234. [PMID: 32506574 DOI: 10.1111/jeb.13663] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/24/2022]
Abstract
Global change is shifting both temperature patterns and the geographic distribution of pathogens, and infection has already been shown to substantially reduce host thermal performance, potentially placing populations at greater risk that previously thought. But what about individuals that are able to successfully clear an infection? Whilst the direct damage a pathogen causes will likely lead to reductions in host's thermal tolerance, the response to infection often shares many underlying pathways with the general stress response, potentially acting as a buffer against subsequent thermal stress. Here, by exposing Drosophila melanogaster to heat-killed bacterial pathogens, we investigate how activation of a host's immune system can modify any response to both heat and cold temperature stress. In a single focal population, we find that immune activation can improve a host's knockdown times during heat shock, potentially offsetting some of the damage that would subsequently arise as an infection progresses. Conversely, immune activation had a detrimental effect on CTmax and did not influence lower thermal tolerance as measured by chill-coma recovery time. However, we also find that the influence of immune activation on heat knockdown times is not generalizable across an entire cline of locally adapted populations. Instead, immune activation led to signals of local adaptation to temperature being lost, erasing the previous advantage that populations in warmer regions had when challenged with heat stress. Our results suggest that activation of the immune system may help buffer individuals against the detrimental impact of infection on thermal tolerance; however, any response will be population specific and potentially not easily predicted across larger geographic scales, and dependent on the form of thermal stress faced by a host.
Collapse
Affiliation(s)
- Tobias E Hector
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Vic., Australia
| | - Carla M Sgrò
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Vic., Australia
| | - Matthew D Hall
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, Vic., Australia
| |
Collapse
|
15
|
Response to Multiple Stressors: Enhanced Tolerance of Neoseiulus barkeri Hughes (Acari: Phytoseiidae) to Heat and Desiccation Stress through Acclimation. INSECTS 2019; 10:insects10120449. [PMID: 31847063 PMCID: PMC6956224 DOI: 10.3390/insects10120449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 01/06/2023]
Abstract
Organisms are always confronted with multiple stressors simultaneously. Combinations of stressors, rather than single stressor, may be more appropriate in evaluating the stress they experience. N. barkeri is one of predatory mite species that are commercialized for controlling spider mites. However, their biological control efficiency was often reduced because of high temperature and desiccation in summer. To understand how to improve the tolerance of N. barkeri to combined heat and desiccation stress, we pre-exposed the adult female of N. barkeri to high temperature, desiccation and high temperature × desiccation stress for acclimation. After proper recovery time, mites were subjected to high temperature × desiccation stress again to detect the acclimation effects. The results are as follows: (1) No decrease in mortality rate were observed under high temperature × desiccation stress after heat acclimation. Instead, it increased significantly with acclimation temperature and time. (2) Dehydration acclimation both at 25 °C and high temperatures reduced mortality rate under high temperature × desiccation stress. Mortality rate was only significantly correlated with the amount of water loss, but not with temperature or water loss rate in acclimation, suggesting the increased tolerance is related to dehydration stress rather than heat stress. Among all acclimations, chronic dehydration at 25 °C, 50% relative humidity were the most effective treatment. This study indicated dehydration acclimation is effective to enhance tolerance of N. barkeri to combined heat and desiccation stress, which can improve the efficiency of biological control under multiple stressors.
Collapse
|
16
|
Girish TN, Pradeep BE, Parkash R. Heat and humidity induced plastic changes in body lipids and starvation resistance in the tropical Zaprionus indianus of wet - dry seasons. J Exp Biol 2018; 221:jeb.174482. [DOI: 10.1242/jeb.174482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/20/2018] [Indexed: 02/03/2023]
Abstract
Insects from tropical wet or dry seasons are likely to cope starvation stress through plastic changes (developmental as well as adult acclimation) in energy metabolites. Control and experimental groups of flies of Zaprionus indianus were reared under wet or dry conditions but adults were acclimated at different thermal or humidity conditions. Adult flies of control group were acclimated at 27°C and low (50% RH) or high (60% RH) humidity. For experimental groups, adult flies were acclimated at 32℃ for 1 to 6 days and under low (40% RH) or high (70% RH). For humidity acclimation, adult flies were acclimated at 27°C but under low (40% RH) or high (70% RH) for 1 to 6 days. Plastic changes in experimental groups as compared to control group (developmental as well as adult acclimation) revealed significant accumulation of body lipids due to thermal or humidity acclimation of wet season flies but low humidity acclimation did not change the level of body lipids in dry season flies. Starvation resistance and body lipids were higher in the males of dry season but in the females of wet season. Adult acclimation under thermal or humidity conditions exhibited changes in the rate of utilization of body lipids, carbohydrates and proteins. Adult acclimation of wet or dry season flies revealed plastic changes in mean daily fecundity; and a reduction in fecundity under starvation. Thus, thermal or humidity acclimation of adults revealed plastic changes in energy metabolites to support starvation resistance of wet or dry seasons flies.
Collapse
Affiliation(s)
- T. N. Girish
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam - 515134, India
| | - B. E. Pradeep
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam - 515134, India
| | - Ravi Parkash
- Department of Genetics, Maharshi Dayanand University, Rohtak- 124001, India
| |
Collapse
|
17
|
Gotcha N, Terblanche JS, Nyamukondiwa C. Plasticity and cross-tolerance to heterogeneous environments: divergent stress responses co-evolved in an African fruit fly. J Evol Biol 2017; 31:98-110. [PMID: 29080375 DOI: 10.1111/jeb.13201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 01/16/2023]
Abstract
Plastic adjustments of physiological tolerance to a particular stressor can result in fitness benefits for resistance that might manifest not only in that same environment but also be advantageous when faced with alternative environmental stressors, a phenomenon termed 'cross-tolerance'. The nature and magnitude of cross-tolerance responses can provide important insights into the underlying genetic architecture, potential constraints on or versatility of an organism's stress responses. In this study, we tested for cross-tolerance to a suite of abiotic factors that likely contribute to setting insect population dynamics and geographic range limits: heat, cold, desiccation and starvation resistance in adult Ceratitis rosa following acclimation to all these isolated individual conditions prior to stress assays. Traits of stress resistance scored included critical thermal (activity) limits, chill coma recovery time (CCRT), heat knockdown time (HKDT), desiccation and starvation resistance. In agreement with other studies, we found that acclimation to one stress typically increased resistance for that same stress experienced later in life. A more novel outcome, however, is that here we also found substantial evidence for cross-tolerance. For example, we found an improvement in heat tolerance (critical thermal maxima, CTmax ) following starvation or desiccation hardening and improved desiccation resistance following cold acclimation, indicating pronounced cross-tolerance to these environmental stressors for the traits examined. We also found that two different traits of the same stress resistance differed in their responsiveness to the same stress conditions (e.g. HKDT was less cross-resistant than CTmax ). The results of this study have two major implications that are of broader importance: (i) that these traits likely co-evolved to cope with diverse or simultaneous stressors, and (ii) that a set of common underlying physiological mechanisms might exist between apparently divergent stress responses in this species. This species may prove to be a valuable model for future work on the evolutionary and mechanistic basis of cross-tolerance.
Collapse
Affiliation(s)
- N Gotcha
- Department of Biological Sciences and Biotechnology Sciences, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| | - J S Terblanche
- Department of Conservation Ecology and Entomology, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - C Nyamukondiwa
- Department of Biological Sciences and Biotechnology Sciences, Botswana International University of Science and Technology (BIUST), Palapye, Botswana
| |
Collapse
|
18
|
Lambhod C, Pathak A, Munjal AK, Parkash R. Tropical Drosophila ananassae of wet-dry seasons show cross resistance to heat, drought and starvation. Biol Open 2017; 6:1698-1706. [PMID: 29141954 PMCID: PMC5703618 DOI: 10.1242/bio.029728] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Plastic responses to multiple environmental stressors in wet or dry seasonal populations of tropical Drosophila species have received less attention. We tested plastic effects of heat hardening, acclimation to drought or starvation, and changes in trehalose, proline and body lipids in Drosophila ananassae flies reared under wet or dry season-specific conditions. Wet season flies revealed significant increase in heat knockdown, starvation resistance and body lipids after heat hardening. However, accumulation of proline was observed only after desiccation acclimation of dry season flies while wet season flies elicited no proline but trehalose only. Therefore, drought-induced proline can be a marker metabolite for dry-season flies. Further, partial utilization of proline and trehalose under heat hardening reflects their possible thermoprotective effects. Heat hardening elicited cross-protection to starvation stress. Stressor-specific accumulation or utilization as well as rates of metabolic change for each energy metabolite were significantly higher in wet-season flies than dry-season flies. Energy metabolite changes due to inter-related stressors (heat versus desiccation or starvation) resulted in possible maintenance of energetic homeostasis in wet- or dry-season flies. Thus, low or high humidity-induced plastic changes in energy metabolites can provide cross-protection to seasonally varying climatic stressors. Summary: In the tropical Drosophila ananassae, low or high humidity-induced plastic changes in energy metabolites provide cross-protection to seasonally varying climatic stressors.
Collapse
Affiliation(s)
| | - Ankita Pathak
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India.,Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India
| | - Ashok K Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal 462026, India
| | - Ravi Parkash
- Department of Genetics, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|